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Eigenproblems of Symmetric Planar Frames

A. Kaveh1;� and B. Salimbahrami1

Abstract. In this paper, the graph models of planar frame structures with di�erent symmetries are
decomposed and appropriate processes are designed for their healing in order to form the corresponding
factors. The eigenvalues and eigenvectors of the entire structure are then obtained by evaluating those
of its factors. The methods developed in this article simplify calculation of the natural frequencies and
natural modes of the planar frames with di�erent types of symmetry.
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INTRODUCTION

Symmetry has been widely studied in science and
engineering [1-5]. Large eigenvalue problems arise in
many scienti�c and engineering problems [6-8]. While
the basic mathematical ideas are independent of the
size of matrices, the numerical determination of eigen-
values and eigenvectors becomes more complicated as
the dimensions and sparsity of the matrices increase.
General methods were developed for the solution of
large-scale problems in electrical networks as early as
1957 by Kron [9] and further applied to structures
by Prezemieniecki [10]. The substructuring methods
have also been extended to the eigensolution of struc-
tures [11]. Though these methods are powerful tools,
special methods are needed for the e�cient solution of
those structural models which have di�erent kinds of
symmetry.

Methods are developed for decomposing the sym-
metric graph models of structures in order to calculate
the eigenvalues of matrices with special patterns [12-
15]. The application of these methods is extended to
the free vibration of mass-spring systems [16] and the
free and forced vibration of frame structures [17,18].
Symmetry is also employed in the stability analysis of
frames [19,20].

In this paper, graph models are associated with
frame structures. Decomposition approaches are em-
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ployed to form matrices of special patterns for such
systems. The problem of �nding eigenvalues and
eigenvectors of symmetric frames is transferred into
calculating those of their factors. The factors of a
symmetric model are obtained by a decomposition
followed by a new healing process. This results in
e�cient methods for evaluating the natural frequencies
and natural modes of symmetric frames. Di�erent
forms of the symmetry are accompanied by simple
illustrative examples.

The application of the present method becomes
more apparent when the dynamic behavior of large-
scale structures is studied. The concepts and meth-
ods introduced in this paper can also be applied to
eigenproblems involved in civil and other branches of
engineering.

PRELIMINARY DEFINITIONS

De�nitions from Theory of Graphs

A graph, S, consists of a set of elements, N(S), called
nodes and a set of elements, M(S), called members,
together with a relation of incidence that associates
two distinct nodes with each member known as its
ends. If the end nodes of a member coincide, then
the member is called a loop, and if there exists more
than one member between two nodes, it is called a
multiple member. Two nodes of a graph are called
adjacent if these nodes are the end nodes of a member.
A member is considered incident with a node if it is
an end node of the member. The degree of a node is
the number of members incident with that node. Two



468 A. Kaveh and B. Salimbahrami

graphs are called isomorphic; if there is a one-to-one
correspondence between their nodes, the adjacency is
preserved. A subgraph, Si, of a graph, S, is a graph
for which N(Si) � N(S) and M(Si) � M(S) and
each member of Si has the same ends as in S. For
detailed explanations and applications, the reader may
refer to [14].

The adjacency matrix, A = [aij ]n�n, of a labeled
graph, S, containing n nodes is de�ned as:

aij =

(
1 if node ni is adjacent to nj
0 otherwise

(1)

The degree matrix, D = [dij ]n�n, is a diagonal matrix
of node degrees. dij is equal to the degree of the ith
node.

The Laplacian matrix, L = [lij ]n�n, is de�ned as:

L = D �A: (2)

Therefore, the entries of L are as follows:

lij =

8><>:�1 if node ni is adjacent to nj
deg(ni) if i = j
0 otherwise

(3)

Decomposition of Matrices of Form II and
Form III

Consider an N � N symmetric matrix, M , with all
entries being real. For two symmetry forms, the
eigenvalues of M are obtained using the properties of
its submatrices.

Canonical Form II
For this case, matrix M can be decomposed into the
following form:

[M ] =

24[A]n�n [B]n�n

[B]n�n [A]n�n

35
N�N

: (4)

The eigenvalues of matrix M can be calculated as:

f�Mg = f�Cg�[f�Dg; (5)

where �[ is the sign for the collection of the eigenvalues
of the submatrices.

