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Maximum Allowable Dynamic Load of Flexible
Manipulators Undergoing Large Deformation

M.H. Korayem1;�, M. Haghpanahi1 and H.R. Heidari1

Abstract. In this paper, a general formula for �nding the Maximum Allowable Dynamic Load
(MADL) of geometrically nonlinear exible link manipulators is presented. The dynamic model for
links in most mechanisms is often based on the small deection theory but for applications like light-
weight links, high-precision elements or high speed it is necessary to capture the deection caused by
nonlinear terms. First, the equations of motion are derived, taking into account the nonlinear strain-
displacement relationship using Finite Element Method (FEM) approaches. The maximum allowable
loads that can be achieved by a mobile manipulator during a given trajectory are limited by a number
of factors. Therefore, a method for determination of the dynamic load carrying capacity for a given
trajectory is explained, subject to the accuracy, actuator and amplitude of residual vibration constraints
and by imposing a maximum stress limitation as a new constraint. In order to verify the e�ectiveness of
the presented algorithm, two simulation studies considering a exible two-link planar manipulator mounted
on a mobile base are presented and the results are discussed. The simulation results indicate that the e�ect
of introducing geometric elastic nonlinearities and inertia nonlinearities on the maximum allowable loads
of a manipulator.
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INTRODUCTION

The dynamic analysis of high speed mechanisms, space
robot arms and exible structures has received consid-
erable attention in the past two decades. Most of the
researchers, however, assume small deformation and
use a linear strain displacement relationship. When
accurate mathematical models are required, nonlin-
ear elastic deformation in structures may have to be
considered. Nonlinearities can arise out of nonlinear
elastic, plastic and viscoelastic behavior, or there
can be geometric nonlinearities arising out of large
deformations.

A high payload to mass ratio is one of the
advantages of exible robot manipulators. In tradi-
tional manipulators, the maximum allowable dynamic
load is usually de�ned as the maximum load that a
manipulator can repeatedly lift and carry on the fully
extended con�guration while the dynamics of both the
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load and manipulator must be taken into account. The
maximum load carrying capacity that can be achieved
by a robotic manipulator during a given trajectory is
limited by a number of factors. Probably, the most
important factors are the actuator limitations, accu-
racy, amplitude of residual vibration and maximum
stress. The dynamic stress of components is one of
the most important dynamic parameters. If dynamic
stress exceeds permissible stress, the exible robot will
be destroyed. On the other hand, residual vibration
can e�ectively a�ect the manipulators performance and
e�ciency at the MADL for exible link manipulators,
in addition to two earlier constraints: actuator torque
capacity and end-e�ector precision constraints.

Many approaches have been taken to the de-
velopment of an accurate dynamic model for exible
manipulators [1-2]. Book has developed nonlinear
equations of motion for exible manipulator arms
consisting of rotary joints that connect pairs of exible
links. The link deection is assumed small, so that the
link transformation can be composed of summations of
assumed link shapes [3]. Meghdari carried out a general
technique to model exible components of manipulator
arms based on Castigliano's theorem. The robotic arms
exibility properties are derived and represented by
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the matrix of compliance coe�cients [4]. Damaran
and Sharf have presented and classi�ed the inertial
and geometric nonlinearities that arise in the motion
and constraint equations for multibody systems. They
observed that for su�ciently fast maneuvers of the
exible links of manipulators, the linear beam theory
approximation is completely inadequate [5]. Zhang
carried out the dynamic modeling and simulation of
two cooperating structurally exible robotic manipula-
tors [6].

