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E�ects of Unsteady Friction Factor
on Gaseous Cavitation Model

M. Mosharaf Dehkordi1 and B. Firoozabadi1;�

Abstract. The condition known as a water-hammer problem is a transient condition that may occur
as a result of worst-case loadings, such as pump failures, valve closures, etc. in pipeline systems. The
pressure in the water hammer can vary in such a way that in some cases it may increase and cause
destruction to the hydraulic systems. The pressure in the water hammer can also be decreased to the
extent that it can fall under the saturation pressure, where cavitation appears. Therefore, the liquid is
vaporized, thus, making a two-phase 
ow. This pressure decrease can be as dangerous as the pressure rise.
As a result of the pressure drop and vaporization of the liquid, two liquid regions are separated, which is
referred to as column separation. In almost all standard methods for simulation of column separation,
the steady friction factor was used, but in reality, the quantity of the friction factor is variable. In this
work, the unsteady friction factor has been applied in the Discrete Gas Cavity Model (DGCM), which is
a standard method of column separation prediction. Through comparisons with experimental data, results
showed that applying the unsteady friction factor can improve the magnitude of the predicted duration
shape and the timing of the pressure pulse in all of the case studies.

Keywords: Water-hammer; Cavitation; Discrete gas cavity model; Unsteady friction model; Method of
characteristics.

INTRODUCTION

In a transient 
ow, a common concern of hydraulics
engineers is to control the e�ect of the pressure wave, in
order to protect relevant system components. Pressure
waves are usually produced by the closure of a valve
in simple systems. The pressure in hydraulic systems
oscillates due to these pressure waves. In some cases,
pressure reaches or drops below the vapor pressure and,
therefore, cavitation occurs. Transient cavitation is
an additional phenomenon accompanying the water-
hammer. Cavitation can cause damage to the material
of the pipes. The in
uence of a pressure rise due to
cavitation and pressure oscillation caused by water-
hammer can be harmful to a pipe wall, as well as to
its fatigue life. In order to improve the performance
and reliability of systems, it is important to predict the
onset and degree of cavitation taking place [1]. Fluid
mixtures in hydraulic systems can be classi�ed into �ve
groups:
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1. Fully degassed liquid;
2. Fully degassed liquid with vapor;
3. Liquid with dissolved gas;
4. Liquid with dissolved and undissolved gas;
5. Liquid with dissolved and undissolved gas and

vapor.

When the pressure reaches or drops below the
vapor pressure of a liquid, the cavities grow very rapidly
because of evaporation into the growing cavity. The
process is called vaporous cavitation [1].

Cavitation can have a serious e�ect on pipeline
systems. The accident at the Oigawa hydropower plant
in 1950 in Japan is such an example, which was the
result of column separation [2]. In that accident, three
workers died. A fast valve-closure during maintenance
caused an extreme high-pressure wave that split the
penstock open. Therefore, a low pressure wave was
generated causing cavitation and a portion of the
pipeline was crushed due to the outer atmospheric
pressure load. Jaeger et al. [3] reviewed the most
serious accidents due to water-hammer and column
separation. Many of the failures described were related
to vibration and resonance [2].
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In most industrial systems, a negligible amount
of free and released gas in the liquid is assumed during
column separation [4]. Two distinct types of column
separation can be considered. The �rst type is local
vaporization with a large void fraction. A local vapor
cavity may form in places such as a valve or in elevated
regions of the pipe.

The second type of column separation is dis-
tributed vaporous cavitation. In this type of column
separation, the cavities may be extended over long
sections of the pipe; the void fraction for the mixture of
liquid and liquid-vapor bubbles is close to zero. As soon
as a rarefaction wave progressively drops the pressure
in an extended region of the pipe to liquid vapor
pressure, distributed vaporous cavitation occurs. The
collapse of a discrete vapor cavity and the movement
of the shock wave front into a distributed vaporous
cavitation region condense the vapor back to liquid.
In transient events, the pressure oscillates; therefore,
the pipeline systems may experience combined water-
hammer and cavitation e�ects [5-7]. Several system
parameters, including the type of transient regime
(rapid closure of the valve and turbine load rejection),
pipeline system properties (pipe dimensions, pro�le
and position of valves) and hydraulic characteristics
(velocity, pressure head, pipe wall friction, proper-
ties of liquid and pipe walls) have important e�ects
on the location and intensity of column separation;
therefore, the modeling and laboratory testing of these
phenomena are di�cult. Practical implications of
column separation led to intensive laboratory and �eld
research, starting at the end of the 19th century [4].
There are several research undertakings on a simple
reservoir-pipeline-valve system. They showed that,
when the cavities collapse at the valve, the pressure
rise may or may not exceed the Joukowsky pressure
rise, and cavities may form at the boundary or along
the pipe [2,4].