It can be proved that det M = detC�detD [14].
Here, C and D are called condensed submatrices of M ,

C = A+B; D = A�B: (6)

Canonical Form III
This form has a Form II submatrix augmented by k
rows and columns as shown in the following:

[M ] =

266666666664

[A] [B]

[B] [A]

C(2n+ 1; 1) : C(2n+ 1; 2n)
: : :

Z(2n+ k; 1) : Z(2n+ k; 2n)

L11 � � � L1k
L21 � � � L2k
Ln1 � � � Lnk
L11 � � � L1k
L21 L2k
Ln1 � � � Lnk

C(2n+1; 2n+1) � � � C(2n+1; 2n+k)
: � � � :

Z(2n+k; 2n+1) � � � Z(2n+k; 2n+k)

37777777777775
;
(7)

where M is a (N + k)� (N + k) matrix with a N � N
submatrix with the pattern of Form II (N = 2n) and
k augmented columns and rows. The entries of the
augmented columns are the same in each column and
all the entries of M are real numbers. C(i; j) and
Z(i; j) are arbitrary real numbers.

The set of eigenvalues for M is obtained as:

f�Mg = f�Dg�[f�Eg; (8)

where D and E are constructed as follows:

D = A�B; (9)

[E] =

2666666664
[A+B]

C(2n+ 1; 1) + C(2n+ 1; n+ 1) :
: :

Z(2n+ k; 1) + Z(2n+ k; n+ 1) :

L11 � � � L1k
L21 � � � L2k
Ln1 � � � Lnk

C(2n+1; 2n+1) � � � C(2n+1; 2n+k)
: � � � :

Z(2n+k; 2n+1) � � � Z(2n+k; 2n+k)

37777775 ;(10)

and:

detM = detD � detE: (11)
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A special case of the Form III canonical matrix can be
considered as:

[M ] =

2666664
AN

2 �N2 BN
2 �N2 SN

2 �k

BN
2 �N2 AN

2 �N2 SN
2 �k

STk�N2 STk�N2 Xk�k

3777775 ; (12)

resulting in:

D = A�B;
and:

E =

264A+B SN
2 �k

2STk�N2 Xk�k

375 ; (13)

where A, B, S and X have the dimensions as shown.
The matrix of this form will frequently be used in the
analysis of symmetric structures.

Symmetry of Form II and III

When the matrices of the previous section are consid-
ered as the Laplacian matrices of the graph models of
structures, the canonical forms can be interpreted as
follows.

Form II Symmetry
The axis of symmetry passes through members, and
graph S has an even number of nodes. The members
cut by the axis of symmetry are called link members,
and their end nodes are taken as linked nodes. Link
members connect the two isomorphic subgraphs, S1
and S2, to each other. For this case, two di�erent
types of connection are considered. The �rst one is
a direct connection and the second is called a cross-
connection.

In a direct connection, a typical node i in S1 is
connected to the node labeled as i+N=2 in S2 by a link
member. In cross-connection, a typical pair of nodes
i and j in S1 is connected to j + N=2 and i + N=2,
respectively.

Form III Symmetry
In this case, the axis of symmetry passes through nodes,
while the conditions of direct or cross-connections are
not ful�lled. The nodes on the axis of symmetry are
called central nodes.

Once the types of symmetry are identi�ed, the
isomorphic subgraphs, S1 and S2, are modi�ed such
that the union of eigenvalues of the structural matrices
of the two modi�ed subgraphs becomes the same as
the eigenvalues of the entire graph, S. The process
of the modi�cations made to the subgraphs is called

the healing of the subgraphs and the entire process
may be considered as the factorization of a graph. The
subgraphs obtained for graph S after healing are called
the factors of S.

DECOMPOSITION OF PLANAR
SYMMETRIC FRAMES WITH ODD
NUMBER OF SPANS

The algorithm presented in this section decomposes
a symmetric structure with an odd number of spans
into two factors, C and D or E and D. By obtaining
the dynamic properties of each factor and considering
their union, the dynamic properties of entire frames are
obtained. Here, for simplicity, the axial deformations
are not included and the corresponding Degrees Of
Freedom (DOFs) are taken as zero.