Most of the researchers, however, assume small
deformation and use a linear strain-displacement re-
lationship [7-8]. When high speed, light weight,
accuracy and large payload robots are considered,
nonlinear elastic deformation in structures may have
to be considered. Absy and Shabana show that the
consideration of longitudinal displacement caused by
bending would eliminate the third and higher order
terms from the strain-energy expression, if the strain
energy is written in terms of axial deformation. This
leads to nonlinear inertia terms and a constant sti�ness
matrix [9]. Mayo et al. derived the dynamic equa-
tions of several exible link mechanisms considering
complete geometrical nonlinearity. Their proposed
formulation considers the e�ect of geometric elastic
nonlinearity on bending displacements without the
need to use any axial vibration mode, so it is computa-
tionally very e�cient [10]. Bakr presented a method
for the dynamic analysis of geometrically nonlinear
elastic robot manipulators. Robot arm elasticity is
introduced using a �nite element method that allows
for gross arm rotations. Geometric elastic nonlinear-
ities are introduced into the formulation by retain-
ing the quadratic terms in the strain-displacement
relationships [11]. Shaker and Ghosal considered
the nonlinear modeling of planar, one- and two-link
exible manipulators with rotary joints using a �nite
element method. The equations of motion are derived,
taking into account the nonlinear strain-displacement
relationship, and two characteristic velocities, Ua and
Ug, representing material and geometric properties, are
used to nondimensionalize the equations of motion.
The e�ect of variation of Ua and Ug on the dynamics
of a planar exible manipulator is brought out using
numerical simulations [12]. Pratiher considered the
non-linear vibration of a harmonically excited single
link roller-supported exible Cartesian manipulator
with a payload. The governing equation of motion
is developed using the extended Hamilton principle,
which is reduced to a second-order temporal di�erential
equation of motion by using a generalized Galerkin
method [13]. Zohoor obtained the nonlinear dynamic
model of a ying manipulator with two revolute joints
and two highly exible links using Hamilton's principle.
In the issue of ying exible-link manipulators, new
terminologies, namely forward/inverse kinetics instead

of forward/inverse kinematics, are suggested since de-
termination of the position and orientation of the end-
e�ector is coupled to the partial di�erential motion
equations [14].

Wang and Ravani showed that the maximum
allowable load of a �xed base manipulator on a given
trajectory is primarily constrained by the joint actuator
torque and its velocity characteristic [15]. Korayem
and Ghariblu determined the maximum allowable load
of wheeled mobile manipulators for a desired trajec-
tory [16]. Yue computed the maximum payload of
kinematically redundant manipulators using a �nite
element method for describing the dynamics of a sys-
tem [17]. Korayem and Shokri developed an algorithm
for �nding the MADL of the 6-UPS Stewart platform
manipulator [18]. Korayem and Heidari presented a
general formula for �nding the maximum allowable
dynamic load of exible link mobile manipulators. The
main constraints used for the proposed algorithm are
the actuator torque capacity and the limited error
bound for the end-e�ector during motion on a given
trajectory [19].

The dynamic stress of elastic mechanisms or
exible robots has been studied by a few researchers.
Zhaocai studied the dynamic stress of the exible beam
element of planar exible manipulators. Consider-
ing the e�ects of bending-shearing strain and tensile-
compression strain, the dynamic stress of the links
and its position are derived by using the Kineto-
Elastodynamics theory and the Timoshenko beam
theory [20]. Various approaches have previously been
developed for reducing the residual vibration. Korayem
et al. have considered the e�ect of payload on the
residual vibration's amplitude. In order to apply the
proposed constraint to the MADL calculation, they
have de�ned an algorithm for the e�ect of payload on
the residual vibration amplitude [21]. Abe proposed an
optimal trajectory planning technique for suppressing
residual vibrations in two-link rigid-exible manipu-
lators. In order to obtain an accurate mathematical
model, the exible link is modeled by taking the axial
displacement and nonlinear curvature arising from
large bending deformation into consideration [22].

In this paper, the equations of motion are derived,
taking into account the nonlinear strain-displacement
relationship using �nite element method approaches.
The strain energy is formulated in accordance with
the slender beam theory and various non-linear terms
are identi�ed. The �nite element method, which is
able to consider the full nonlinear dynamic of a mobile
manipulator, is applied to derive the kinematic and
dynamic equations. Then, a method for determina-
tion of the maximum allowable dynamic load for a
speci�c reference is explained, subject to the accuracy,
actuator, maximum stress limitation and amplitude of
residual vibration constraints. In order to verify the
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e�ectiveness of the presented algorithm, two simulation
studies, considering a exible two-link planar manipu-
lator mounted on a mobile base, are presented and the
results are discussed.

NONLINEAR STRAIN-DISPLACEMENT
RELATIONSHIP

If the displacements are large enough, nonlinear strain-
displacement relations have to be used. For in-
plane bending of beams, only the normal strain, "xx,
needs to be considered, and the full nonlinear strain-
displacement relationship for "xx (assuming a 2-D
problem) is given by:
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where the variables u�y and u�x denote the �eld-
displacement variables de�ned over the entire domain.
Furthermore, from the classical beam theory, we can
write:
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where y is measured from the neutral axis of the
beam and ux and uy denote the longitudinal and
transverse displacement, respectively, at y = 0. This is
the nonlinear strain-displacement relationship that has
been used in this paper for nonlinear modeling.