There are di�erent methods for the simulation
of cavitation and column separation one of which
is the Discrete Vapor-Cavity Model (DVCM) that is
used in most commercial software packages for water-
hammer analysis (such as HAMMER7) for simulating
transient events in pipelines involving water column
separation. Since the introduction of DVCM by
Streeter [8], the DVCM may have generated unreal-
istic pressure head spikes due to multicavity collapse.
Kranenburg [9], Wylie and Streeter [7], Simpson and
Bergant [10] and Brunone et al. [11] investigated
the e�ects of multicavity collapse in column separa-
tion. In an e�ort to improve the performance of the
DVCM, several models were introduced by Wylie and
Streeter [7] and Bergant and Simpson [6] as an alterna-
tive to the discrete vapor-cavity model; Provoost and
Wylie [12] introduced the discrete gas cavity model
(DGCM).

In this paper, DGCM was modi�ed by considering
the unsteady friction factor, and the angle of the
characteristic line in the Methods Of Characteristics
(MOC) was corrected. The simulation was performed
by a VC++ computer code, which can consider both
steady and unsteady friction factors in the DGCM
model.

Discrete Gas Cavity Model (DGCM)

As the pressure in the hydraulic system reaches or
drops below the vapor pressure of the liquid, column
separation occurs. As long as the pressure remains
above the vapor pressure, with the absence of free gas
in liquid, the wave speed remains constant. Whenever
the pressure reaches or drops below the vapor pressure,
vaporization occurs and the dynamic behavior of the
system is changed; although the wave speed remains
constant throughout the regions containing pure liq-
uid [5].

There are several methods for simulating cavita-
tion in transient events, such as the Discrete Vapor
Cavity Model (DVCM) and the Discrete Gas Cavity
Model (DGCM). In DGCM, for modeling the free gas
distributed throughout the liquid in a homogeneous
mixture, a free-gas lumped mass at computing sections
is considered [5]. As a result of pressure variation, each
isolated small volume of gas expands and contracts
isothermally (for very small cavities). Between the
computing sections, pure liquid is considered, and
lumping the free gas at discrete locations has an e�ect
on wave propagation speed that closely matches actual
wave speed in the distributed mixture.

Unsteady Friction Models

The steady or quasi-steady friction terms are used
in the standard water-hammer and column separation
algorithms and software packages. For slow transient

ows where the wall shear stress has a quasi-steady
behavior, this assumption is reasonable. But, for rapid
transients, experimental data have shown a signi�cant
di�erence when the computational results are com-
pared to those of measurements [4]. The unsteady
friction terms can be classi�ed into six groups [13]:

1. The friction term is dependent on the instantaneous
mean 
ow velocity, V ;

2. The friction term is dependent on the instantaneous
mean 
ow velocity, V , and instantaneous local
acceleration, @V=@t;

3. The friction term is dependent on instantaneous
mean 
ow velocity, V , instantaneous local accelera-
tion, @V=@t, and instantaneous convective acceler-
ation, V @V=@X.
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4. The friction term is dependent on instantaneous
mean 
ow velocity, V , and di�usion, @2V=@x2.

5. The friction term is dependent on instantaneous
mean 
ow velocity, V , and weights for the past
velocity changes, W (�) (Zielke model);

6. The friction term is based on the cross-sectional
distribution of instantaneous 
ow velocity (2-D
models).

The Zielke model [14] was analytically developed
for the transient laminar 
ow. The unsteady part
of the friction term is related to the weighted past
velocity changes at the computational section. The
Zielke model requires large computer storage, and
several researchers have tried to improve computational
e�ciency and/or extend its application to transient
turbulent 
ow conditions.

The Brunone's model [15] is used in this pa-
per, which is related to instantaneous local accelera-
tion, @V=@t, and instantaneous convective acceleration,
V @V=@x.

