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Nonlinear Cyclic Analysis of Reinforced
Concrete Frames, Utilizing New Joint Element

S.SH. Hashemi', A.A. Tasnimi'* and M. Soltani!

Abstract. In this article, a numerical model based on the layer approach is introduced for nonlinear
cyclic analysis of two-dimensional reinforced concrete frames. The advantage of the proposed analytical
procedure is that it takes the bond-slip, shear-slip and pull-out effects and, also, shears deformation in
the joints into account. Bar and concrete stress-strain relations, the bond stress-slip relation and the
shear stress-strain relation and, also, their cyclic behaviors are adopted as known specifications. In the
modeling, each frame s divided into two types of joint element and beam-column element. The effect
of bond-slip has been considered in the formulation of a beam-column element by replacing the perfect
bond assumption from the fiber analysis method. Joint elements are formulated upon major behaviors
ncluding the pull-out of embedded longitudinal bars, shear and flezural deformation of joint panels and
shear slip in interface sections between joints and neighboring elements. The reliability of the method
has been assessed through a comparison of numerical and experimental results for a variety of specimens
tested under cyclic loading. A good agreement between experimental and analytical results is obtained for
both cases of strength and stiffness during the analysis.
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INTRODUCTION

Reinforced concrete frame structures in regions of
high seismic risk particularly tend to develop inelastic
deformations when subjected to strong earthquakes.
Accordingly, a complete assessment of the seismic
resistant design of these structures often requires a
nonlinear analysis. Thus, a reliable numerical model
that can simulate the hysteretic behavior of elements
is necessary for predicting the nonlinear response of the
frames. Much effort has been devoted in the last forty
years to the development of models of the nonlinear
analysis of Reinforced Concrete Frames (RCF). This re-
search can be classified into three categories: behavior
of steel bars and concrete material, interaction between
bars and concrete and, finally, a numerical method for
nonlinear analysis. In the field of material behavior,
numerous models have been proposed for steel and
concrete materials based on experimental work and
material tests. In the field of interaction between
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concrete and bars, researchers have proposed their
models for a bond stress-slip relationship. Also, some
researchers complemented and modified the previous
models according to their new experimental works. In
the beginning, a two-component model was proposed
by Clough et al. [1] for the numerical analysis of
RCF. After that, several concentrated and distributed
plasticity constitutive models and modeling through a
combination of sub-elements have been proposed [2-4].
The most promising model for the nonlinear analysis of
reinforced concrete elements is, presently, fiber section
model or, in other words, layer model. In this model,
the element is subdivided into longitudinal steel and
concrete fibers. The constitutive relation of the section
is derived by integration of the response of the fibers,
which follows the uni-axial stress-stain relationship
of materials. The fiber model, basically, adopts the
perfect bond assumption [5-6]. In many cases, this
assumption causes a considerable difference between
experimental and analytical responses of the RCF [7].
Kwak and Kim [7] have taken the bond-slip effect
into account by defining a modified monotonic stress-
strain relation for the longitudinal bars in order to
overcome this shortcoming. Limkatanyu and Spacone
[8] have suggested a method based on a fiber section for
modeling a beam or a column reinforced concrete ele-
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ment, but instead of the perfect bond assumption, they
have considered that each beam or column element is
a combination of one 2-node concrete frame element
and several 2-node bar elements with bond interfaces.
Meanwhile, the microscopic modeling of RCF and their
elements, with and without bar-concrete interaction, in
the finite element domain has been proposed. However,
because of its cost, researchers prefer to suggest simpler
methods.