Assuming a linear stress-strain relationship, the
potential energy can be obtained as:
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Expanding the above integral, and since y is measured
from the neutral axis, all integrals of the form
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where E, A, I and l denote Young's modulus, the cross-
sectional area, moment of inertia of the cross section
and the length, respectively.

For the assumed nodal displacements and rota-
tions, the displacement of any arbitrary point in the
element can be expressed as:�

uxi
uyi

�
=
�
N1 0 0 N4 0 0
0 N8 N9 0 N11 N12

�
fqigT ;

(6)

where the shape functions, Ni, are given by
�
� = x

l

�
.

N1 = 1� �; N4 = �;

N8 = 1� 3�2 + 2�3; N9 = (� � 2�2 + �3)l;

N11 = 3�2 � 2�3; N12 = (��2 + �3)l:

(7)

The quantities uxi and uyi are the displacements of
any arbitrary point of the ith element along the x-axis
and y-axis, respectively. The vector of nodal degrees
of freedom of the ith beam element (Figure 1) is given
by:

fqig =
�
u2i�1 v2i�1 �2i�1 u2i v2i �2i

	
:

DYNAMIC MODEL OF FLEXIBLE
MANIPULATOR

The overall approach involves treating each link of the
manipulator as an assemblage of ni elements of length,
li. For each of these elements, the kinetic energy,
Tij , and potential energy, Uij , are computed in terms
of a selected system of n generalized variables q =
(q1; q2; � � � ; qn) and their rate of change, _q. Dynamic
equations for systems are derived through Lagrange
equations:

d
dt
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= Qk; k = 1; 2; � � � ; n: (8)

The Lagrangian of link 1 is, as follows:

$1 = T1 � U1

=
1
2
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�
0 1

�
~r(x)� 1

2
 T1 K1 1; (9)

Figure 1. Planar beam element.
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where:

q1 = [�1;  T1 ]T ;

and:

 1 = [u1; v1; �1; � � � ; u2n1 ; v2n1 ; �2n1 ]T :

The Lagrangian of link 2 can be derived as:

$2 = T2 � U2

=
1
2

_qT2 M2 _q2 �m2g
�
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�
~r(x)� 1

2
 T2 K2 2; (10)

where:

q2 = [�1; u2n1 ; v2n1 ; �2n1 ; �2;  T2 ]T ;

and:

 2 = [p1; w1; '1; � � � ; p2n2 ; w2n2 ; '2n2 ]T :

The overall Lagrangian for a two-link exible mobile
manipulator with the base motion in a x direction can
then be written as:

$ = $1(xb; �1; u1; v1; �1; � � � ; u2n1 ; v2n1 ; �2n1)

+ $2(xb; �1; u2n1 ; v2n1 ; �2n1 ; �2; p1; w1; '1; � � � ;
p2n2 ; w2n2 ; '2n2): (11)

By applying Lagrange's equation and performing some
algebraic manipulations, the compact form of the
system's dynamic equations becomes [24]:

[M(q)]f�qg+ ([KL] + [KNL])fqg+ h(q; _q) = �; (12)

where [M ] is the system mass matrix, [KL] is the
conventional sti�ness matrix and [KNL] is the geo-
metrically nonlinear sti�ness matrix. h(q; _q) considers
the contribution of other dynamic forces, such as
centrifugal, Coriolis and gravity forces, while � consists
of input torques at the joints. In our approach, since
each element of the link is assumed to have its own local
coordinate system, for clamped boundary conditions,
we have the constraints u2i�1, v2i�1 and �2i�1 to be
zero of link 1. Also, the second link is constrained to
have the constraints p2i�1, w2i�1 and '2i�1 to be zero.
It must be noted that u2i�1, v2i�1, p2i�1, w2i�1 and
�2i�1, '2i�1 are local displacements and rotation in
the ith coordinate system.

