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Dynamic Model of a Mobile Robot
with Long Spatially Flexible Links

H. Zohoor1;� and S.M. Khorsandijou2

Abstract. Using some agent variables, the general structure of the dynamic model of a spatial mobile
robot with N long spatially exible links and N revolute joints has been exposed. It is composed of a
set of 5N + 6 nonlinear coupled partial di�erential motion equations under the inuence of the boundary
conditions. Non-conservative forces/moments have been neglected. While being considered, the general
structure of the dynamic model will not change, but a few exciting/damping terms will arise within
the agent variables. The base of the robot is an unconstrained rigid body in space and the links as
3D Euler-Bernoulli beams undergo tension-compression, torsion and two spatial bendings while elastic
orientation is considerable and the nonlinear part of the geometric Green-Lagrange strain is ignored.
When the elastic orientation is neglected, the dynamic model of each link remains more accurate than
that of a nonlinear 3D Euler-Bernoulli beam within which the elastic orientation is actually negligible.
The obtained dynamic model is capable of creating the nonlinear 3D long Euler-Bernoulli beam and the
fully-enhanced/enhanced/generalized nonlinear 3D Euler-Bernoulli beam theories, considering a ying or
a �xed support.

Keywords: Spatially exible link; Highly exible link; Mobile robot; Flying manipulator.

INTRODUCTION

In mobile robots, the link's elastic deformations can
be revealed by accelerations of the mobile base and
manipulator, the length and mechanical exibility of
the links and the mass ratio of payload to manipulator.
When the link's elastic deformations are predicted to
be considerable, the links should not be considered as
rigid in the dynamic modeling. The dynamic modeling
and con�guration determining of a exible-link mobile
robot are sophisticated kinetic problems. As the length
and mechanical exibility of the links increase, the
elastic orientation becomes considerable. As a result,
the links cannot be modeled as nonlinear 3D Euler-
Bernoulli beams like [1-3] within which the elastic
orientation is negligible.

In the present article and in [4], spatially exible
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links undergoing considerable elastic orientation are
named long links. Using some agent variables, the gen-
eral structure of a dynamic model of a spatial mobile
robot with N revolute joints and N long links has been
obtained. It includes the partial di�erential motion
equations, section loads of the links and the bound-
ary conditions of the system. Each link undergoes
four independent elastic deformations, namely torsion,
tension/compression and two spatial bendings. In the
present article, the agent variables whose lengths are
independent of N , are determined for any N , and the
agent variables whose lengths are dependent upon N
are determined only for N = 2. It should be noted that
only the appearance of agent variables whose lengths
are dependent upon N for N = 2 is similar to that
of [4] within which the elastic orientation is negligible.
Obviously, these agent variables can be reduced to that
of [4] if the rotational elastic coordinates are replaced
by zero.

The novelty of the present article and [4] lies not
only in the large spatial exibility of the long links, but
also in the dynamic model itself, regardless of the links'
quality of exibility. This dynamic model is in fact
a uni�cation for the dynamic models of ying and/or
�xed-base robots and/or multiple pendulums with rigid
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and/or exible links serially connected by revolute
joints, one ying rigid body, and long and/or short
fully-enhanced and/or short enhanced and/or short
generalized nonlinear 3D and/or 2D Euler-Bernoulli
beams with a ying and/or a �xed support. The men-
tioned uni�cation has been achieved using the agent
variables of the present article. Several examples have
been cited in section of \Veri�cation of the Dynamic
Model".

A system is exible anyway, depending on the
time scale of the task to be solved and on the length
scale of the needed dynamic accuracy [5]. Typically,
the deections are dynamic and arise as vibrations.
The philosophies of arm structure design have been
explained by Book [5]. Putz [6] has clari�ed the major
di�erences between space and terrestrial mobile robots.
Any mechanically exible manipulators/structures are
inherently distributed parameter systems whose dy-
namics are described by partial, rather than ordinary,
di�erential equations [7].

Kakizaki et al. [8] have presented a dynamic
modeling method for spatial elastic manipulators that
can account for bearing clearances, actuator dynamics
and control system characteristics. The dynamics of
an orbiting platform supporting a multi-link exible
manipulator system is derived by Modi et al. [9], while
the links are modeled as Timoshenko beams. Karray
et al. [10] have obtained the motion equations of an
orbiting exible manipulator while the two exible
manipulator links, treated as Euler-Bernoulli beams,
are free to deform transversely in the orbital plane. In
the framework of a linear elasticity theory, Hiller [11]
has modeled the exible parts of arm elements as
Euler-Bernoulli beams. Two bending deections and
a so-called twisting angle are considered as three
elastic degrees of freedom while inner constraints have
been assumed for axial deformation and the so-called
bending rotation angles. Korayem and Ghariblu [12]
have considered a planar small deection for the link
of a wheeled mobile exible manipulator.

Using some agent variables, Khorsandijou and
Zohoor [4] have exposed the general structure of the
dynamic model of a spatial mobile robot with N
highly exible links and N revolute joints, that is a
set of 5N + 6 nonlinear coupled partial di�erential
equations, along with boundary conditions. The agent
variables whose lengths are independent of N have
been determined for any N when the links undergo
considerable and also negligible, elastic orientation.
When N = 2 and the elastic orientation is negligible,
all �fty agent variables of the general structure of
the dynamic model have been determined. When the
exibility of the links is ignored, the dynamic model is
reduced to a set of N + 6 nonlinear coupled ordinary
di�erential equations. Non-conservative forces and
moments are neglected, but if they are considered,

the general structure of the dynamic model will not
change. In [4], the base of the robot is a six-DoF rigid
body in space and each link, as an Euler-Bernoulli
beam has whole elastic spatial degrees of freedom,
i.e. tension compression, torsion and two spatial
bendings. The links are made from a linearly elastic
isotropic material and are dynamically modeled much
more accurately than those of a nonlinear 3D Euler-
Bernoulli beam. That is, the elastic orientation of
the cross-sectional frame of each link is considerable.
Moreover, when the elastic orientation of the cross-
section is neglected, the dynamic model of each link
remains more accurate than that of a nonlinear 3D
Euler-Bernoulli beam. These �ndings have enhanced
the conventional nonlinear 3D Euler-Bernoulli beam
theory within which the elastic orientation of the cross-
sectional frame is actually negligible. In [4], the
variation of elastic potential energy of long links has
been used to derive the links' fully-enhanced/enhanced
variation of elastic potential energy, within which the
elastic orientation is negligible. In [4], the primary
and secondary new elastic terms have been revealed to
improve the nonlinear 3D Euler-Bernoulli beam theory
in [1]. Zohoor and Khorsandijou [13] have exposed
the dynamic model of a ying manipulator with two
highly exible links within which the exibility has
been modeled as that of [2]. The dynamic model in [13]
includes sixteen coupled nonlinear partial di�erential
motion equations along with the boundary conditions.