Moreover, a variety of beam-column joint models
have been proposed by researchers. Some of the earliest
work simulating the inelastic response of RCF was
based on calibration of the plastic-hinge formation
within beam-column elements to introduce the inelastic
action of the joint [9]. Another generation of joint
models included decoupling the inelastic response of
the beams, columns and joints to facilitate model
calibration. One such model is the zero-length rota-
tional spring element, which has been used in order
to connect beam to column elements and, thereby,
represent the shear distortion of the joint [10]. While
these models provide a means of independently char-
acterizing inelastic joint action with only a moderate
increase in computational effort, this approach does not
facilitate the development of objective and accurate
calibration procedures. This approach requires that
data from the experimental testing of beam-column
joint sub-assemblages may be used to develop a one-
dimensional joint moment-rotation relationship [11].
More recently, researchers have begun using continuum
type elements to represent the response of reinforced
concrete joints.  This type of formulation greatly
increases the computational effort of the analysis, but
offers the potential for high-resolution, accurate and
objective modeling of the joint region. This approach
provides substantial additional computational effort
to an analysis, but making two-dimensional dynamic
analysis too time consuming for use by practicing
engineers. In addition, a phenomenological model has
been proposed by Lowes et al. [11]. In this approach,
the joint element is modeled by assembling a series of
one-dimensional components; each of them simulating
one of the major behaviors of the joint element. This
type of modeling needs a force-deformation relation
for calibrating the defined components, which can be
based on the results of experimental tests or empirical
equations. The calibrating process in this model plays
an important role in order to achieve good analytical
accuracy.

The major sources of deformation in RCF are:
flexural rotation in beams and columns, shear deforma-
tion of joints, including shear sliding, and bar-concrete
interaction, such as bar’s slip. In this paper, the
behavior of frame elements arises from a combination
of these deformation mechanisms. In order to achieve
this goal, two types of element are modeled: One is

the beam-column element, which hereafter is denoted
by “BCE” and the other is the joint element that is
denoted by “JE”.

BCE is selected according to Limkatanyu and
Spacone [8] and generated based on the fiber method,
but the effect of bar-concrete interaction is imposed
into equilibrium equations. JE is made up of a few
mechanisms and sub-elements. This new JE is compat-
ible with BCE for numerical modeling and overcomes
many of the limitations in other previous proposed
models.  Four types of JE have been generated,
depending on their location in RCF, as an exterior,
corner, interior or footing connection.

MODELING OF REINFORCED CONCRETE
ELEMENTS

Beam-Column Element

The free body diagram of an infinitesimal segment, dzx,
of BCE is shown in Figure 1. Each BCE is introduced
as a combination of one 2-node concrete frame element
and n number of 2-node bars with bond interfaces.
Limkatanyu and Spacone [8] proposed this element.
Slippage is allowed to occur, because the nodal degrees
of freedom of the concrete element and that of the bars
are different. Based on small deformation assumptions,
all equilibrium conditions are considered.

Considering axial equilibrium in the concrete
element and steel bars, as well as the vertical and
moment equilibriums in segment dx, leads to a matrix
form of equations given by Equation 1:
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Figure 1. Free body diagram of infinitesimal segment of
BCE and its components.
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as the vector of

BCE section forces;
as the vector of
concrete element
section forces;

as the vector of
bar axial forces;

as the vector of
bond section forces;

D(z)={N(z) - No(a)}"
Dy (2)={Dp1(2) - Dyn ()}

as the vector of
BCE force vector.

P(z)={0p,(2)0---0}"

n is the number of longitudinal bars in the cross section
and py () is the value of external load in the y direction.
g, 0y are differential operators and are defined in the
following forms:

_a di 0
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Yn is the distance of bar n from the section refer-
ence axis (Figure 1). The BCE section deforma-
tion vector conjugate of Dpg(z) is dg(z) = {d(z) :
d(z)}?. In which d(x) = {eg(z) &p(x)}T contains
concrete element section deformations and d(x) =
{e1(x) - e,(z)}* contains the axial strain of the bars.
The displacement vector in the cross section of BCE
is defined as u(z) = {u(x) : u(x)}’, in which
t(z) = {usp(z) wuzp(z)}” contains concrete element
axial and transversal displacements, respectively, and
u(z) = {us(z) -+ un(x)}T contains the axial displace-
ments of the bars. From a small deformation as-
sumption, the element deformations are related to the
element displacements through the following relation:

dp(x) = dpu(x). (3)