MATHEMATICAL MODELS

Discrete Gas Cavity Model (DGCM)

In this scheme, it is assumed that between each com-
puting section, there is pure liquid (without free gas)
and a liquid phase with a constant wave speed occupy-
ing the computational reach. The Discrete Gas Cavity
Model (DGCM) allows gas cavities to form at com-
putational sections in the method of characteristics.
The DGCM is based on water-hammer compatibility
equations, the continuity equation for the gas volume,
and the ideal gas equation (isothermal process). The
gas is assumed to behave isothermally, which is valid
for tiny bubbles. Large bubbles and column separation
tend to behave adiabatically. Figure 1 shows a section
of the pipeline with a concentrated gas volume at
computing sections. The perfect gas law is used to
determine the volume of a constant mass of free gas in
each computing section, which can be written in the
following expression:

p�g 8g = MgRgT = p�0�08; (1)

in which T is temperature, Mg is mass of gas, Rg is gas
constant, and �0 is the void fraction at some reference
pressure, p�0.

In most cases, we deal with free air in water. In
these cases we use the hydraulic-grade line convenient
(Figure 1).

p�g = �lg(H � z �H�); (2)

in which the hydraulic-grade line elevation, H, and the
elevation of the pipeline, z, are measured from the same

Figure 1. Hydraulic-grade line for the pipeline [5].

reference datum. Since 8, the volume of mixture in a
pipeline reach is a constant, Equation 1 may be used to
determine the volume of gas at each section for initial
conditions and for each time step:

80g =
p�0�08
p�g

=
C3

H � z �H�
; (3)

in which C3 = p�0�08=�lg.
Figure 2 shows a staggered grid of characteristics

when the gas volume is at an interior section in the
pipeline.

The equations needed to solve the variable at each
time step are:

The C+ compatibility equation:
H = CP �BPQPu: (4)

Figure 2. Staggered grid of characteristics at an interior
section in the pipeline.
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The C� compatibility equation:

H = CM �BMQP ; (5)

in which the coe�cients CP , BP , CM and BM are:

CP = Hi�1 �BQi�1;

BP = B +RjQi�1j;
CM = Hi+1 �BQi+1;

BM = B +RjQi+1j
in which B = a=gA and R = f�x=2gDA2.

The continuity equation at the gas volume is:

d8g
dt

= Qout �Qin: (6)

By using the weighting factor in the time direction (as
shown in Figure 2), which is de�ned in the form:

 =
�t0

2�T
; 0:5 <  � 1; (7)

Equation 6 is integrated and yields:

80g = 8g + 2�t

� [ (QP �QPu) + (1�  )(Q�Qu)]; (8)

in which 2�t = 2�x=a is time step, 80g and 8g
are gas volume at the current time and 2�t earlier,
respectively.

Substitution of Equations 4 to 6 into Equation 8
leads to:

(H � z �H�)2 + 2B1(H � z �H�)� C4 = 0; (9)

in which:

B1 = �Bz(BPCM + CPBM )

+B2BPBMB� + (z +H�)=2;

C4 = C3BPBMB2=(�t );

B2 = 0:5=(BM +BP );

B� = b8g=(2�t) + (1�  )(Q�Qu)c= :
This standard quadratic equation has the solution:

H � z �H� =�B1(1 +
p

1 +BB) if B1<0; (10)

H � z �H� =�B1(1�p1 +BB) if B1>0; (11)

in which BB = C4=B2
1 . Equations 5 and 6 are used to

�nd QPu and QP , and Equation 8 is used to �nd 80g.
A straightforward linearization of these equations,

for the condition of jBB j << 1 is used to avoid yielding
inaccurate results due to inaccuracies in the numerical
evaluation of the radical.

H � z �H� = �2B1 � C4

2B1
if B < 0; (12)

H � z �H� =
C4

2B1
if B1 > 0: (13)

Thus, Equations 12 and 13 are used when jBB j is small
(less than 0.001), and Equations 10 and 11 are used in
all other cases.

To control the numerical oscillations that appear
during the simulation of a transient, the weighting
factor,  , is used [5]. Although the weighting factor,
 , can take on values between 0 and 1.0, a practical
range is 0.5-1.0. For values less than 0.5, the results
are unstable, and at  = 1 there is minimum numerical
oscillation [5].