MADL FORMULATION FOR A GIVEN
TRAJECTORY

The Maximum Allowable Dynamic Load (MADL) that
can be achieved by a manipulator during a given
trajectory is limited by a number of factors. The

most important ones are: the dynamic speci�cation
of the manipulator, the actuator limitations, accuracy,
amplitude of residual vibration and maximum stress. A
exible manipulator can be considered to carry a maxi-
mum load when the path accuracy is maintained. This
is highly critical when dealing with exible link robots.
The path accuracy must, therefore, be considered in
MADL determination by imposing this constraint to
the end-e�ector deection, as well as to the actuator
torque. Failing this, an excessive deviation may be
caused due to an end-e�ector deection for a given
trajectory, even though the joint torque constraint is
not violated. The dynamic stress of components is one
of the most important dynamic parameters. If dynamic
stress exceeds permissible stress, the exible robot will
be destroyed. On the other hand, residual vibration
can e�ectively a�ect the manipulators performance and
e�ciency at the MADL for exible link manipulators,
in addition to two earlier constraints: actuator torque
capacity and end-e�ector precision constraints. By
considering constraints and adopting a logical com-
puting method, the maximum load carrying capacity
of a mobile manipulator for a given trajectory can be
computed.

Formulation of Joint Actuator Torque
Constraint

Based on the de�nition of typical torque-speed char-
acteristics of DC motors, the joint actuator torque
constant was formulated as follows [19]:

U (+)
allow = c1 � c2 _q; U (�)

allow = �c1 � c2 _q; (13)

where c1 = �s, c2 = �s=!0 and �s is the stall torque,
!0 is the maximum no-load speed of the motor and
u(+)
a and u(�)

a are the upper and lower bounds of the
allowable torque. The left hand side of both equations
above give the upper and lower allowable torques (U (+)

a

and U (�)
a ) of any actuators. An experimental mass

(me), less than the maximum estimated load, is then
used in order to calculate �e for any ith point along the
given trajectory. The allowable torque limits (� (+)

i and
� (�)
i ) can then be calculated using the upper and lower

allowable torques of the actuators and (�e)i according
to the following equations:
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The maximum allowable torque of any joint (�a)i can
then be calculated as follows:

(�a)i = max
n
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i ; � (�)

i

o
: (15)
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In order to determine the maximum allowable load by
considering the actuator constraint, it is essential to
de�ne a load coe�cient (ca)j for any point along the
given trajectory as follows:

(ca)j = min
�

(�a)i
max(�e)�max(�n)

�
;

i = 1; 2; � � � ; n; (16)

where �n represent the no-load torque. Physically, the
load coe�cient (ca)j on the jth joint actuator describes
the accessible torque for carrying the maximum load to
the torque, which is applied for carrying the initial load.

Formulation of Accuracy Constraint

By considering the accuracy constraint, the path is
discretized into m separate points. The deviation
of the end-e�ector from a desired trajectory is then
calculated for each point where (�n)j represents no-
load deection and (�e)j represents deection under
experimental load. The quantity and direction of
deviation due to the experimental mass (me) for a
selected point, j, along the given trajectory can be
seen in Figure 2. A cubical boundary of radius Rp,
as the end-e�ector's deection constraint, can be used
with the center of the cube positioned on the selected
point on the given trajectory. (�e)j is a part of Rp
that shows how much load can be carried without
ignoring the accuracy constraint at point j. The
di�erence between allowable deviation (Rp) and the
amount of deviation due to experimental mass (�e)j
can be considered as the remaining allowable deviation
from the given trajectory that can be tolerated. As
explained previously, there is a necessity to de�ne a
new load coe�cient (cp)j for each point along the given

Figure 2. The cubical boundary on end-e�ector's
deection.

trajectory as follows:

(cp)j = min
�

Rp � (�e)j
max(�e)�max(�n)

�
;

j = 1; 2; � � � ;m; (17)

where �n represents the no-load deviation of the end-
e�ector from the given trajectory.