In the following, �rst Algorithm A is presented,
and then the necessary new terms are introduced.

Algorithm A

The algorithm for the decomposition of planar frames
with an odd number of spans, with or without sway, is
designed as:

Step 1: Delete all the beams crossing the axis of
symmetry.

Step 2: The columns corresponding to the left part,
which are connected to the eliminated beams,
are doubled by tc columns. This half, for the
case of non-sway frames, forms the factor C,
and in the case of sway frames, together with
the translation DOFs, forms the factor E.

Step 3: The columns of the right half, which were con-
nected to the eliminated beams, are doubled
by cc columns. This half, for the cases of sway
and non-sway frames, forms the factor D, and
in the case of sway frames, together with the
translation DOFs, is deleted.

De�nitions

The New Element tc for Planar Case
The elements de�ned in the following are used in the
above algorithm for doubling some columns in place of
deleting the beams crossing the axis of symmetry. The
new column is denoted by tc, as shown in Figure 1, and
is de�ned as follows.

Let the properties of the deleted beam crossing
the axis of symmetry be denoted by Lb, mb and EIb,
then the sti�ness and mass matrices of the new column,
tc, will be:

Ktc =
EIb
Lb
� [6];
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Figure 1. The new column tc, �xed in Fy direction.

Mtc =
mbL3

b
420

� [1]; (14)

where E is the elastic modulus, I is the moment of
inertia of the cross section, m is the mass of unit length
and Lb is the length of the new column.

The New Element cc for Planar Case
Again, considering the properties of the deleted beam
as Lb, mb and EIb, the sti�ness and mass matrices of
the new column, cc, will be:

Kcc =
EIb
Lb
� [2]; Mcc =

mbL3
b

420
� [7]: (15)

This column is illustrated in Figure 2. The way these
new elements, tc and cc, are de�ned, is explained in the
subsequent section.

Potential of the Algorithm A

In this section, it is shown how Algorithm A decom-
poses a symmetric planar frame with an odd number
of spans into two substructures, leading to correct
eigenvalues.

Algorithm for Numbering the DOFs of a
Planar Frame
The following algorithms are used for numbering the
DOFs of a frame, such that the corresponding sti�ness
and mass matrices become canonical forms explained
in the previous section.

Figure 2. The new column cc.

Numbering for Frames with Odd Number of
Spans
Algorithm
Consider a frame with N total DOFs and p lateral
translation DOFs.

1. First, we specify the symmetry line and the number
of the rotation DOFs for the left part, starting from
an arbitrary node and assigning 1; 2; 3; � � � ; N=2.

2. The rotation DOFs for the right part are numbered,
such that the di�erence between the numbers for
the symmetric DOFs is equal to N=2.

3. The translation DOFs are numbered, starting from
an arbitrary translation DOF in an arbitrary
manner assigning N , N + 1, N + 2; � � � ; N + p.

With this numbering for planar frames with an
odd number of spans, the sti�ness and mass matrices
for the non-sway case will have Form II symmetry and
for a sway case will have Form III symmetry. Figure 3
shows an example of such numbering.

Numbering for Frames with Even Number of
Spans
Algorithm
Consider a frame with N rotation DOFs in two sym-
metric halves, r rotation DOFs in central nodes existing
in the axis of symmetry, and p lateral translation
DOFs.

1. First, the axis of symmetry is speci�ed and then
the rotation DOFs for the left part are numbered,
starting from an arbitrary node and assigning
1; 2; 3; � � � ; N=2.

2. The rotation DOFs for the right part are numbered,
such that the di�erence between the numbers for
the symmetric DOFs is equal to N=2.

3. The rotation DOFs of central nodes coinciding with
the axis of symmetry and all the translation DOFs

Figure 3. Numbering of the DOFs in a symmetric frame
with an odd number of spans.
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are numbered starting from an arbitrary DOF in
an arbitrary manner and assigning N;N + 1; N +
2; � � � ; N + p + r. Figure 4 illustrates such a
numbering.