A method is presented by Sunada and
Dubowsky [14] for analyzing the complete behavior
of industrial robotic manipulators with complex-shape
exible links including the e�ects of the manipulator's
control systems and actuators. The kinematics and
dynamics of the manipulator are expressed in terms of
4 multiplied by 4 matrices. The distributed exibility
and mass properties of the links are obtained by
using readily available �nite-element models and
programs [14]. Nonlinear equations of motion are
developed by Book [15] for exible manipulator arms
consisting of rotary joints that connect pairs of exible
links. The kinematics of both the rotary-joint motion
and the link deformation are described by 4 multiplied
by 4 transformation matrices. The link deection
is assumed small, so that the link transformation
can be composed of the summations of assumed
link shapes. Cetinkunt et al. [16] have presented
a method to derive symbolically the full nonlinear
dynamic equations of motion of multiple-link exible
manipulators. Lagrange's-assumed modes method
is used for the dynamic modelling. The design of
lightweight links for robotic manipulators results in
exible links [17]. The accurate control of lightweight
manipulators during the large changes in con�guration
common to robotic tasks requires dynamic models
that describe both rigid-body motions as well as
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exural vibrations [17]. In this relation, Hastings and
Book [17] have described a linear state-space model
for a single-link exible manipulator. Dubowsky
et al. [18] have presented an e�ective method for
modeling the full three-dimensional dynamics of
high performance spatial machine systems including
the vibrations of their links, supporting structure
and enclosures and impacts in their connection
clearances. The method combines four-by-four matrix
modeling techniques with �nite-element techniques.
The lightweight exible manipulator dynamics are
derived by Siciliano and Book [19] on the basis of
a Lagrangian-assumed modes method. The explicit,
non-recursive symbolic form of the dynamic model of
robotic manipulators with compliant links and joints
is developed by Cetinkunt and Book [20] based on a
Lagrangian-assumed mode of formulation. This form
of dynamic model is suitable for controller synthesis
as well as accurate simulations of robotic applications.
The �nal form of the equations is organized in a form
similar to rigid manipulator equations. Dubowsky [21]
has described an approach to modeling the exibility
e�ects in spatial mechanisms and manipulator
systems. The method is based on �nite element
representations of the individual links in the system.
However, it should be noted that conventional �nite
element methods and software packages will not
handle the highly nonlinear dynamic behavior of these
systems [21]. Book [22] has represented the dynamics
of the link by the Euler-Bernoulli beam equation.
Matsuno and Yamamoto [23] have approximated the
elastic deformations by means of B-spline functions
and have derived dynamic equations of joint angles,
the vibration of the exible link and the constraint
force. Matsuno et al. [24] have derived dynamic
equations of joint angles, vibrations of exible links
and the contact force, by means of Hamilton's
principle. Rocco and Book [25] have obtained a
�nite dimensional model of a robot by truncating
the modal expansion of the deection to a �nite
number of assumed modes, under the assumption
of small deformation. Bernzen et al. [26] have
presented an e�ective way for numerical modelling
of multilink exible robots. Shi et al. [27] have
used an Euler-Bernoulli beam to model the exible
link where the rotary-inertia and shear-deformation
e�ects are neglected and the elastic deformation is
assumed to be small [27]. Chen [28] has presented
a linearized dynamic model for a multi-link planar
exible manipulator which can include an arbitrary
number of exible links. The elastic deformation
of each link is modeled by using the assumed-mode
method. Flexible links are treated as Euler-Bernoulli
beams and rotary inertia and shear deformation
are thus neglected. Siciliano and Villani [29] have
modeled planar n-link exible manipulators using

the Euler-Bernoulli beam equation and the assumed
modes technique.

Since the exibility of robotic links might be
appropriately modeled by beam or rod theories, the lit-
erature survey of the present article has been enriched
by papers concentrating on beams and rods.

Using the assumed mode method and Lagrangian
approach, Tan et al. [30] have derived the equations of
motion of a rotating cantilever Euler-Bernoulli beam
subjected to base excitation. Shi et al. [31] have
found that the traditional deformation �eld, used
for Euler-Bernoulli beams, fails to produce an elastic
rotation matrix that is complete to second-order in the
deformation variables. They have proposed a complete
second-order deformation �eld along with the equations
needed to incorporate the beam model into a graph-
theoretic formulation for exible multibody dynamics.
They have presented two examples to demonstrate the
e�ects of the proposed second-order deformation �eld
on the response of a exible multibody system. Nayfeh
and Pai [1] have presented linear shear-deformable
beam theories; the linear Euler-Bernoulli beam theory,
the nonlinear 2D Euler-Bernoulli beam theory, the
nonlinear 3-D curved beam theory, accounting for
warpings and the nonlinear 3-D Euler-Bernoulli beam
theory. Yang et al. [32] have investigated the exible
motion of a uniform Euler-Bernoulli beam attached to
a rotating rigid hub. Fully coupled nonlinear integro-
di�erential equations describing the axial, transverse
and rotational motions of the beam are derived by using
the extended Hamilton's principle.