The bond slips of bars are determined by the following
relation between the bar and concrete element displace-
ments:

dusp(x)

dz (4)

upi(z) = ui(x) —uip(x) + v
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where up;(x) is the bond slip between bar ¢ and sur-
rounding concrete. By introducing the bond deforma-
tion vector as dy(7) = {up; (x) - upn (2)}7, Equation 4
can be written in the following matrix form:

dy(z) = dpu(x). (5)

The weak form of displacement based finite element
formulation is determined through the principle of sta-
tionary potential energy. The BCE nodal displacement
(U), which is shown in Figure 2, serves as primary
element unknowns and the section displacement u(x)
are related to it through the displacement shape
function matrix (N(z)). The relation between nodal
displacements and internal deformations can be written
through the transformation matrix as Equation 6:

dp(z) =Bp(2)U,  diy(x) = B,(z)U,

BB(l’) = aBN(l’)7 Bb(x) = abN(I) (6)
The nomnlinear behavior of BCE is derived from the
nonlinear relation between the section forces (Dp(x),
Dy(z)) and the section deformations (dgp(z), dy(z))
through section and bond stiffness matrices (kp(z),
ky(x)). The section stiffness matrix included the
axial and bending stiffness of concrete element (EA(x)
and FI(z)) and also the axial stiffness of the bars
(EnA,(z)). The bond stiffness matrix is diagonal and
included the slope of the bond force-slip relationship of
each bar (ky,(x)). By using the fiber section method,
the section stiffness matrix is derived. In this method,
the stress-strain relationships of steel and concrete are
needed. The bond stiffness matrix is derived through
the bond stress-slip relation and perimeter of each bar.
From finite element formulation, the stiffness matrix
of BCE with the effect of bond-slip can be derived
through the summation of two stiffness matrices and
can be written in the following form:
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Figure 2. Reinforced concrete beam-column element.
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The relationship between the external load vector, the
internal resisting force vector and the nodal displace-
ment vector in the nonlinear analysis algorithm can be
written in the following form:

KAU:P—/ Bg(:v)DB(x)da:—/ B/ (2)Dy(z)dz
L L

=P-Q=P-(Qp+Q), (8)

where K is the BCE stiffness matrix, Q is the resisting
force vector of the element and Kp and K, are the
element and bond contributions to the stiffness matrix,
respectively. Also, Qp and Q, are the element and
bond contributions to the resisting force vector, respec-
tively. At each load step of the nonlinear analysis, the
resisting force vector of the section is driven according
to existing deformations in each section of the element.
Thereby, the resisting force vector of the element is
derived by using numerical integration methods. The
result of P—Q is the residual force vector and converges
to a zero vector after some iteration at each load step.

Joint Element

In order to model the response of JE, two sub-elements
and two significant mechanisms have been considered.
The sub-elements are a concrete and a reinforced
concrete thick beam, in which the effects of shear and
flexural deformations have been considered based on
the Timoshenko beam theory. In the Timoshenko
beam theory, plane sections remain plane but are no
longer normal to the longitudinal axis. The difference
between the normal to the longitudinal axis and the
plane section rotation is the shear deformation. The
two considered mechanisms are:

(a) Pull-out of a beam or column longitudinal bars
embedded in the joint, which considers the pull-
out failure.

(b) Shear-transfer at the BCE-joint interfaces, which
considers the shear-slip.

The number of degrees of freedom at each side of JE
is compatible with the degrees of freedom at the ends
of the BCEs adjacent to JE. Thus, it will be possible
to assemble the global matrix and vectors of RCF.
In numerical modeling, depending on the location of
JE in RCF, four types of JE can be defined through
a combination of sub-elements and two significant
mechanisms considered here.

Reinforced Concrete Sub-Element

In a similar way described for BCE, the infinitesi-
mal segment of the Reinforced Concrete Sub-Element
(RCSE) has a free body diagram similar to Figure 1.