Bergant et al. [16] showed that the value of void
fraction, �0, has signi�cant e�ects on the pressure wave
shape and timing for a very low gas void fraction; the
DGCM model results perfectly matched with the re-
sults of standard water hammer model (in the absence
of cavitation) It is also depicted that larger amounts of
free gas have more e�ect on results in shape and timing.
Therefore, the DGCM model can be successfully used
for simulation of vaporous cavitation by utilizing a very
low gas void fraction (�0 � 10�7). Another factor that
has a serious e�ect on results in shape and timing is
the 
ow situation. Bergant considered two distinct 
ow
situations:

1. Distributed free gas at all computational sections;

2. A trapped gas pocket at the midpoint of the
pipeline system (shown in Figure 3). In the present
work, DGCM was used by considering a very low
gas void fraction and distributed free gas at all
computational sections.

Figure 3. Schematic diagram of the test case [4].
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Unsteady Friction Factor Models

In most software packages, the steady state friction
factor is used for water-hammer analysis. For consid-
ering the e�ects of unsteady friction on water-hammer
or column separation, friction factor f in Equations 4
and 5 can be expressed as the sum of a quasi-steady
part, fq, and an unsteady part, fu, i.e. f = fq + fu.
It should be mentioned that by setting fu = 0 the
steady friction model, fq, is computed by updating
the Reynolds number at each new computation, based
on Vakil and Firoozabadi [13], who used an unsteady
friction factor in water-hammer without cavitation.

Here, the Brunone model was used to consider the
unsteady friction factor. The Brunone model relates
the unsteady friction part, fu, to the instantaneous
local acceleration, @V=@t, and instantaneous convec-
tive acceleration, V @V=@x; Vitkovsky deduced a new
formulation based on Brunone's model [15]:

f = fq +
k D A
QjQj

�
@Q
@t

+ a sign(Q)
����@Q@x ����� ; (14)

in which:

sign(Q) = f+1 for Q � 0 and � 1 for Q < 0g:
The Brunone friction coe�cient k can be predicted
either empirically or analytically [17]. The analytical
de�nition of k using Vardy and Brown's shear decay
coe�cient, C�, is used in this paper:

k =
p
C�
2

; (15)

in which:

C� =

(
0:00476 for laminar 
ow

7:41
Relog(14:3=Re0:05) for turbulent 
ow:

(16)

A �rst-order approximation for the friction term, i.e.
f:Qt��tjQt��tj:�x=(2gDA2), is used in Equations 4
and 5 when using the Brunone model.

Characteristic Equation in DGCM with
Unsteady Friction Term

Water hammer equations include the continuity equa-
tion and equations of motion with assumptions, such
as one-dimensional 
ow, steady friction term and no-
column separation. Neglecting small terms in compar-
ison with other terms are as follows [17]:

L1 =
@H
@t

+
a2

gA
@Q
@x

= 0; (17)

L2 =
@H
@x

+
1
gA

@Q
@t

+
fQjQj
2gDA2 = 0: (18)

For considering the e�ects of unsteady friction in
DGCM, substitution of Equation 14 into Equation 18
leads to:

L2 =
@H
@x

+
1
gA

@Q
@t

+
fq QjQj
2gDA2

+ k
�
@Q
@t

+ a �A
@Q
@x

�
; (19)

in which:

�A =

(�1 for Q@Q=@x < 0
+1 for Q@Q=@x > 0

Equations 2 and 12 are combined linearly using un-
known multiplier � in the form of L2 + �L1 = 0,
and using a material derivative for H(x; t) and Q(x; t)
which leads to:

dx
dt

=
1
�

=
a�Ak + a2�

1 + k
; (20)

Equation 20 is solved for an unknown multiplier:

�1;2 =
�k�A

2a
� 1

2a
(k + 2): (21)

The procedure is similar to the MOC in a standard
water-hammer, thus, by integrating along characteris-
tic lines, the �nite di�erence equation is determined.
Considering the value of � shows that, by using the
unsteady friction coe�cient, the angle of characteristic
lines is changed and, thus, coe�cients CP , BP , CM
and BM are changed and must be updated. By using
recent values of these coe�cients, Equations 5 to 14 are
computed.