Zohoor and Khorsandijou [2] have derived the
boundary conditions and the ten coupled nonlinear
partial di�erential motion equations of an enhanced
nonlinear 3D Euler-Bernoulli beam with ying support.
This beam undergoes negligible elastic orientation.
In [2] some new elastic terms that would not be sensed
in the nonlinear 3D Euler-Bernoulli beam theory are
exposed. In [3], the existence of some other new
elastic terms [33] have been pointed to which have
been sensed neither in the nonlinear 3D Euler-Bernoulli
beam theory [1] nor in [2], thereby improving both the
nonlinear 3D Euler-Bernoulli beam theory as shown
in [1], and the enhanced nonlinear 3D Euler-Bernoulli
beam theory as shown in [2].

Novozhilov [34] has studied the deformation of
thin prismatic rods of an arbitrary cross-section. He
has considered 1st and 2nd order approximations for
the displacement components of an arbitrary point
of a cross-section using Taylor-series expansions in
terms of the two components of the position vector
of the arbitrary point apparent in the cross-sectional
frame. Strain components are derived from these
approximated displacements. Green and Laws [35]
have shown that a rod theory, de�ned as a curve to
every point of which a rotation vector is attached, is



390 H. Zohoor and S.M. Khorsandijou

a special constrained case of a rod theory in which
two deformable directors are attached to each point
of a curve. Some aspects of both the linear and
nonlinear theories of elastic rods are discussed by
Green et al. [36] via the three-dimensional theory of
classical continuum mechanics. Constitutive equations
for the linear isothermal theory of elastic rods of an
isotropic material and of variable cross-sections are
derived by an approximation procedure from the three-
dimensional equations in [36] and by a direct approach
based on the theory of a Cosserat curve with two
directors in [37]. Green et al. [37] have developed the
linear isothermal theory of straight isotropic rods of
variable cross-sections possessing two axes of symme-
try. Antman [38] has formulated a general theory of
nonlinearly elastic rods of su�cient geometric structure
to allow not only for exure and torsion, as in the
Kirchho� theory, but also for the axial extension and
shear of the cross-section with respect to the axis.
Whitman and DeSilva [39] have developed a three
dimensional nonlinear equilibrium theory of elastic rods
applicable to large displacements and small strains,
and accounting for extensibility and shear deformation.
Utilizing a nonlinear theory of rods which is formulated
on the basis of a Cosserat curve with two directors, a
number of constrained theories of various degrees of
generality are developed by Naghdi and Rubin [40]. In
addition to the nonlinear version of the Euler-Bernoulli
beam theory, six other less restrictive nonlinear con-
strained theories are also discussed [40]. Steigmann
and Faulkner [41] have presented the simplest theory of
spatial rods. O'Reilly and Turcotte [42] have developed
and analyzed a model for the deformation of a rotating
prismatic rod-like body.

ASSUMPTIONS

As shown in Figure 1, the spatial mobile robot has N
revolute joints and N long links. Since the present
article concentrates on the elastic and inertia terms,
non-conservative forces/moments and probable contact
constraints have been neglected. The mobile base of
the robot is assumed to be a rigid body with six ying
DoF (Degrees of Freedom). As shown in Figures 2-4,
the links are straight before elastic deformation, and
the non-functional variable, sn, is a Lagrangian rather
than Eulerian coordinate. The links are made from an
isotropic linearly elastic material with uniform density
and cross-section. The frames, shown by Figures 1-5,
are assumed to be right-handed orthogonal and their
axes are marked by numbers, namely 1, 2 and 3, to
indicate the 1st, 2nd and 3rd axes, respectively.

The link's cross-sectional frame, Fsn , is a curvilin-
ear orthogonal right-handed coordinate frame having a
1st axis tangent to the curve created by cross-sectional
area centers. It is assumed to be a principal cross-

Figure 1. Mobile robot with long links [13].

Figure 2. An undeformed long link [13].

sectional frame, having the same moments of area
about the 2nd and 3rd axes. In other words, the
links might be imagined with circular and/or square
cross-sections. The following equation shows the rotary
cross-sectional area tensor of the links:

[JSn ] = J

242 0 0
0 1 0
0 0 1

35 : (1)

Each link, as an Euler-Bernoulli beam, experiences
torsion, tension/compression and two spatial bendings.
Since the Euler-Bernoulli beam is the most rigid beam
compared to the other beams, it is assumed that
the links' shear deformation does not exist. The
links' cross-section is supposed to remain plane and
perpendicular to the center line before and after elastic
deformations. It implies Bernoulli's hypothesis that
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Figure 3. Six dependent elastic coordinates for a long link [2,13].

Figure 4. Two holonomic constraints among the elastic coordinates of a long link [3,4].

neglects the out-of-plane warping of the cross-section.
The links are assumed to be long, that is, the elastic
orientation of them is assumed to be considerable and
thus cannot be neglected. This assumption is one of
the particular novelties of this article. In the present
article and in [1-4,13,33], the partial di�erentiations of
displacement �eld with respect to the Lagrangian cross-
sectional coordinates, i.e. @�n=@yn and @�n=@zn,
have been ignored, and the exact linear part of the
Green-Lagrange geometric strain tensor is considered
as the links'/beam's strain. However, the e�ect of the
ignored items will be analyzed later.

The links experience torsion beyond bending and
axial deformation. As a result, the out-of-plane warp-
ing of the cross-section should arise according to Saint
Venant's theory of torsion. It should be noted that
spatial bending induces torsion even in isotropic beams.
As a result, according to Bernoulli's hypothesis and
the Saint Venant theory of torsion, the assumption is
accurate for slender beams with a circular cross-section,
and inaccurate for other cross-sections. The in-plane

warping of the beam cross-section has been neglected.
In this regard, the Poisson ratio might be substituted
with zero in the formulations, but since the stress in the
links is treated three dimensionally, the Poisson ratio
in the formulations has not been substituted with zero
in this article. As a result, components of the vector,
pn, shown by Figures 1-5, are assumed to be constant.
This implies that the in-plane and out-of-plane warping
of the links' cross-section has been ignored.

KINEMATICS

Figure 1 shows that the mobile base of the robot is
connected to the 1st link by the 1st revolute joint.
The mobile robot has N revolute joints and N long
spatially exible links, being sequentially connected
to each other. The end frame of the last link is the
end-e�ector of the robot. The dynamic modelling of
the robot requires the kinematical parameters that are
derived in this section.