In this sub-element, the effect of shear deformation
is considered, based on the Timoshenko beam theory.
Also, slippage has been allowed to occur. Considering
axial equilibriums in the concrete part and steel bars,
and vertical and moment equilibriums in the segment
dzx, leads to the matrix form of equations, given in
Equation 1. The definitions in this equation are valid
with the following:

D(z) = {Np(2)Vi(2)Mp(2)}",

o [% 0 0]
dg=|0 L -1},
o © 2]
-1 0 yp 1 0 - 0
e R
(9)
10 g 00 o 1 o

The RCSE section deformation vector conjugate of
Dp(z) is dp(z) = {d(z) : d(x)}T, in which d(z) =
{ep(z) ~vB(x) kp(x)}T contains axial, shear and
bending deformations of sections of the concrete el-
ement, respectively. d(x) has a similar definition
to that of BCE. The following displacements are
defined at the sub-element level: u(z) = {u(z)

u(2)}7 is the displacement vector along the RCSE in
which u(z) = {uip(x) wsp(x) wusp(x)}’ contains
axial, transversal and rotational displacements of the
concrete element, respectively. u(z) has a similar
definition to that of BCE. From a small deformation
assumption, the element deformations are related to
the element displacements through Equation 3. The
following relation between the bars determines the
bond slips of bars and concrete element displacements:

upi () = ui(x) — wrp(x) + yiusp(x). (10)

By introducing the bond deformation vector as dy(z),
Equation 10 can be written in the form of Equation 5.
The weak form of displacement based finite element
formulation is determined through the principle of
stationary potential energy. The RCSE nodal displace-
ment vector is similar to that of BCE (Figure 3a).
The section displacement vector is related to the
nodal displacement vector through the matrix of shape
functions. Then, the section deformations and bond
slips could be determined through Equations 3 and 5.

The nonlinear behavior of RCSE is derived from
the nonlinear relation between the section forces and
the section deformations through section and bond
stiffness matrices. The section stiffness matrix includes
the axial, shear, and bending stiffness of the concrete
element (FA(x), GA(z) and EI(z)) and also the axial
stiffness of the bars (E,A,(z)). The bond stiffness
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Figure 3. Joint element parts and definitions.

matrix and method of calculation for these matrices
and other calculations are similar to those described
for BCE. The section shear stiffness is derived from
the shear stress-shear strain relationship.

By using the shape function matrix, the external
load vector of this sub-element is derived from the
external distributed loads (p,1(z) and pyo(x)), which
are shown in Figure 3a. The distributed loads are
derived from the internal forces in the JE side sections,
which are parallel to that sub-element based on the
stress value in the concrete and steel fibers of the
mentioned side sections. The external load vector will
be updated at each load step of the nonlinear analysis.

Concrete Sub-Element

Concrete Sub-Element (CSE) is a plain concrete el-
ement, which is a representative of a regular 2-node
concrete frame element with three degrees of freedom
at each of two ends (Figure 3b). The formulation of
CSE is derived, based on the Timoshenko beam theory,
the fiber method and material behavior similar to the
concrete part of RCSE. This sub-element is under the
effect of external load, which could be determined on a
basis similar to that of RCSE.

Pull-Out Mechanism

Referring to Figure 3c, the slippage of the bars can
be defined in the form of Equation 11, if the nodal
displacement vector related to pull-out behavior is

defined as Uy, = (U Us Ui Vi V;LL]T~
st -1 0 vy 1 0 . O
1 _
slip = 53| _ 1 0 9o 0 1 0 Uiy
S}L -1 0 9y, 0 0 . 1
= AslipUslip~ (]-]-)

In this equation, ¥, is the distance of the nth bar from
the reference line. The relationship between pull-out
force and slip for the embedded nth bar in section 1
can be defined as f, = kly;, ,, X 55, in which f} is pull-
out force and kg, ,, is the slip stiffness of the pull-out
behavior. This equation derives from the bond stress-
slip relationship related to the pull-out behavior, the
embedded length of the bar, conditions at the end of
the bar and the perimeter of the bar cross section. The
relationship between the pull-out force and slip of all
bars in section 1 can be written in the following matrix
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form:
fslip = killp X SliI)7 (12)
where k!, is a diagonal matrix that includes &}

slip n
and fg;p, is the pull-out force vector according to ’?he
slip vector.