Performing this numbering, there will be a linear
relationship between the sti�ness and mass matrices
and we will have a factorization, resulting in two
substructures.

On the other hand, if the numbering of the DOFs
in the main structure is performed in the manner
presented, the corresponding sti�ness and mass ma-
trices become canonical forms. In the other words,
in the case of non-sway frames with an odd number
of spans, the problem is solved by constructing the
submatrices, MC , KC and MD, KD, corresponding
to the Form II symmetry presented in the previous
section. Furthermore, in the sway case of all types of
frame, with either an odd or even number of spans, and
in the case of non-sway frames with an even one, the
problem is solved by forming submatrices, MD, KD
and f(ME ;m), f(KE ;m), corresponding to Form III
symmetry, as presented in the previous section. For
a structure with an even number of spans, m is the
total number of the translation DOFs (if they exist)
and rotation DOFs of central nodes, i.e. m = r + p,
where r and p are previously de�ned.

If the numbering of the DOFs in the main struc-
ture is performed in the manner presented, then the
corresponding sti�ness and mass matrices will have the
following forms:

K;M =

2666664
AN

2 �N2 BN
2 �N2 SN

2 �m

BN
2 �N2 AN

2 �N2 SN
2 �m

STm�N2 STm�N2 Xm�m

3777775
) KD;MD| {z }

real

= A�B;

Figure 4. Numbering of the DOFs in a symmetric frame
with an even number of spans.

and:

KE ;ME| {z }
real

=

264 A+B SN
2 �m

2STm�N2 Xm�m

375 ; (16)

which are the same as Equation 12.
However, the sti�ness and mass matrices of sub-

structure E in Algorithm A di�ering to submatrix E
in Equation 14 are obtained as:

KD;MD| {z }
algorithm

= A�B;

and:

KE ;ME| {z }
algorithm

=

24A+B S

ST X=2

35 : (17)

In this algorithm, the sti�ness and mass matrices of
factor E are not the same as those obtained from
the partitioning of the corresponding matrices of the
original structure, as presented in Equations 6 or 9
and 10. However, the responses consisting of the
determinant and eigenvalues are identical as proved in
the following.

The Function f(A;m) and Proof of a Theorem
Function f(A;m)
Consider A as a matrix. The function f(A;m) multi-
plies the last m rows of A by 2.

An example is provided in the following:

A =

266664
3 3 6 9 5
7 3 5 1 9
4 6 2 8 6
5 4 1 7 7
6 5 9 2 5

377775 ;

f(A; 2) =

266664
3 3 6 9 5
7 3 5 1 9
4 6 2 8 6
10 8 2 14 14
12 10 18 4 10

377775 ;

f(A; 3) =

266664
3 3 6 9 5
7 3 5 1 9
8 12 4 16 12
10 8 2 14 14
12 10 18 4 10

377775 :
Theorem
If m is a number of rows of a matrix and K and M are
arbitrary matrices, then the eigenvalues of M�1 � K
and [f(M;m)]�1 � f(K;m) are identical.
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Proof
When a row or column of a matrix is multiplied by a
constant number, then the determinant is multiplied
by the same number. Thus, employing function f , we
have:

det(f(K;m)) = 2m detK;

det(f(M;m)) = 2m detM: (18)

If � and ' are the eigenvalues and eigenvectors of
M�1 �K:

M�1 �K' = �': (19)

Pre-multiplying by M leads to:

M �M�1K' = M�': (20)

Thus:

K' = �M'; (21)

or:

(K � �M)� ' = 0: (22)

Hence:

det(K � �M) = 0: (23)

On the other hand, we have:

det(f(K;m)��f(M;m))=2m det(K��M)=0:
(24)

Therefore:

eig([f(M;m)]�1�f(K;m))=�=eig(M�1 �K):
(25)

In dynamic analysis, � can be considered as !2 result-
ing in:�

K � !2M
�
' = 0; (26)

where ! are natural frequencies of a structure. Thus,
the theorem can be restated as follows.

If m is an integer number de�ned previously and
K and M are the sti�ness and mass matrices of a
structure, then the natural frequencies obtained from
matrices M and K and those obtained from matrices
f(K;m) and f(M;m) are identical.