As a matter of fact, each link, as a deformable
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Figure 5. Elastic displacement �eld of a long link.

continuous medium, has in�nite elastic DoF being
mathematically described by four independent elastic
DoF. The mentioned four independent elastic DoF are
functions of the non-functional variable, namely sn,
while 0 � sn � Ln. The mobile base and revolute joints
have, respectively, 6 and N independent DoF so it can
be found that the DoF of the robot is mathematically
equal to 6 + 5N .

Mobile Base

Absolute virtual rotation, i.e. Equation 2, and the
angular velocity of the mobile base of the robot are
required for the scope of this article. Virtual rotation
and angular velocity are, respectively, imperfect di�er-
ential and non-integrable time-derivative.

��B0 =

241 0 � sin�0
0 cos 0 sin 0 cos�0
0 � sin 0 cos 0 cos�0

3524� 0
��0
��0

35 : (2)

Representative Point of the Links'
Cross-Section

The representative point of the links' cross-section,
i.e. �n, has been shown by Figures 1 and 5. The
kinematical parameters of the representative point of
the cross-section of the nth link are given in this
section. They are used in deriving the variation of the
elastic/gravitational potential energy and the variation
of the kinetic energy of the links. The apparent position
and apparent virtual displacement of �n in FBn are,
respectively, given by Equations 3 and 4, which are

projected onto FBn .

�n = dn + R
BnSn

pn; (3)

��n = �dn � R
BnSn

fpn��Sn =
�
�un �vn �wn

�T
+R
BnSn

�
(zn��ny�yn��nz ) �zn��nx yn��nx

�T :
(4)

The absolute acceleration and absolute virtual dis-
placement of �n are, respectively, given by Equations 5
and 6, which are projected onto FBn .

a
Bn

�n = R
BnI

��n = R
BnI

a
I
Bn + ��n + 2e!Bn _�n

+ e!Bne!Bn�n + e_!Bn�n; (5)

R
BnI

��n = R
BnI

�bn + �dn � R
BnSn

fpn��Sn

+ �e�Bn �dn + R
BnSn

pn
�
: (6)

Long Spatially Flexible Links

Figure 3 simply describes the spatial elastic defor-
mation of the nth link, using six elastic coordinates,
namely, un; vn; wn; �n; �n and n. The Euler angles,
�n; �n and n have been called Bryant angles in [11].
The two holonomic constraints of Equations 7 and 8
are the link structural constraints derived from the two
right triangles in the left-hand-side of Figure 4. In this
article, un; vn; wn and n have been considered as the
elastic DoF of the nth link, because of the fact that
each superuous coordinate of a holonomic system can
be eliminated together with a holonomic constraint.

The elastic orientation of the long links is consid-
erable, thus �n; �n; n or v0n; w0n; n cannot be ignored
and eventually the links cannot be modeled as a
nonlinear 3D Euler-Bernoulli beam [1], which in fact
neglects elastic orientation.

�n = lim
�sn!0

tan�1 �vn
�sn + �un

= tan�1 v0n
hn
; (7)

�n = lim
�sn!0

tan�1 ��wnp
(�sn + �un)2 + �v2

n

= � tan�1 w0n
rn
: (8)

Figure 4 validates Equation 9, which is used to derive
the centerline axial strain of the nth link, i.e. Equa-
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tion 10.

R
SnBn

�
(�sn + �un) �vn �wn

�T
= (en + 1)�sn

�
1 0 0

�T ; (9)

en =
p

(1 + u0n)2 + v02n + w02n � 1: (10)

The elastic orthogonal virtual rotation of the nth link
has been given by Equation 11.

��Sn =

241 0 w0n=(en + 1)
0 cos n rn sin n=(en + 1)
0 � sin n rn cos n=(en + 1)

3524�n��n
��n

35
=

241
0
0

35 �n + Cn

24�u0n�v0n
�w0n

35 : (11)

Equation 12 is the elastic angular velocity of the nth
link. Based on the Kirchho� kinetic analogy [1],
the elastic normalized curvature of the nth link, i.e.
Equation 13, has been obtained from Equation 12. It
should be noted that normalized and real curvatures
arise by di�erentiation, with respect to dsn and (1 +
en)dsn, relating to un-deformed and deformed situa-
tions, respectively. The elastic angular acceleration
and variation of the elastic normalized curvature of the
nth link are required to be derived from Equations 12
and 13, respectively.


Sn =
�
1 0 0

�T _n + Cn
�

_u0n _v0n _w0n
�T ; (12)

�Sn =
�
1 0 0

�T 0n + Cn
�
u00n v00n w00n

�T : (13)

Considering Figures 1 and 5 and the apparent position
of the representative point of the links' cross-section
given by Equation 3, the exact elastic displacement
�eld is given by Equation 14.

�n = �n � �0
n =

�
un vn wn

�T
+ R
BnSn

�
0 yn zn

�T � �0 yn zn
�T : (14)

One may obtain Equation 15. It should be noted that
a beam has only one non-functional space variable, i.e.
sn.

@�n=@sn =
�
u0n v0n w0n

�T
+ R
BnSn

�
(�yn�nz + zn�ny ) �zn�nx yn�nx

�T :
(15)

The linear part of the Green-Lagrange geometric strain

tensor is: "nij = 0:5
�
@�ni=@snj + @�nj=@sni

�
, so

the exact components of this strain are given by
Equations 16.

"nxx = u0n + yn
�
v0n�nx
rn

sin n

� hn
1 + en

�
�nz +

w0n�nx
rn

cos n
��

+ zn
�
v0n�nx
rn

cos n

+
hn

1 + en

�
�ny +

w0n�nx
rn

sin n
��

;

"nxy =
v0n
2
� yn

2

�
hn�nx
rn

sin n

+
v0n

1 + en

�
�nz +

w0n�nx
rn

cos n
��

� zn
2

�
hn�nx
rn

cos n

� v0n
1 + en

�
�ny +

w0n�nx
rn

sin n
��

;

"nxz =
w0n
2

+
yn
2

��w0n�nz + rn�nx cos n
1 + en

�
+
zn
2

�
w0n�ny � rn�nx sin n

1 + en

�
;

"nyy = "nzz = "nyz = 0: (16)

Revolute Joints

As shown in Figures 1 and 2, the 3rd axes of FE0J ,
FBnJ and FEnJ are considered as the axes of the
revolute joints. The joint variable of the nth rev-
olute joint of the robot has been shown by angle
�n. The joint variable, �n, is a given function
of time in inverse dynamics, unlike forward dynam-
ics. Driving /damping torques are not considered
in the revolute joints because the non-conservative
forces/moments have been ignored in the present ar-
ticle.