The nodal force vector can be expressed in the
following form:

_ AT L _ AT 1,1 .
Faip = AslipfShp = AsnpkslipShP
T 1
= AslipkslipAslipUslip = KslipUslip~ (13)

From Equation 13, the pull-out stiffness matrix related
to section 1 can be written as Az;ipkilipASIip' The pull-
out stiffness matrix will be imposed into the stiffness
matrix of JE. Also, in order to calculate the resisting
force vector related to pull-out behavior and impose it
into the resisting force vector of JE, it can be written

in the form of AT foip.

Shear Slip

According to Figure 3d, an interface shear component
has been considered to represent shear slip and reduc-
tion sliding shear. Based on the number of degrees of
freedom in a shear direction on the specified side of JE,
the shear slip can be defined as:

1 U,
Ashear slip — U2 - U2 = []‘ _1] U23

0}
= Ashear slip |:U23:| . (14)
If the shear force-shear slip relation at the side of
JE can be defined as fshear slip — kshear slip Ashear slip»y
the stiffness matrix related to this mechanism and
specified degrees of freedom can be written as

SThear slipkshear slipAghear stip- Also, in order to calcu-
late the resisting force vector and impose it into the
resisting force vector of JE, it should be written in the
form of AL .. uip fohear stip- The shear force-shear slip
relation is generated by using the shear stress-shear
slip relationship [12]. The relevant shear force is the
shear stress integration over the side surface of the
JE. In this research, this effect is ignored because of
its negligible value, which has a minor effect on the
nonlinear response of the specimens.

Type of Joint Elements

According to the location of the JEs in a two dimen-
sional RCF and by using the specified mechanisms and
sub-elements, four types of element have been defined
and are illustrated in Figures 4 and 5. Type 1 of
JE is basically modeled on pull-out and shears slip
mechanisms that simulate the behavior of base and
footing connections. Other types of JE have five nodes,

Joint element details Perspective & description

o 5 g \,

Assemblage of:
Poll-out mechanism
Shear slip mechanism
Rigid links

o, -

Assemblage of:
Poll-out mechanism
2"reinforced concrete sub-element
2*concrete sub-element

Joint element 1

Joint element 2

Wl vy,
Figure 4. Types 1 and 2 of joint elements in a
two-dimensional RCF.
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1*concrete sub-element

Joint element 4

3 | Ay « 3 F,:
Vi | it ify

V141 l;D

Iv-l Assemblage of:
" 4*reinforced concrete sub-element

Figure 5. Types 3 and 4 of joint elements in a
two-dimensional RCF.

comprising one node at the center of JE, and the others
located at the center of the four edges of the perimeter.
Type 2 of JE is used as the substitute of the corner
connection in the frame, embracing two RCSEs, two
CSEs and two pull-out mechanisms. Type 3, which
can be used as an exterior connection in the frame,
is the assemblage of three RCSEs, one CSE and one
pull-out mechanism. Type 4 is a representative of an
interior connection in which the pull-out mechanism is
not considered because all longitudinal bars have been
passed through the element. This type is a combination
of four RCSEs.
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MATERIAL BEHAVIORS
Concrete Cyclic Stress-Strain Relation

The monotonic envelope curve for confined concrete,
introduced by Park et al. [13] and later extended
by Scott et al. [14], is adopted for the compression
region because of its simplicity and computational
efficiency. Also, it is assumed that concrete behavior is
linearly elastic in the tension region before the tensile
strength and, beyond that, the tensile stress decreases
linearly with increasing tensile strain. Ultimate state
of tension behavior is assumed to occur when tensile
strain exceeds the value given in Equation 15.

Eut = 2 X (C;f) x In (2) /(3—1L), (15)

t

where L denotes the element length in mm and G is
the fracture energy that is dissipated in the formation
of cracks of unit length per unit thickness, and is
considered as a material property. f; is concrete
tensile strength. For normal strength concrete, the
value of G/ f; is in the range of 0.005-0.01 [15]. In
this research, the average value of 0.0075 is assumed
for G¢/ f:.

The rules suggested by Karsan and Jirsa [16] are
adopted for the hysteresis behavior of the concrete
stress-strain relation in the compression region. In
addition, the unloading-reloading branches that always
pass the origin, regardless of the loading history, are
assumed in the tension region, because application of
the introduced numerical model is limited to RC frame
structures [17] (Figures 6a and 6b).