Therefore, we can conclude that the eigenvalues
obtained from the sti�ness and mass matrices of each
substructure, such as E in the above relationship
(Equation 17), are equal to those obtained from the
main structure (Equation 16), i.e:

KD|{z}
real

= f( KD;m| {z }
algorithm

);

and:

MD|{z}
real

= f(MD;m| {z }
algorithm

); (27)

KE|{z}
real

= f( KE ;m| {z }
algorithm

);

and:

ME|{z}
real

= f(ME ;m| {z }
algorithm

): (28)

It is important to note that we have obtained sub-
structures for which the sti�ness and mass matrices
are symmetric and in order to obtain their eigenvalues,
one does not need to utilize function f . At the same
time, the factorization can be performed in a simple
manner.

Properties of the Columns tc and cc
The properties of the new columns are obtained con-
sidering the inter-relation of the DOFs of the members.
For the frames with an odd number of spans, where the
axis of symmetry passes through beams, the e�ect of
the deleted beams should be included in the decom-
posed subgraphs. Adding the new columns serves as
a means for transferring the properties of the main
structure into the decomposed substructures. These
operations are healings which change the subgraphs
into the factors. The new columns introduced here are
more e�ective than using springs, masses, and other
devices as have been used in [17].

If we can construct substructures with sti�ness
and mass matrices corresponding to the Form II canon-
ical form, then we can form the factors.

If the numbering of DOFs is performed corre-
sponding to canonical Form II, then submatrix B will
represent the relation between the DOFs of the right
and left side of the frame and submatrix A represents
the relation between the DOFs of each half of the
structure. A, B, C and D are shown in Equations 4
and 6.

In general, for a beam-column with one rotational
DOF per node, we have:

K =
EI
L
�
�
4 2
2 4

�
; M =

mL3

420
�
�

4 �3
�3 4

�
:
(29)

Considering the relationship between the DOFs of the
connecting beams, it becomes obvious that entries
(1,1) and (1,2) in the mass and sti�ness matrices of
substructures C and D should be added and subtracted,
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respectively:

C : K =
EI
L
� [4 + 2] =

EI
L
� [6];

M =
mL3

420
� [4 + (�3)] =

mL3

420
� [1];

D : K =
EI
L
� [4� 2] =

EI
L
� [2];

M =
mL3

420
� [4� (�3)] =

mL3

420
� [7]: (30)

It is obvious that the length and the elastic properties
in these relationships correspond to the connecting
beams, which are supposed to be deleted:

Ktc =
EIb
Lb
� [6];

Mtc =
mbL3

b
420

� [1];

Kcc =
EIb
Lb
� [2];

Mcc =
mbL3

b
420

� [7]: (31)

In this way, the properties of the new columns are
obtained.

Now, if we want to use this algorithm, submatrices
D and E can be obtained much easier than the
previous methods wherein we had to add masses and
springs [17]. Another advantage of this algorithm is
that, unlike previous methods, the substructures in
both sway and non-sway cases are similar, and the
only di�erence is in a non-sway case for the left half
substructure of the frame where we have translation
DOFs.

Example 1
The symmetric frame shown in Figure 5 is considered.
This is constrained against sway and has only 2

Figure 5. A symmetric frame with two DOFs.

rotation DOFs as shown in the �gure.
The distribution of mass in the link beam that

crosses the axis of symmetry should also be symmetric.
According to Algorithm A, the decomposi-

tion of the frame is obtained in a step by step
manner, whereas, in previously developed methods,
the factors were obtained by adding springs and
masses [17].

The properties of the added columns (Figure 6)
are as follows:

Ktc =
EIb
Lb
� [6] =

�
12EI
L

�
;

Mtc =
mbL3

b
420

� [1] =
�

6mL3

210

�
;

Kcc =
EIb
Lb
� [2] =

�
4EI
L

�
;

Mcc =
mbL3

b
420

� [7] =
�

42mL3

210

�
:

Now, the sti�ness and mass matrices of factors C and
D are formed as:

KC =
�

4EI
L

+
12EI
L

�
=
�

16EI
L

�
;

MC =
�
mL
420
� 4L2 +

6mL3

210

�
=
�

8mL3

210

�
;

!2 = X;

) !1 =
r

420EI
mL4 ;

and:

KD =
�

4EI
L

+
4EI
L

�
=
�

8EI
L

�
;

MD =
�
mL
420
� 4L2 +

42mL3

210

�
=
�

44mL3

210

�
;

Figure 6. Factors of the frame of Figure 3.
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!2 = X

) !2 =
r

420EI
11mL4 ;

and the natural frequencies are easily obtained.