Beginning Frame of the Links

The beginning frame of each link, i.e. FBn , has been
illustrated by Figures 1-5. The kinematical parameters
of the beginning frame of the 1st link are derived,
based on the kinematical parameters of the mobile
base. Orientation of the beginning frame of the 1st



394 H. Zohoor and S.M. Khorsandijou

link is described by the rotation transformation matrix
of Equation 17. Angular velocity/acceleration and
orthogonal virtual rotation of the beginning frame of
the 1st link are required to be obtained.

R
B1I

= R
B1B1J

R
B1JE0J

R
E0JB0

R
B0I

: (17)

The position of the beginning frame of the 1st link
is given by Equation 18. The virtual displacement,
velocity and acceleration of the beginning frame of the
1st link are required to be obtained.

b1 = b0 + R
IB0

D0: (18)

The kinematical parameters of the beginning frame of
the (n+ 1)st link are derived based on the kinematical
parameters of the beginning frame of the nst link, while
1 � n � N � 1. Orientation of the beginning frame
of the links is recursively described by the rotation
transformation matrix of Equation 19. Angular ve-
locity/acceleration and orthogonal virtual rotation of
the beginning frame of the links are required to be
obtained.

R
Bn+1I

= R
Bn+1Bn+1J

R
Bn+1JEnJ

R
EnJEn

R
EnBn

R
BnI

: (19)

The position of the beginning frame of the links is given
by Equation 20. The virtual displacement, velocity and
acceleration of the beginning frame of the links are also
required to be obtained.

bn+1 = bn + R
IBn

Dn: (20)

End-E�ector

The end-e�ector is shown in Figure 1. Kinematical
parameters of the end-e�ector are obtained, based on
the kinematical parameters of the beginning frame
of the last link. Orientation of the end-e�ector is
described by the rotation transformation matrix of
Equation 21.

R
ENI

= R
ENBN

R
BNI

: (21)

The position of the end-e�ector is given by Equa-
tions 22.

bN+1 = bN + R
IBN

DN : (22)

Traditionally, the pure kinematical robotic problem,
within which the pose (position and orientation) of the
end-e�ector is found in terms of the joint variables, is
referred to as forward kinematics. The inverse problem,
within which the joint variables are found in terms of
the pose of the end-e�ector, is referred to as inverse

kinematics. These problems are solved independent of
the laws of motion.

Considering Equations 17-22 in mobile and/or
exible-link robots, unlike �xed-based rigid-link robots,
determining the pose of the end-e�ector in terms of
joint variables, and vice-versa is not a pure kine-
matical or geometrical problem since it is dependent
upon the laws of motion and thus kinematics cannot
be solved regardless of kinetics. Determination of
the pose of the end-e�ector needs elastic and ying
DoF and the time history and activation sequence
of the desired joint variables, further than the �nal
values of joint variables. As a result, in mobile
and/or exible-link robots, new terminologies, namely
forward/inverse kinetics, are suggested to be used
instead of the terms forward/inverse kinematics. It
should be noted that the terms forward/inverse kine-
matics are only meaningful in �xed-based rigid-link
robots.

DYNAMICS

Hamilton's principle for a mobile robot containing N
long spatially exible links is shown by Equation 23. It
should be noted that non-conservative forces/moments
which evidently include the driving torques of the
revolute joints are assumed to be zero.

tZ
0

(
�T0 � �Ug0 +

NX
n=1

(�Tn � �Ugn � �Uen)

)
dt = 0:

(23)

Variation of Elastic Potential Energy of the
Links

Each link as an isotropic linearly elastic medium has
two independent elastic coe�cients being used in the
stress-strain law. Stress components are obtained
in accordance with Hook's law. Variation of the
elastic potential energy of the nth link is derived from
Equation 24 within which the stresses and strains, i.e.
Equation 16, have been substituted. At the �rst stage,
the variation of elastic potential energy arises in terms
of the variations of the spatial derivatives of the elastic
DoF, namely �u0n, �v0n, �w0n, �n, �0n, �u00n, �v00n and
�w00n.

�Uen =
LnZ
0

Z
An

�
�nxx�"nxx + 2�nxy�"nxy

+2�nxz�"nxzg dAndsn: (24)

Integration by part identities shown by Equations 25
and 26 has been applied to derive the variation of the
elastic potential energy of the nth link in terms of the
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variations of the elastic DoF, namely �un, �vn, �wn and
�n [4].Z

F�u0ds = F�u�
Z
F 0�uds; (25)Z

F�u00ds = F�u0 � F 0�u+
Z
F 00�uds: (26)

Variation of Gravitational Potential Energy

Variation of the gravitational potential energy of the
mobile base is given by Equation 27.

�Ug0 = m0g
�
0 0 1

�
�b0 = m0g�z0: (27)

Considering the fact that Sn is the center of the cross-
sectional area of the link, the variation of the gravita-
tional potential energy of the nth link is obtained from
the following equation:

�Ugn =
LnZ
0

Z
An

��
0 0 1

�
��n
	
g�ndAndsn

= g�nAn
�
0 0 1

� LnZ
0

�
�bn + R

IBn
�dn

� R
IBn

fdn��Bn� dsn: (28)

Variation of Kinetic Energy

Time integration of the variation of kinetic energy is the
negative of the virtual work of inertia forces/moments.
Time integration of the variation of kinetic energy of
the mobile base is obtained from the following equation:

tZ
0

�T0dt =
tZ

0

(
�m0

h
a
I
B0
iT
�b0

� �� _!B0
�T [I0]� �!B0

�T [I0]e!B0
�
��B0

)
dt: (29)

Time integration of the variation of kinetic energy of
the nth link is obtained from Equation 30.