Updating Brunone Friction Coe�cient k

The analytical de�nition of k using Vardy and Brown's
shear decay coe�cient, C�, that is used in this paper,
is shown in Equations 15 and 16. In the present work,
the Reynolds number is determined by using the local
discharge in each computing section (node). However,
in cases of cavitation, there are two local discharges
in each computing section (in
ow and out
ow) and,
therefore, there are two distinct methods for updating
the local Reynolds number and the Brunone friction
coe�cient. With respect to the two forms of de�nition
of the Vardy shear decay coe�cient (Equation 16),
whenever the local Reynolds number is not zero, the
Brunone coe�cient is updated. Both of these methods
were studied. In Equation 19, �A was introduced as
follows:
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�A =

(�1 for Q@Q=@x < 0
+1 for Q@Q=@x > 0

To determine �A, Q@Q=@x must be calculated at each
computing section, thus along the C+ characteristic
line:

(Qu)i;t:
(Qu)i;t �Qi�1;t

�x
; (22)

and along the C� characteristic line:

Qi;t:
(Qu)i+1;t �Qi;t

�x
: (23)

TEST CASE

To verify the present model, results were compared
with the experimental data, as well as with other
numerical results of column separation simulation in
hydraulic systems.

Bergant and Simpson [4] designed and con-
structed 
exible laboratory apparatus for investigat-
ing water hammer and column separation events in
pipelines. Their apparatus is comprised of a straight
sloping copper pipe connecting two pressurized tanks
(Figure 3). The pipe slope is constant at 5.45% [4].
Water hammer events in the apparatus are initiated
by rapid closure of the ball valve. The properties of
this system are shown in Table 1.

RESULTS AND DISCUSSION

Di�erent Initial Velocities

Results for two distinct 
ow velocities in an upward
sloping pipe (shown in Figure 3; V0 = 0.3 or 1.4 m/s)
and a constant upstream end reservoir head (Tank 2;
HT;2 = 22.0 m) are presented here. The numerical
prediction and measured piezometric heads at the
downstream end valve, H�;1, and at the mid-point,
Hmp, (Figure 3) were calculated for a low-velocity case
(V0 = 0.3 m/s). A comparison between experimental
results [4] and the present work for the steady and
unsteady friction DGCM can be seen in Figures 4
and 5, respectively.

Table 1. Properties of the system.

Internal Pipeline Upstream Pipe

Diameter Length Head Slope

0.0221 m 37.23 m 22 or 12 m 5.45%

Pipeline
Elevation

Steady
Velocity

Downstream
Valve

Closure Time

Wave
Speed

2.03 m 0.3 m/s 0.009 s 1319 m/s

It should be mentioned that Equations 15 and
16 show that the Brunone friction coe�cient depends
on Reynolds number. In case of cavitations, there
are two 
ows in each computational node (in
ow and
out
ow), therefore, there are two di�erent methods
(two Reynolds numbers) for updating k in the unsteady
friction model. In Figures 5 to 7, k in each node is
updated by using the out
ow.

The valve closure generates the water-hammer
head, H�;1 = 62.5 m, and subsequent column sepa-
ration at the valve in a time of 0.0662 seconds. The
maximum measured head, Hmax;�;a = 95.6 m, occurs
in a time of 0.1842 seconds as a narrow short-duration
pressure pulse. The magnitude of the short-duration
pressure pulse predicted by DGCM is Hmax;�;1 =
100.36 m (present work: steady friction) and Hmax;�;1
= 101.9 m from Bergant and Simpson simulations [4].
The unsteady friction DGCM (present work) pressure
is predicted as Hmax;�;1 = 100.1 m. A comparison
of the results of all studied models and experimental
results [4] is shown in Table 2. A comparison of
pressure heads and times of occurrence is done for 4
points (these points are shown in Figure 4a).

As can be seen from Table 2, at all points the
unsteady friction DGCM predicted by the present
work has good agreement with the measured values
reported by [4]. It is also evident that the unsteady
friction model can improve the time and shape of
oscillations.

Figure 6 shows a comparison between the present
work and measured values of the downstream valve
head for an inlet velocity of V0 = 1.4 m/s. The
maximum head at the valve is the water hammer head
generated at a time of 2L=a after valve closure. The wa-
ter hammer head predicted by DGCM (steady friction
and unsteady friction terms) matches the measured
head. In this case, using an unsteady friction term can
predict a better result in shape and timing compared
with the steady friction term.