Example 2
The frame shown in Figure 7 has 10 DOFs and has
Form II symmetry. The factors are constructed as
shown in Figure 8.

The sti�ness and mass matrices of the added
columns are as follows:

tc1 : ) Ktc1 =
EIb
Lb
� [6] = [2EI];

Mtc1 =
mbL3

b
420

� [1] =
�

9m
140

�
;

cc1 : ) Kcc1 =
EIb
Lb
� [2] =

�
2EI

3

�
;

Mcc1 =
mbL3

b
420

� [7] =
�

9m
20

�
;

tc2 : ) Ktc2 =
EIb
Lb
� [6] =

�
2EI

3

�
;

Figure 7. A symmetric frame with 10 DOFs.

Figure 8. Factors of the frame of Figure 7.

Mtc2 =
mbL3

b
420

� [1] =
�

243m
70

�
;

cc2 : ) Kcc2 =
EIb
Lb
� [2] =

�
2EI

9

�
;

Mcc2 =
mbL3

b
420

� [7] =
�

243m
10

�
:

The sti�ness and mass matrices of factors C and D are
constructed as:

KC = EI

�

26666666666664

4
3 + 4

4 + 4
4

2
4

2
4

2
4

4
4 + 4

4 0

2
4 0 4

3 + 4
4 + 4

3 + 4
4

0 2
4

2
4

0 0 2
3

0 0

2
4 0

2
4

2
3

4
4 + 4

4 + 2
3 0

0 4
3 + 4

3 + 2

37777777777775

= 2EI

26666666666664

5=3 1=4 1=4 0 0

1=4 1 0 1=4 0

1=4 0 7=3 1=4 1=3

0 1=4 1=4 4=3 0

0 0 1=3 0 7=3

37777777777775
;

MC =
m

420

26666666666664

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81

0 �192 �192 1241 0

0 0 �81 0 243

37777777777775
;
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KD = EI

�

26666666666664

4
3 + 4

4 + 4
4

2
4

2
4

2
4

4
4 + 4

4 0

2
4 0 4

3 + 4
4 + 4

3 + 4
4

0 2
4

2
4

0 0 2
3

0 0

2
4 0

2
4

2
3

4
4 + 4

4 + 2
9 0

0 4
3 + 4

3 + 2
3

37777777777775

= 2EI

26666666666664

5=3 1=4 1=4 0 0

1=4 1 0 1=4 0

1=4 0 7=3 1=4 1=3

0 1=4 1=4 10=9 0

0 0 1=3 0 5=3

37777777777775
;

MD =
m

420

26666666666664

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81

0 �192 �192 5615 0

0 0 �81 0 405

37777777777775
:

In this way, the natural frequencies and natural modes
of this frame with 10 DOFs are obtained using the
equation of motion of two factors each having 5 DOFs,
as:

det[KC � !2MC ]5�5 = 0;

leading to:

!1 =
r

0:6EI
m

;

!2 =
r

1:42EI
m

;

!3 =
r

2:15EI
m

;

!4 =
r

5:24EI
m

;

!5 =
r

9:56EI
m

;

and:

det[KD � !2MD]5�5 = 0;

leading to:

!6 =
r

0:15EI
m

;

!7 =
r

1:1EI
m

;

!8 =
r

2EI
m

;

!9 =
r

3:52EI
m

;

!10 =
r

5:57EI
m

:

Example 3
Consider the sway frame shown in Figure 9, having 12
DOFs. The factors are shown in Figure 10.