Formulation of Stress Constraint

Usually, longitudinal force, transverse force and bend-
ing moment are simultaneously exerted on the cross-
section of links. Therefore, bending stress, tensile stress
and shearing stress exist on the cross-section. Because
the longer and thinner links are commonly used for
exible robots, the shearing stress is far lower than
the bending stress and tensile stress. Therefore, the
shearing stress used to be omitted by many researchers.
To obtain the accurate dynamic stress, the e�ects of
bending strain and tensile-compression strain are all
taken into account. The bending stress, �b(x; t), of the
element can be expressed as:

�Bending(x; t) = E:"xx; (18)

where x is the distance from the left end of the element
to the given point; E is the elastic modulus and "xx is
the full nonlinear strain. The tensile stress, �p(x; t), of
the element can be expressed as:

�Tension =
E
L
:(u2i

x � u2i�1
x ): (19)

Thus, the absolute value of the dynamic stress (normal
stress) �(x; t) can be expressed as:

�(x; t) =
E
L
��u2i
x (t)� u2i�1

x (t)
��+ E:"xx: (20)

As the joint actuator torque constant, the stress con-
straint was formulated. The allowable stress limits
(�(+)
i and �(�)

i ) can then be calculated using the upper
and lower allowable stresses of the links and (Se)j ,
according to the following equations:

�(+)
i =

�
U (+)
s

�
i
� (�e)i;

�(�)
i =

�
U (�)
s

�
i
� (�e)i; (21)

where U (+)
s and U (�)

s are the upper and lower bounds
of the allowable stress. An experimental mass (me)
less than the maximum estimated load, is then used in
order to calculate �e for any ith point along the given
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trajectory. The maximum allowable stress of any joint
(�a)j can then be calculated as follows:

(�a)i = max
n
�(+)
i ; �(�)

i

o
: (22)

In order to determine the maximum allowable load by
considering the stress constraint, it is essential to de�ne
a load coe�cient (cs)j for any point along the given
trajectory as follows:

(cs)j = min
�

(�a)i
max(�e)�max(�n)

�
;

i = 1; 2; � � � ; n; (23)

where �n represents the no-load stress.

Formulation of Residual Vibration Constraint

Residual vibrations start from time tf from which
the main path is tracked and there are some extra
vibrations around the goal point as a result of exibility
in the system. The exible robot will freely oscillate
with the excitation of the �nal velocity of the end-
e�ector. In previous works, by assuming small and
slow deformation about the �nal con�guration, the
centrifugal and Coriolis forces, which increased non-
linearity e�ects, were neglected. By considering these
assumptions, the equations of motion in exible robots
can be linearized for �nal time. In other words, the high
order terms, such as q2

f , _q2
f , qf , _qf , _�, ��, etc., can be

ignored in the equations of motion when the amplitude
and velocity can be assumed small enough. These
assumptions are true when the residual vibrations
about the �nal con�guration have small amplitude and
low frequency. However, these assumptions will be
violated in a wide variety of practical circumstances.
In this paper, all the above mentioned assumptions are
released and the entire non-linear terms are taken into
account. In a wide variety of applications, it is expected
that the amplitude of the residual vibration will be
less than a de�nite value. Because of the presence of
the elasticity in links, after stopping the robot, some
redundant vibrations will start at the end e�ector.

Motion equations should be solved in two steps:
First, for 0 � t � tf , the main path of which the
robot is tracking and then for t > tf , for the residual
vibration. After solving these equations numerically,
the position of the end-e�ector is obtained, which is
expressed by:

rfx = xb + (L1 � u2n1+1) cos �1f

+ (L2 + u2n2+1) cos(�1f + �2f + u2n1+3)

� u2n2+2 sin(�1f + �2f + u2n1+3)

� u2n1+2 sin �1f ;

rfy = yb + (L1 � u2n1+1) sin �1f

+ (L2 + u2n2+1) sin(�1f + �2f + u2n1+3)

+ u2n2+2 cos(�1f + �2f + u2n1+3)

+ u2n1+2 cos �1f : (24)

The di�erence between the position of the goal point
and the obtained path from a exible robot can be
found as follows:

ex = rfx � xf ; ey = rfy � yf ; t > tf ; (25)

where xf and yf represent the position of the goal
point. Finally, the absolute value of the position error
can be de�ned as:

Pe =
q
e2
x + e2

y: (26)

The amount of these vibrations can be used as a new
constraint in determining the MADL. Since there is
not an explicit relation between the payload and the
amplitude of residual vibration, a relation has been
inferred through some simulations.