tZ
0

�Tndt=
tZ

0

LnZ
0

Z
An

(
��n

�
�na
Bn

�T �
R
BnI

��n
�)

dAndsndt:
(30)

Using integration by part identity shown by Equa-
tion 25, and by considering the fact that Sn is the center

of the cross-sectional area of the link, Equation 30 has
been simpli�ed to Equation 31.

tZ
0

�Tndt = ��n
tZ

0

( LnZ
0

(
'Tn R

BnI
�bn

+
�
'Rn R

SnBn
�'Tnfdn� ��Bn + 'Rn

241
0
0

35 �n
+
h
'Tn � �'RnCn�0i24�un�vn

�wn

35)dsn
+ 'RnCn

24�un�vn
�wn

35 ������ sn = Ln

sn = 0

)
dt:

(31)

General Structure

Using some agent variables, namely Aij , �Aij , Bij and
�Bij , the general structure of the dynamic model of
a mobile robot with N long spatially exible links
and N revolute joints has been obtained from Equa-
tion 23. The Hamilton principle in terms of Aij ,
�Aij , Bij and �Bij has been exposed by Equation 32.
Fifty agent variables appear in the dynamic model
when N = 2. In Appendix A, the agent variables
having sizes dependent on N , i.e. fAn1 ; An2 ; � � � ; An6 ; 0 <
n � Ng, fAn5k+2; 0 < k � n � Ng and
fAn5k+3; � � � ; An5k+6; �An5k+4; � � � ; �An5k+6; 1 < k+ 1 � n �
Ng, are determined for N = 2. In Appendix B,
the agent variables having sizes independent of N ,
i.e. fAn5n+3; � � � ; An5n+6; Bn5n+3; � � � ; Bn5n+6; �Bn5n+4; � � � ;
�Bn5n+6; 0 < n � Ng and fA0

1; � � � ; A0
6g, are determined

for any N .

tZ
0

("
A0

1 +
NX
n=1

Z Ln

0
An1dsn

#
�x0

+

"
A0

2 +
NX
n=1

Z Ln

0
An2dsn

#
�y0

+

"
A0

3 +
NX
n=1

Z Ln

0
An3dsn

#
�z0

+

"
A0

4 +
NX
n=1

Z Ln

0
An4dsn

#
��0x

+

"
A0

5 +
NX
n=1

Z Ln

0
An5dsn

#
��0y



396 H. Zohoor and S.M. Khorsandijou

+

"
A0

6 +
NX
n=1

Z Ln

0
An6dsn

#
��0z

+
NX
k=1

"
NX
n=k

Z Ln

0
An5k+2dsn

#
��k

+
NX
n=1

Z Ln

0
(An5n+3�n +An5n+4�un +An5n+5�vn

+An5n+6�wn)dsn �
NX
n=1

(Bn5n+3�n +Bn5n+4�un

+Bn5n+5�vn +Bn5n+6�wn + �Bn5n+4�u
0
n

+ �Bn5n+5�v
0
n + �Bn5n+6�w

0
n)

�����
sn=0

+ (BN5N+3�N +BN5N+4�uN +BN5N+5�vN

+BN5N+6�wN + �BN5N+4�u
0
N + �BN5N+5�v

0
N

+ �BN5N+6�w
0
N )

�����
sN=LN

+
N�1X
k=1

 "
Bk5k+3 +

NX
n=k+1

Z Ln

0
An5k+3dsn

#
�k

+

"
Bk5k+4 +

NX
n=k+1

Z Ln

0
An5k+4dsn

#
�uk

+

"
Bk5k+5 +

NX
n=k+1

Z Ln

0
An5k+5dsn

#
�vk

+

"
Bk5k+6 +

NX
n=k+1

Z Ln

0
An5k+6dsn

#
�wk

+

"
�Bk5k+4 +

NX
n=k+1

Z Ln

0

�An5k+4dsn

#
�u0k

+

"
�Bk5k+5 +

NX
n=k+1

Z Ln

0

�An5k+5dsn

#
�v0k

+

"
�Bk5k+6+

NX
n=k+1

Z Ln

0

�An5k+6dsn

#
�w0k

!�����
sk=Lk

)
dt=0:

(32)

Since there is not any contact constraint and the
ying and elastic DoF are independent coordinates, the
general structure of the dynamic model of the robot has

been easily obtained by equating the coe�cients of the
variation of the coordinates within Equation 32 with
zero. As a result, the motions equations, i.e. Equa-
tions 33, are found as a set of 5N+6 nonlinear coupled
partial di�erential equations under the inuence of the
boundary conditions shown by Equations 34.

A0
1+

NX
n=1

Z Ln

0
An1dsn=0; A0

2+
NX
n=1

Z Ln

0
An2dsn=0;

A0
3+

NX
n=1

Z Ln

0
An3dsn=0; A0

4+
NX
n=1

Z Ln

0
An4dsn=0;

A0
5+

NX
n=1

Z Ln

0
An5dsn=0; A0

6+
NX
n=1

Z Ln

0
An6dsn=0;

NX
n=k

Z Ln

0
An5k+2dsn = 0; (k = 1; 2; � � � ; N);

An5n+3 = 0; An5n+4 = 0; An5n+5 = 0;

An5n+6 = 0; (n = 1; 2; � � � ; N): (33)

Equations 33 are coupled, but it can be recognized that
the �rst six equations of Equations 33 correspond to
the ying movement of the robot; the 7th equations
correspond to the N angular movements of the revolute
joints and the 8th, 9th, 10th and 11th equations,
respectively, correspond to the twisting, axial and two
spatial bending movements of the N long spatially
exible links.

f(Bn5n+3 = 0 or n = 0) & (Bn5n+4 = 0 or un = 0)

& (Bn5n+5 =0 or vn = 0) & (Bn5n+6 =0 or wn = 0)

& ( �Bn5n+4 =0 or u0n = 0) & ( �Bn5n+5 =0 or v0n = 0)

& ( �Bn5n+6 = 0 or w0n = 0)g jsn=0 ;

1 � n � N;

f(BN5N+3 = 0 or N = 0) & (BN5N+4 = 0 or uN =0)

& (BN5N+5 =0 or vN =0) & (BN5N+6 =0 or wN =0)

& ( �BN5N+4 =0 or u0N =0) & ( �BN5N+5 =0 or v0N =0)

&( �BN5N+6 =0 or w0N =0)g jsN=LN ;
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( 
Bk5k+3 +

NX
n=k+1

Z Ln

0
An5k+3dsn = 0 or k = 0

!