The natural frequencies are similar to those of
Example 2. Here, there is no need to solve equation
det[KD � !2MD]5�5 = 0 for �nding the eigenvalues.
The formation of factor D can be avoided:

cc1 : ) Kcc1 =
EIb
Lb
� [2] =

�
2EI

3

�
;

Mcc1 =
mbL3

b
420

� [7] =
�

9m
20

�
;

cc2 : ) Kcc2 =
EIb
Lb
� [2] =

�
2EI

9

�
;

Mcc2 =
mbL3

b
420

� [7] =
�

243m
10

�
:
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The sti�ness and the mass matrices of factor E are as:

KE = EI�2666666666666666666664

4
3 + 4

4 + 4
4

2
4

2
4 0 0

2
4

4
4 + 4

4 0 2
4 0

2
4 0 4

3 + 4
4 + 4

3 + 4
4

2
4

2
3

0 2
4

2
4

4
4 + 4

4 + 2
3 0

0 0 2
3 0 4

3 + 4
3 +2

6
32� 6

42
�6
42

6
32� 6

42
�6
42

6
32

6
42

6
42

6
42

6
42 0

6
32 � 6

42
6
42

�6
42

6
42

6
32 � 6

42
6
42

�6
42

6
42

6
32 0

3� 12
33 + 2� 12

43 �2� 12
43

�2� 12
43 2� 12

43

3777777777777777777775
;

Figure 9. A sway frame with 12 DOFs.

Figure 10. Factors D and E of the sway frame of
Figure 9.

ME =
m

4202666666664
620 �192 �192 0
�192 512 0 �192
�192 0 728 �192

0 �192 �192 1241
0 0 �81 0

�22�32+22�42 �13�42 �22�32+22�42 �13�42

13�42 �22�42 13�42 �22�42

0 �22� 32 + 22� 42 13� 42

0 �13� 42 �22� 42

�81 �22� 32 + 22� 42 13� 42

0 �13� 42 �22� 42

243 �22� 32 0
�22� 32 3� 156� 3 + 2� 156� 4 2� 54� 4

0 2� 54� 4 2� 156� 4

3777777775 :
In this way, the natural frequencies and natural modes
of this frame with 12 DOFs are obtained using the
equation of motion of two factors having 5 and 7 DOFs.

The �rst 5 frequencies are obtained as:

!1 =
r

0:15EI
m

;

!2 =
r

1:1EI
m

;

!3 =
r

2EI
m

;

!4 =
r

3:52EI
m

;

!5 =
r

5:57EI
m

:

The remaining 7 frequencies are calculated from factor
E as:

det[KE � !2ME ]7�7 = 0;

leading to:

!6 =
r

0:022EI
m

;

!7 =
r

0:25EI
m

;

!8 =
r

0:61EI
m

;

!9 =
r

1:81EI
m

;
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!10 =
r

2:97EI
m

;

!11 =
r

5:67EI
m

;

!12 =
r

10:27EI
m

:

The factors of the main frame in the case of sway and
non-sway are identical (Figure 11).

Only factor E has the additional translation DOF.
Thus, for calculating the responses of frames in sway
and non-sway cases, instead of solving a problem with
n�n and (n+m)� (n+m) matrices, we need to solve
three problems corresponding to n=2� n=2, n=2� n=2
and (n=2 +m)� (n=2 +m) matrices (Figure 12).

DECOMPOSITION OF SYMMETRIC
PLANAR FRAMES WITH EVEN NUMBER
OF SPANS

According to the algorithm, each symmetric structure
with an even number of spans is decomposed into
two factors without introducing a new element. By
obtaining the dynamic properties of each factor and
considering the union of the results, one can obtain the
dynamic properties of the entire structure.

Figure 11. Factors of the frame in non-sway and sway
cases.

Figure 12. Three factors to be considered for the
solution.

De�nitions
A central element is de�ned as a column which co-
incides with the axis of symmetry. Central nodes
are taken as the nodes that coincide with the axis of
symmetry.

Algorithm B

This algorithm is simple and consists of the following
steps.

Step 1: Divide the frame into two halves from the axis
of symmetry, such that the moment of inertia
for the central column and the mass of their
unit length, m, are reduced to half.

Step 2: Fix the central nodes in the left half. This half
is factor D and the right half forms factor E.