Di�erent Reservoir Static Heads

The results for two di�erent static heads in the up-
stream end reservoir (HT;2 = 12.0 or 22.0 m) and initial
velocity (V0 = 0:3 m/s) are compared in Figures 4 to
7. A valve closure for HT;2 = 12.0 m generates column
separation with a wide short-duration pressure pulse
(Figure 7), which is compared to column separation
with a narrow short- duration pressure pulse (Figures 4
and 5). The decrease of static head at the identical
initial 
ow velocity results in the reduced amplitude
of a short-duration pressure pulse (lower amplitude
reservoir wave) and more intense cavitation [4]. Both
numerical models accurately predict the magnitude of
the wide short duration pressure pulse and the duration
of the �rst cavity at the valve in comparison with the
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Figure 4. Comparison between measurements [4] and DGCM, with steady friction term.(a) and (b) Present Work, (c)
and (d) Bergant and Simpson's work [4] (V0 = 0.3 m/s).

Figure 5. Comparison between present work (unsteady friction DGCM) and measured results (V0 = 0.3 m/s). (a) Heads
in downstream valve; (b) Mid-point of pipeline.

experimental data (Figures 7). As can be seen, the
unsteady friction factor improves the results in the
shape and timing of oscillations.

As shown in Table 3, the unsteady friction DGCM
has better prediction than the DGCM model in agree-
ment with measurement data [4].

Di�erent Methods for Updating Brunone
Friction Coe�cient

In this work, the Brunone coe�cient, k, is updated
by using the local Reynolds number. In each node,
as cavitation occurs, there are two di�erent discharges
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Table 2. Comparison of water-hammer head, maximum head, peak head, and time corresponding to peaks calculated
from di�erent numerical models and experimental data in downstream valve.

Point No.
(as Shown in
Figure 4a)

1 2 3 4

Method of
Evaluation

H�;1 (m)
(1st Peak)

Time
(s)

Hmax;�;1 (m)
(2nd Peak)

Time
(s)

H�;1 (m)
(4th Peak)

Time
(s)

H�;1 (m)
(5th Peak)

Time
(s)

Measured Values
[4]

62.50 0.0662 95.6 0.1842 60.51 0.3794 48.82 0.4945

Simulation DGCM
[4]

62.42 0.0591 101.9 0.1833 51.339 0.3661 51.03 0.4792

DGCM with
Steady Friction
(Present Work)

62.43 0.0585 100.36 0.1834 46.174 0.3669 44.96 0.4798

DGCM with
Unsteady Friction
(Present Work)

62.43 0.0621 100.1 0.1841 55.84 0.3739 48.71 0.4868

Figure 6. Comparison of heads in downstream valve for DGCM (a) and unsteady friction DGCM (b) with measured
results (V0 = 1.4 m/s).

Figure 7. Heads in downstream valve; comparison between measured results [4] and predicted values by the present work.
(a) Steady friction DGCM; (b) Unsteady friction DGCM; HT;2 = 12.0 m.
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Table 3. Comparison of peak head, and time corresponding to peaks calculated from di�erent numerical models and
experimental data in downstream valve, HT;2 = 12:0 m.

Point No.
(as Shown in
Figure 4a)

1 2 3 4

Method of
Evaluation

H�;1 (m)
(1st Peak)

Time
(s)

H�;1 (m)
(2nd Peak)

Time
(s)

H�;1 (m)
(3rd Peak)

Time
(s)

H�;1 (m)
(4th Peak)

Time
(s)

Measured Values
[4]

51.73 0.0135 53.48 0.2181 54.25 0.370 48.60 0.481

DGCM with
Steady Friction
(Present Work)

51.62 0.0141 53.16 0.2116 53.95 0.359 53.50 0.494

DGCM with
Unsteady Friction
(Present Work)

51.62 0.0141 54.07 0.2187 53.99 0.367 51.20 0.487

Qin and Qout (as shown in Figure 2), so the Reynolds
number, Re = V D=� = 4Q=�D�, can be calculated
using two di�erent velocities. Therefore, there are two
di�erent methods for updating the Reynolds number.

In the �rst method, the Brunone coe�cient, k,
was updated, using the out
ow of each node for
calculation of the Reynolds number. In the second
method, the local Reynolds number and the Brunone
coe�cient, k, were updated using in
ow.