&

 
Bk5k+4 +

NX
n=k+1

Z Ln

0
An5k+4dsn = 0 or uk = 0

!

&

 
Bk5k+5 +

NX
n=k+1

Z Ln

0
An5k+5dsn = 0 or vk = 0

!

&

 
Bk5k+6 +

NX
n=k+1

Z Ln

0
An5k+6dsn = 0 or wk = 0

!

&

 
�Bk5k+4 +

NX
n=k+1

Z Ln

0

�An5k+4dsn = 0 or u0k = 0

!

&

 
�Bk5k+5 +

NX
n=k+1

Z Ln

0

�An5k+5dsn = 0 or v0k = 0

!

&

 
�Bk5k+6+

NX
n=k+1

Z Ln

0

�An5k+6dsn=0 or w0k=0

!)�����
sk=Lk

;

1 � k � N � 1: (34)

It should be noted that Bn5n+3 and Bk5k+3 +
NP

n=k+1

R Ln
0 An5k+3dsn are the twisting moment about

the 1st axis; Bn5n+4 and Bk5k+4 +
NP

n=k+1

R Ln
0 An5k+4dsn

are the axial force along the 1st axis; Bn5n+5 and Bn5n+6,

and also Bk5k+5 +
NP

n=k+1

R Ln
0 An5k+5dsn and Bk5k+6 +

NP
n=k+1

R Ln
0 An5k+6dsn are the transverse shear forces

along the 2nd and 3rd axes; and �Bn5n+5 and �Bn5n+6,

and also �Bk5k+5 +
NP

n=k+1

R Ln
0

�An5k+5dsn and �Bk5k+6 +

NP
n=k+1

R Ln
0

�An5k+6dsn are the bending moments about

the 3rd and 2nd axes of the cross-sectional frame of
the nth link.

CONCLUSIONS

Two outstanding novelties of the present article arise
from the large elastic orientation of the links and from
the dynamic model itself, regardless of how exible the
links are. This dynamic model is composed of the
motion equations, links' section loads and boundary
conditions. It is a uni�ed dynamic model for ying
and/or �xed-base robots and/or multiple pendulums

with rigid and/or exible links serially connected
by revolute joints, one ying rigid body and long
and/or short fully-enhanced and/or short enhanced
and/or short generalized nonlinear 3D and/or 2D
Euler-Bernoulli beams with a ying and/or a �xed
support. This uni�ed dynamic model has been referred
to as the general structure of the dynamic model in
this article and with the aid of some agent variable
has been achieved for a spatial mobile robot with
N spatially exible links and N revolute joints. It
is composed of a set of 5N + 6 nonlinear coupled
partial di�erential motion equations, i.e. Equations 33,
under the inuence of the boundary conditions, i.e.
Equations 34. The base of the robot is an unconstraint
rigid body in space. The links are long 3D Euler-
Bernoulli beams undergoing tension-compression, tor-
sion and two spatial bendings, while elastic orientation
is considerable and the nonlinear part of the geometric
Green-Lagrange strain is ignored. The driving and
damping torque is not considered in the revolute joints,
due to the fact that the non-conservative forces and
moments have been ignored in this article. If the non-
conservative forces and moments are considered, the
general structure of the dynamic model will not change,
but a few exciting and/or damping terms will arise
within the agent variables.

The agent variables of Appendix B have sizes
independent of N and can create the dynamic model
of a nonlinear 3D long Euler-Bernoulli beam having
�xed/ying support and considerable elastic orien-
tation. It contains twisting moment, axial force,
transverse shear forces, bending moments and four
coupled nonlinear partial di�erential motion equations
governing the twisting, axial and two spatial bending
deformations of the beam, under the inuence of the
boundary conditions. The agent variables of Ap-
pendix A have sizes dependent upon N and, therefore,
are presented only for N = 2 in this article. Fifty
agent variables have appeared in the dynamic model
when N = 2.

Veri�cation of the Dynamic Model

� It might be veri�ed that, when the elastic ori-
entation is neglected, the dynamic model of each
link remains more accurate than a nonlinear 3D
Euler-Bernoulli beam [1] within which the elastic
orientation is in fact negligible. When the revo-
lute joints are changed to rigid joints, the mobile
base is mass-less, N = 1, and the links' elastic
orientation is negligible, then the dynamic model of
fully-enhanced/enhanced/generalized nonlinear 3D
Euler-Bernoulli beams, having a �xed/ying sup-
port, can be obtained [2,3,4]. When the support is
�xed and the elastic orientation and the nonlinear
terms are ignored, the famous four decoupled motion
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equations of a linear 3D short Euler-Bernoulli beam
with a �xed support are obtained as Equations 35-
38 [2-3,13].

2J [(G=�n)00n � �n] = 0; (35)

An[(E=�n)u00n � �un] = 0; (36)

��vn � (EJ=�nAn)v0000n = 0; (37)

� �wn � (EJ=�nAn)w0000n = g: (38)

� It might be veri�ed that, when the links' exibility
is ignored, the dynamic model is reduced to a set
of N + 6 nonlinear coupled ordinary di�erential
equations of motion. This veri�cation has proved
to be valid for a double pendulum in [13] (while
the base is �xed and N = 2) and, for a ying rigid
prism with a circular or square cross-section under
gravitational force in [2] (while the revolute joints
are changed to rigid joints, and the base becomes
mass-less and N = 1).

� It might be veri�ed that, when the elastic orien-
tation is negligible and N = 2, sixteen coupled
nonlinear partial di�erential motion equations and
the boundary conditions of a ying manipulator
having two highly exible links are obtained [13].

In the following, unless otherwise speci�ed, the
index condition, 1 � n � N , is valid.