Cyclic Stress-Strain Relation of Steel Bars

The Giuffre-Menegoto-Pinto model is adopted to rep-
resent the stress-strain relationship of steel bars (Fig-
ure 7). This model was initially proposed by Giuf-
fre and Pinto [18] and later used by Menegoto and
Pinto [19]. This model is modified by Filippou et
al. [20] to include isotropic strain hardening. The
model agrees very well with experimental results from
cyclic tests of reinforcing steel bars.

Cyclic Bond Stress-Slip Relation

Bond stress is referred to as the shear stress acting
parallel to an embedded steel bar on the contact surface
between the reinforcing bar and the concrete. Bond
slip is defined as the relative displacement between the
steel bar and the concrete. In this paper, two models
have been used for a bond stress-bond slip relationship,
one for the bond-slip behavior through the length of
the BCE and another for bond-slip behavior through
the length of the RCSE and the pull-out behavior
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of the bars in the joint elements. Among several
models proposed by researchers, the one proposed by
Eligehausen et al. [21] is adopted for both specified
behaviors (Figure 8). In this model, the effect of many
variables, such as spacing and height of lugs on the
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steel bar, concrete compressive strength, thickness of
concrete cover, steel bar diameter and end bar hooks
have been considered. More details about unloading
and reloading branches and bond strength degradation
related to this model are given in [22].

Cyclic Shear Stress-Strain Relation of Joint

The adopted model to represent the shear stress-strain
of a joint is that proposed by Anderson et al. [23]. This
model replicates cyclic degradation in strength, stiff-
ness (modulus) and energy dissipation for an unloading
and reloading state of behavior (Figure 9).

NONLINEAR ANALYSIS

In order to analyze RCF, based on the proposed
method, a computer program has been developed. The
solution of equilibrium equations is typically accom-
plished by an iterative method through a convergence
check. In this research, the Newton-Raphson method is
used as nonlinear solution algorithms [24] (Figure 10).
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Figure 9. Cyclic shear stress-strain relation.

Also, the Gauss-Lobatto method is used for numerical
integration in which the number of integration points
is equal to five.

NUMERICAL VALIDATION

The ability and reliability of the proposed method has
been demonstrated through verification of numerical
and experimental results for a variety of tested speci-
mens and the results for three specimens whose geome-
try and details are shown in Figures 11-13 and listed in
Table 1 are presented. The first specimen is a column
under lateral cyclic loading. The second specimen is a
one bay one storey reinforced concrete frame, which is
loaded laterally at the top with a displacement cyclic
history. The third one is a subassembly of reinforced
concrete frames and is comprised of beams, columns
and joint elements under cyclic loading applied to the
free end of the beam. In numerical modeling, beams
and columns are subdivided into enough number of
BCEs. Because the formulation is displacement-based
and the response is dependent on element size, the
length of BCE needs to be short enough. As a simple
suggestion, the length of BCE can be selected equal or
smaller than the average crack spacing in a beam or
column. In these cases, convergence will be achieved in
the numerical results. The equation given by CEB-
FIP [25] is adapted for calculation of average crack
spacing.

Specimen 1

This specimen is a column under constant axial load
with a magnitude of 350 kN and lateral cyclic displace-
ment loading at the free end. Table 1 and Figure 11
provide some details of this specimen that was tested
by Qiu et al. [26]. In numerical modeling, this is
modeled as a combination of 10 BCEs and type 1 of
JEs. Figure 14 shows the analytical and experimental
load-displacement responses with very good similarity
and precision.

Specimen 2

This bare frame is modeled as a combination of BCEs,
JE Type 1 and Type 2, some details of which are
shown in Table 1 and Figure 12 and more details given
in [27]. Columns have no constant axial load and
the loading is only laterally. In numerical modeling,
columns and beam are subdivided into 10 and 12
BCEs, respectively. This specimen was tested by
Alin and Altin [27]. Figure 15 shows the analytical
and experimental load-displacement history and good
accordance for strength and stiffness and their changes
during cyclic loading.
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Figure 10. Nonlinear solution flowchart.