Figure 3 shows the residual vibration of the end
e�ector around the goal point. In this �gure, Rrv is
the desired accuracy for residual vibration, Re and Rnl
are the amounts of maximum amplitude of residual
vibration with and without the presence of the payload,
respectively. Two circles are drawn in such ways that
surround the vibration considering the goal point as
their centre. The radius of this circle can be used as a
criterion for the residual vibration's magnitude which

Figure 3. Maximum residual vibration of robot with and
without considering the payload.
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is called the Radius of Residual Vibration (RRV) in
this article.

In order to ensure that all constraints are satis�ed
for all discretized points along the given trajectory, a
general load coe�cient, c, can be de�ned as follows:

c = minf(cp)j ; (ca)j ; (cS)j ; (cv)jg;
j = 1; 2; � � � ;m: (27)

As a result, the maximum allowable mass, mload, can
be calculated as follows:

mload = cme: (28)

SIMULATION

A simulation study has been carried out to investigate
further the validity and e�ectiveness of the geometri-
cally nonlinear exible link and compute the MADL
of a given trajectory. In order to initially check the
validity of the dynamic equations, the response of the
system with a very large elastic constant to an initial
condition corresponding to �1 = �90� and �2 = 5�
(Figure 4) has been simulated.

The parameter values of the model used in these
simulation studies were L1 = L2 = 1 m, I1 = I2 =
5 � 10�9 m4, E = E = 2 � 10 N/m and m1 = m2 =
5 kg/m. As shown in Figures 5 to 7, the response of the
system was in agreement with the harmonic motion of
an elastic two-link robot hanging freely under gravity.

Several additional simulations of the system are
performed. One is a classical example for geometrically

Figure 4. Initial condition for the model validity.

Figure 5. Lateral deection at the tip of link 2.

Figure 6. Axial deection at the tip of link 2.

Figure 7. Endpoint trajectory viewed in global
coordinate system.
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elastic nonlinear formulations to illustrate the perfor-
mance of the simulation and the e�ect of the geometric
nonlinearity. In the second test, a robot manipulator
with elastic links is considered. The end-e�ector and
its load must track a straight line with a prede�ned
speed. In the third test, MADL is found for a exible
robot manipulator in which the end-e�ector must move
along a circular path. In the last two cases, the mobile
base of the manipulator moves along a straight line at
a constant speed.

1R Planar Rotating Flexible Manipulator

In this section, the dynamic characteristics of the rotat-
ing exible manipulator are studied through numerical
simulations (Figure 8), for the computational e�ciency
of geometric nonlinearity at high speed is comparable
to that of a linear formulation. The properties of the
exible manipulator are the same as those in [10], and
are given as follows:

The length: L = 8 m;
The cross section area: A = 7:3� 10�5 m2;
The second moment of area: I = 8:218� 10�9 m4;
The mass density: � = 2:7667� 103 kg/m2;
The Young's modulus of material: E = 68:95 GPa.

The rotating exible manipulator spun-up according to
a motion law is de�ned by:

�(t)=
�
!s
Ts

�"�
t2

2

�
+
�
Ts
2�

�2�
cos
�

2�t
Ts

�
�1
�#

;
(29)

where !s and Ts are the rating angular velocity and
start-up time, respectively. In this simulation, Ts =
15 s and the rotation speed, !s, is varied from 0.1 ras/s
to 2.5 rad/s.

Figures 9 and 10 show the deection obtained
at an angular velocity, !s, of 1 and 2.5 rad/s, re-
spectively. As can be seen, elastic displacements are
small at a small angular velocity so both the linear

Figure 8. 1R planar rotating exible manipulator.

Figure 9. Deection on the link end with !s = 0:1 rad/s.

Figure 10. Deection on the beam end with !s = 2:5
rad/s.

and the nonlinear formulation lead to the same solution
(Figure 9). As shown in Figure 10, when the angular
velocity is raised to 2:5 rad/s, the results provided by
the simulation, not including the e�ects of geometric
elastic nonlinearity, are divergent and inconsistent
with the actual physical response. This is the result
of an increase in the rotation speed increasing both
centrifugal axial forces and the displacement amplitude
through deection of the link.

MADL of a Flexible Mobile Manipulator with
a Linear Path

This simulation study is performed to investigate the
e�ciency of the procedure presented in Figure 11 for
computing the maximum allowable load of a mobile
manipulator. All required parameters are given in
Table 1. As mentioned earlier, the path of the end-
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Figure 11. Schematic of robot and the desired path of
end-e�ector.