All aspects proved previously are applicable to this
algorithm. Thus, the results consisting of the deter-
minant and eigenvalues of free vibration from decom-
position due to this algorithm are identical to those of
the main frame, as was desired. Therefore, we solve
the main eigenproblem by constructing submatrices,
KD, MD and KE , ME . In fact, factors D and E
obtained by this algorithm have the properties of the
entire structure.

Example 4
Consider the frame shown in Figure 13, which is
constrained against sway. This frame has 3 DOFs.
It is assumed that the frame has symmetric elastic
properties with respect to the two planes of symmetry.

Factors D and E are obtained using Algorithm B,
step by step, as shown in Figure 14. These factors can
be considered, as shown in Figure 15.

The submatrices corresponding to these two fac-
tors are obtained and their characteristic equations lead
to the eigen-frequencies required as:

KD =
�

4EI
L

+
4EI
L

�
=
�

8EI
L

�
;

MD =
�

4mL3

420
+

4mL3

420

�
=
�

8mL3

420

�
;

Figure 13. A frame with 3 DOFs.
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Figure 14. The factors of the frame of Figure 11.

Figure 15. Alternative illustration of the factors of the
frame of Figure 11.

det[KD � !2MD] = 0 ) !1 =
r

420EI
mL4 ;

KE =

24 4EI
L + 4EI

L
2EI
L

2EI
L

4EI
L + 4(EI=2)

L

35
=

24 4EI
L + 4EI

L
2EI
L

2EI
L

4EI
L + 4(EI=2)

L

35 ;
ME =

2644mL3

420 + 4mL3

420
�3mL3

420

�3mL3

420
4mL3

420 + 4(m=2)L3

420

375 ;
det[KE � !2ME ] = 0;

!2 =
r

525EI
mL4 ;

and:

!3 =
r

378EI
mL4 :

Example 5
Consider the frame with an even number of spans, as
shown in Figure 16, where the frame has 10 DOFs
without side sway and 12 DOFs with side sway:

In the case of non-sway, factors D and E are
obtained, as shown in Figure 17.

In this case, the eigensolution of a 10� 10 matrix
is transformed into the eigensolution of two 4 � 4 and
6� 6 matrices.

Figure 16. A frame with 4 spans.

Figure 17. Factors D and E for the non-sway frame.

Figure 18. Factors D and E for the sway frame.

In the sway case, factors D and E are obtained,
as shown in Figure 18.

The factors of the main frame in the case of sway
and non-sway are identical. Only factor E has the
translation DOF.

Decomposition for Static and Dynamic
Analysis in the Case of Symmetric Loading

In this section, a symmetric frame is decomposed into
two factors. For static analysis, the decomposition of
the frame is shown in Figure 19.

For dynamic analysis, the decomposition is illus-
trated in Figure 20.

CONCLUDING REMARKS

The decomposition and healing processes presented in
this article reduce the dimensions of the matrices for
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Figure 19. Decomposition for the static analysis.

Figure 20. Decomposition for dynamic analysis.

dynamic analysis of the symmetric frames. Therefore,
for large-scale problems, the accuracy of calculation
increases and the cost of computation decreases.

It can be observed that for symmetric frames, one
of the factors is common in both way and non-sway
cases. Therefore, if a frame has n symmetric DOFs,
then, in both sway and non-sway cases, we will have
common results. As an example, for a ten-storey frame
with Form II symmetry, the natural frequencies can be
obtained by three matrices of dimensions 45�45, 45�45
and 55�55 in place of two matrices of dimensions 100�
100 and 90�90. This results in a considerable saving in
computational time. The saving becomes more obvious
when large-scale structures are considered.

In this paper, only eigenvalues are calculated,
since the eigenvectors for the presented canonical forms
can easily be obtained using the simple methods devel-
oped in [15].

The present method can also be applied to similar
eigensolution problems such as stability analysis of
symmetric frames for calculating the critical loads of
frames.

NOMENCLATURE

K sti�ness matrix of a member or a
structure

M mass matrix of a member or a structure

m mass for one meter of the member
L length of the member
E elastic modules
I moment inertia of the member
! natural frequencies
' vibration modes
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