Specimen 3

This specimen is used from experimental tests reported
by Chun et al. [28], a brief detail of which is listed
in Table 1 and shown in Figure 13 and more details
given in [28]. A 490kN of axial load was imposed on
the column before applying a laterally cyclic load at
the free end of the beam and remains constant during
loading. In numerical modeling, the beam and the left
and right parts of the column elements are subdivided

into 14, 10 and 10 BCEs, respectively. Also, type 3 of
JEs is used as the intersection of the beam and column
elements. Experimental and analytical results are
shown in Figure 16. Experimental observations have
shown that the nonlinear response of this specimen
is complicated and affected by various behaviors such
as shear deformation of the joint panel, pull-out of
the longitudinal bars and flexural deformation of the
beam element. Nonetheless, the proposed method
has good estimation for strength, stiffness, and their
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Table 1. Details of tested specimens.

Specimen 1

Specimen 2

Specimen 3

Column Details | Column Details

Beam Details | Column Details Beam Detalils

X L) TS (o)
9 [» 9 q 0o O O
Section View R
o o (o] O
0N R0~ o0
Main Bars 8 X 12 mm bars 4 x 10 mm bars 8 x 8 mm Bars | 16 x 22 mm bars 14 x 22 mm bars

6 mm bars @
40 & 80 mm c/c

. 6 mm bars @
Stirrups
50 mm c/c

10 mm bars @Q

150 mm c/c

10 mm bars @
100 & 200 mm c/c

4 mm bars @

40 mm c/c

Cross Section

200 x 200 mm? 100 x 150 mm?

150 x 300 mm? | 500 x 500 mm? 350 x 500 mm?

(width*depth)
fe 40 21.8 21.8 60.1 60.1
(MPa)
fy of Main 460 475 592 402.9 402.9
bars (MPa)
fy of Stirrups 420 427 326 383.9 383.9
(MPa)
Nunfbfel: of 10 10 12 10 (each part) 14
Subdivisions
Type of 1 1 &2 3
Joint Element
Constant 100 1300 100
axial load = 350 kNl F"‘—*"
200 Lateral cyclic E = o__
Lateral cyclic loading =" — R
loading >3 - — Y
+ u |
50 ¥ 700 ] ]
o ! ‘_ Tk CT1] s
T I 1 — Foundation - §
Footing 300 —ﬁl I I I I E—-
‘30L il | 1 < T
+ }4—4 }200I 200
700

Figure 11. Geometry of the Specimen 1 (all dimensions
in mm) [26].

degradation.

CONCLUSION

In this article, a numerical model based on the layer
approach is introduced for nonlinear cyclic analysis of
two dimensional RCF. The advantage of the proposed
analytical procedure is that it takes bond-slip, shear-
slip and pull-out effects and, also, shears deformation

1500 P200

Figure 12. Geometry of the Specimen 2 (all dimensions
in mm) [27].

in the joints into account. Formulation is displacement-
based and shape functions are used in order to express
internal displacements in terms of nodal displacement.
To model each frame, two types of joint element
and beam-column element are used. The effect of
bond-slip is considered in the formulation of BCE by
replacing the perfect bond assumption from the fiber
analysis method. JEs are formulated upon major
behaviors including pull-out of embedded longitudinal
bars, shear and flexural deformation of the joint panel
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Figure 13. Geometry of the Specimen 3 (all dimensions
in mm) [28].
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Figure 14. Experimental and analytical
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Figure 16. Experimental and analytical
load-displacement response for Specimen 3.

and shear slip in the interface section between the
joint and the neighboring element. Four types of JE
have been generated, depending upon their location in
the frame, as an exterior, corner, interior or footing
connection.

In order to utilize the nonlinear cyclic analysis
based on the proposed method, a computer program
is developed. The reliability of the method is assessed
through the comparison of numerical and experimental
results for a variety of specimens tested under cyclic
loading. Good agreement between experimental and
analytical results is obtained for a variation of strength
and stiffness during analysis.
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