Table 1. Simulation of parameters.

Parameter Value Unit

Length of links L1 =L2 =2:5 m

Mass m1 =m2 =5 kg

Cross section area A1 =A2 =3�10�4 m2

Moment of inertia I1 =I2 =5� 10�8 m4

Young's modulus of material E1 =E2 =4:5�1010 N/m2

e�ector and its payload is linear, which starts from
point x1 = 0 and y1 = 3:5 m and ends at a point
with coordinate x2 = 1:72 m and y2 = 4:4 m.

The velocity pro�le of the end-e�ector is as below:8><>:v = at 0 � t � T=4
v = vmax T=4 � t � 3T=4
v = �at 3T=4 � t � T

(30)

A linear path is planned for the vehicle, which starts
from the origin and ends at xb2 = 0:99 m and yb2 = 0:26
m, with the velocity of Vb = 0:2t. The obtained path
of the end-e�ector, considering link exibility is shown
in Figure 12 in comparison with the desired path.
Also, the joint angles of rigid and exible link states
are shown in Figures 13 and 14. The corresponding
applied torques to the manipulator actuators are shown
in Figures 15 and 16.

Links can be regarded as cantilevers. Thus, the
maximal dynamic stress should occur close to the
joints. The numerical simulation results show that the
maximal dynamic stresses of links change signi�cantly
with the load. As shown in Figures 17 and 18, the

Figure 12. The desired and the actual load path.

Figure 13. Joint responses of �1 for rigid and exible
links.

Figure 14. Angular positions of �2 for rigid and exible
links.
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Figure 15. Actuator torque at the �rst joint against
torque bounds.

Figure 16. Actuator torque at the second joint.

Figure 17. Maximal dynamic stress of exible link 1
against stress bounds.

maximal dynamic stress values uctuate frequently and
arise to the admissible stress with maximum load.

The relation between the magnitude of residual
vibration and the amount of payload is concluded. As
can be seen, the exibility of the link and adding the
payload will non-linearily increase the amplitude of the
residual vibrations. The variation trend of RRV, with
respect to payload mass for a exible link manipulator,
is shown in Figure 19. This non-uniform increasing
trend of RRV is because of displacement and velocity
errors at the �nal time. Depending on the initial
conditions, the magnitude of the residual vibration's
amplitude may vary. With these descriptions, to
estimate the residual vibration amplitude in terms of
the payload value, a tangent line to the maximum
value of RRV can be considered as shown in Figure 19.
This line can be used for considering the residual

Figure 18. Maximal dynamic stress of exible link 2
during the linear path.

Figure 19. Maximum residual vibration versus payloads
in the linear path.
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vibration as a constraint in computing the maximum
payload.

Now, the MADL of the robot of the previous
section can be computed. The permissible error bound
for the end-e�ector motion around the desired path is
Rp = 6 cm, and at the end point is Rrv = 16:5 cm.
Both actuators of the robot are considered to be the
same, with Ts = 230 N.m and !n1 = 10 rad/s and
allowable stresses of the links are considered to be the
same with Us = 100 MPa. The MADL, by imposing all
constraints, are found and given in Table 2. Therefore,
the maximum allowable dynamic load of the robot,
considering all constraints, is calculated to be 0.91 kg
for the given linear path.

MADL of a Flexible Mobile Manipulator with
a Circular Path

In this simulation, the computation of the MADL for
a two-link planar manipulator mounted on an XY
table (Figure 20) is presented. The link parameters

Table 2. The MADL of robot with all constraints.

Constraint MADL

Accuracy 1.1 kg

Actuator torque 2.52 kg

Maximum stress 5.62 kg

Accuracy-actuator torque 1.1 kg

Accuracy-residual vibration 0.91 kg

All 0.91 kg

Figure 20. Schematic of exible link planar manipulator
with the circular path.

and inertia properties of the manipulator were given in
Table 3. In the inertial reference frame, the XY table
is capable of moving 1000 mm along the X-axis. Base
velocity is Vx = 0:1t. Also, it is assumed that the load
must move along a circular path. The centre of the
circular path coordinates with radius r = 50 cm is at
xc = 1 m and yc = 1 m with its origin at the lower-left
corner of the XY table (Figure 21).