Figures 8, 9a and 10a show the results of unsteady
friction DGCM (in
ow) compared to the measure-
ments [4] for a di�erent initial velocity (V0 = 0.3 or
1.4 m/s) and di�erent upstream heads (HT;2 = 12.0 or
22.0 m).

Figures 9b, 10b and 11 show comparisons of
all numerical models (that were studied) with mea-
surements results. These �gures show that using
the unsteady friction model can improve the result,
compared to the measurement, in most cases, but

the form of applying the unsteady friction term in
MOC and updating the Brunone coe�cient are very
important. In all conditions studied, unsteady friction
DGCM (that uses out
ow for calculation of the local
Reynolds number) has had the best results (between
all methods that were studied) compared to the mea-
surement results; however, more studies are required to
show the validity of this statement.

Figures 9b, 10b and 11 show that in some cases,
the unsteady friction model predicts higher pressure
peaks compared to steady friction models, but in
general, the results of unsteady friction models (both
in
ow and out
ow) are better than those of the DGCM
model in timing. The problem (prediction of higher
peaks) in the out
ow model is less than that of the
in
ow model; therefore, the unsteady friction DGCM
(using out
ow for calculation of the local Reynolds
number) is the best model for simulation of the column
separation studies.

Figure 8. Comparison of heads for unsteady friction DGCM (in
ow) (a) in downstream valve and (b) for mid-point of
pipeline with measured results; HT;2 = 22.0 m, V0 = 0.3 m/s.
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Figure 9. Comparison of heads in downstream valve for unsteady friction DGCM (in
ow) (a) and all studied methods (b)
with measured results; HT;2 = 22.0 m, V0 = 1.4 m/s.

Figure 10. Comparison of heads in downstream valve for unsteady friction DGCM between in
ow (a) and out
ow (b)
with measured results; HT;2 = 12.0 m, V0 = 0.3 m/s.

Figure 11. Comparison of heads for all studied methods (a) in downstream valve and (b) mid-point of pipeline with
measured results; HT;2 = 22.0 m, V0 = 0.3 m/s.
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The velocity pro�les have greater gradients in
an unsteady condition, which results in higher energy
dissipation compared with the steady condition. The
results show that the unsteady friction factor has
some 
uctuations after the occurrence of each pressure
peak, especially peak numbers 2, 3 and 4, which
are shown in Figure 4a. Furthermore, in each time
the values of the unsteady friction term are higher
than the steady term, which is why it can predict
a better agreement with experimental data. As far
as we are concerned, the sound velocity and friction
factor between two adjacent nodes are assumed to be
constant; in other words, although there may be several
friction factors, the friction factor between two adjacent
computational nodes is constant. Figure 12 can clarify
this point.

Finally, mesh independency was investigated and
the results were independent of grid size.

CONCLUSION

The performance of the Brunone unsteady friction
model has been tested for the DGCM for simulation
of simple reservoir-pipeline-valve systems, including
a test case. A comparison of two variations of the
discrete vapor cavity model has been presented. The
example presented shows that an unsteady friction
model (modi�ed Brunone's model) is able to predict
a better result compared with measurements. These
results clearly indicate the dependence of k on the
Re number and the form of updating of this coe�-
cient on the shape of the results. The modi�cation
of k with the local Reynolds number is the key
to producing an improved prediction for two-phase
transient 
ows. Further work is required to establish
an appropriate k particularly for a case of two-phase

ow.

Figure 12. The variations of friction factors in pipeline in
each time step.

NOMENCLATURE

a water hammer wave speed
A pipe area
C+ positive characteristic equation
C� negative characteristic equation
C� Vardy's shear decay coe�cient
D pipe diameter
fq Darcy-Weisbach friction factor
g gravitational acceleration
�H barometric head
Hi piezometric head
H� vapor pressure head
k Brunone's friction coe�cient
L pipe length
N number of reaches in pipeline
Q discharge at downstream side of

computational section
Qu discharge at upstream side of

computational section
p�0 reference pressure
p� absolute pressure
Re Reynolds number V D=�
Tc valve closure time
V 
ow velocity or velocity at downstream

side of vapor cavity
Vcav vapor cavity volume
Zi elevation of pipe section
� multiplier in characteristics method
� liquid density
�t time step
�x reach length
	 weighting factor

Subscripts

i node number
mp mid-point node

Abbreviations

DVCM Discrete Vapor Cavity Model
MOC Method Of Characteristics
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