The obtained path which is tracked by the exible
robot manipulator is compared with the desired path
in Figure 21. In this case, the permissible error
bound for the end-e�ector motion around the desired
path is Rp = 6 cm, and at the end point is Rrv =
3 cm.

Both actuators of the robot and allowable stresses
are considered to be the same with Ts = 170 N.m,
!nl = 5 rad/s and Us = 100 MPa, respectively. The
corresponding applied torques to each actuator are
shown in Figures 22 and 23. The maximal dynamic
stresses are shown in Figures 24 and 25 and the
variation trend of RRV with respect to payload mass
for the exible link manipulator with the circular path
is shown in Figure 26. The MADL, by imposing
imposing all constraints, is found and given in Table 4.
Therefore, the maximum allowable dynamic load of the

Table 3. Parameters of two-link planar exible
manipulator.

Parameter Value Unit

Length of links L1 =L2 =1:2 m

Mass m1 =M2 =2:4 kg

Cross section area A1 =A2 =3� 10�4 m2

Moment of inertia I1 =I2 =5� 10�8 m4

Young's modulus of material E1 =E2 =4:5�1010 N/m2

Figure 21. Desired and actual trajectory in the circular
path.
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Figure 22. Variation of �rst joint torque with time
within upper and lower acceptable boundaries.

Figure 23. Applied torques of the second motor.

Figure 24. Maximum dynamic stress of exible link 1
during the circular path.

robot considering all constraints is found to be 1.2 kg
for the given trajectory.

The results depicted the importance of all con-
straints. According to accuracy and tracking, they
show which one would be the main one. The simulation
results indicate that the main reason for manipulator
deviation is its major link's exibility.

CONCLUSIONS

The main objective of this study was formulating
and determining the Maximum Allowable Dynamic
Load (MADL) for geometrically nonlinear exible-link
manipulators with a pre-de�ned trajectory, using the
�nite element method. A complete dynamic model is
considered to characterize the motion of a compliant
link capable of large deection. The MADL was

Figure 25. Maximal dynamic stress of exible link 2
during the circular path.

Figure 26. Radius of residual vibration versus payloads.
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Table 4. Maximum allowable dynamic load in circular
path.

Constraint MADL

Accuracy 1.2 kg

Actuator torque 5.5 kg

Maximum stress 9.05 kg

Accuracy-actuator torque 1.2 kg

Accuracy-residual vibration 1.2 kg

All 1.2 kg

achieved by imposing actuator torque capacity, end ef-
fector accuracy, maximum stress and residual vibration
constraints to the problem formulation. In simulation
studies, a two-link planar manipulator mounted on
a mobile base was considered for carrying a load in
two-test cases. Numerical results obtained indicate
that the inclusion of geometric elastic nonlinearities in
the mathematical model leads to the development of
a new geometrically nonlinear sti�ness matrix whose
neglect will a�ect the overall behavior of the robot.
The results of the case study show that the allowable
load is variable along the given trajectory. In addition,
the formulation is more stable and e�cient than most
alternatives and has the added advantage of being
able to calculate residual vibration and a new e�ective
constraint, as \the dynamic stress constraint of links".
Therefore, the permissible error bound for constraints
in large deformation is sensitive in calculating the
MADL.

NOMENCLATURE

�1; �2 angular displacements of joints 1 & 2
L1; L2 total lengths of links 1 and 2
m1;m2 total mass of links 1 and 2
I1; I2 moment of inertia of links 1 and 2
A1; A2 cross section of links 1 and 2
E1; E2 Young's modulus of links 1 and 2
u2i axial displacement at common junction

of elements `i' and `i+ 1' of link 1
v2i exural displacement at common

junction of elements `i' and `i + 1' of
link 1

�2i exural slope at common junction of
elements `i' and `i+ 1' of link 1

n1; n2 number of elements of links 1 and 2
qi generalized coordinates
M1;M2 generalized inertia matrices of links 1

and 2
K1;K2 sti�ness matrices of links 1 and 2

r(x) vector from the origin to a point on
element

rfx; rfy the position of the goal point from
exible robot

p2i axial displacement at common junction
of elements `i' and `i+ 1' of link 2

w2i exural displacement at common
junction of elements `i' and `i + 1' of
link 2

'2i exural slope at common junction of
elements `i' and `i+ 1' of link 2
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