NOMENCLATURE

An cross-sectional area in the plane
constructed by the 2nd and 3rd axes of
FSn

Aij ; �Aij ;
Bij ; �Bij

agent variables

a
I
B0 acceleration of B0 being projected onto

F1; [�x0 �y0 �z0]T

a
I
Bn acceleration of Bn being projected

onto FI
a
I
EN acceleration of EN being projected

onto FI ; acceleration of the end-e�ector
a
Bn

�n acceleration of �n being projected onto
FBn

B0 mass center of the mobile base
Bn area center of the cross-section at the

beginning of the nth link; Sn when
sn = 0

b0 position of B0 from I being projected
onto FI ;

�
x0 y0 z0

�T
bn position of Bn from I projected onto

FI

Cn agent variable;2664 � w0nv0n
r2
n(en+1)

�v0n(en+1) sin n+w0nhn cos n
rn(en+1)2

�v0n(en+1) cos n�w0nhn sin n
rn(en+1)2

w0nhn
r2
n(en+1) 0

hn(en+1) sin n+v0nw0n cos n
rn(en+1)2 � rn cos n

(en+1)2

hn(en+1) cos n�v0nw0n sin n
rn(en+1)2

rn sin n
(en+1)2

3775
D0 constant position of E0 from B0 being

projected onto FB0

Dn position of En from Bn being projected
onto FS0

n
; dn when sn = Ln

dn elastic displacement vector of Sn
from Bn being projected onto FS0

n
;�

un(sn; t) + sn vn(sn; t) wn(sn; t)
�T

E modulus of elasticity; Young's modulus
E0 a point on the mobile rigid base being

coincided with B1

En area center of the cross-section at the
end of the nth link; Sn when sn = Ln

EN origin of the frame of the end-e�ector
en centerline axial strain of the nth link;p

r2
n + w02n � 1

FB0 principal body frame of the mobile
rigid base having B0 as origin

FBn beginning frame of the nth link having
Bn as origin; FSn when sn = 0

FBnJ beginning joint frame of the nth link
having Bn as origin

FE0J joint frame of the mobile rigid base
having E0 as origin

FEn end frame of the nth link having En as
origin; FSn when sn = Ln

FEnJ end joint frame of the nth link having
En as origin, 1 � n � (N � 1)

FEN the frame of the end-e�ector having
EN as origin; FEn when n = N

FI inertial reference frame assumed
to have a 3rd axis in the opposite
direction of gravity

FSn ; FS0
n

cross-sectional frames of the nth link
after and before elastic deformation
having Sn abd S0

n, respectively, as
origin

G shear modulus of elasticity; modulus of
rigidity

g magnitude of the gravitational
acceleration

hn agent variable; 1 + u0n
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[I0] rotary inertia tensor of the mobile
rigid base being projected onto FB0 ;
diag(I0xx ; I0yy ; I0zz )

I3�3 identity matrix; diag(1; 1; 1)

[JSn ] rotary cross-sectional area tensor of
the nth link being projected onto FSn :
� R
An
fpnfpndAn

J; 2J moment of cross-sectional area of
the nth link about the 2nd or 3rd
axis of FSn and polar moment of
cross-sectional area of the nth link
about the 1st axis of FSn

Ln undeformed length of the nth link
m0 mass of the mobile rigid base
N number of revolute joints and/or

number of links being straight before
elastic deformation

pn constant position of �n from Sn being
projected onto FSn ;

�
0 yn zn

�T
fpn 24 0 �zn yn

zn 0 0
�yn 0 0

35
R
B0I

Rotation transformation matrix
projecting a vector from FI onto FB0

being a function of �0, �0

and  0;

241 0 0
0 cos 0 sin 0
0 � sin 0 cos 0

35
24cos�0 0 � sin�0

0 1 0
sin�0 0 cos�0

35
24 cos �0 sin �0 0
� sin �0 cos �0 0

0 0 1

35
R
BnI

rotation transformation matrix
projecting a vector from FI onto FBn

R
BnJBn

constant rotation transformation
matrix projecting a vector from FBn
onto FBnJ

R
BnJEn�1J

rotation transformation matrix
projecting a vector from FEn�1J onto
FBnJ being a function of �n

R
EnBn

rotation transformation matrix
projecting a vector from FBn onto
FEn ; R

SnBn
when sn = Ln

R
E0JB0

constant rotation transformation
matrix projecting a vector from FB0

onto FE0J

R
EnJEn

constant rotation transformation
matrix projecting a vector from FEn
onto FEnJ , 1 � n � (N � 1)

R
ENI

rotation transformation matrix
projecting a vector from FI onto
FEN accounting for the end-e�ector
orientation

R
SnBn

elastic rotation transformation matrix
projecting a vector from FBn onto FSn
being a function of �n, �n, n and/or

u0n; v0n; w0n; n;

241 0 0
0 cos n sin n
0 � sin n cos n

35
24cos�n 0 � sin�n

0 1 0
sin�n 0 cos�n

35
24 cos�n sin�n 0
� sin�n cos�n 0

0 0 1

35 =

24 hn=(en + 1)
�v0ncosn=rn�w0nhnsinn=[rn(en+1)]
v0n sin n=rn�w0nhn cos n=[rn(en+1)]

v0n=(en + 1)
hn cos n=rn�w0nv0n sin n=[rn(en+1)]
�hn sin n=rn�w0nv0n cos n=[rn(en+1)]

w0n=(en + 1)
rn sin n=(en + 1)
rn cos n=(en + 1)

377775
rn agent variable;

p
h2
n + v02n

Sn; S0
n center of cross-sectional area of the

nth link after and before elastic
deformation

sn non-functional variable of space
denoting the distance of S0

n from Bn
T0; Tn kinetic energy of the mobile rigid base

and the nth link
t non-functional variable of time
Uen elastic potential energy of the nth link

Ugn gravitational potential energy of the
nth link
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un elastic axial deformation at Sn along
the 1st axis of FS0

n
being a function of

sn and t

V
I

B0 velocity of B0 projected onto FI ;�
_x0 _y0 _z0

�T
V
I

Bn velocity of Bn projected onto FI

V
I

EN velocity of EN projected onto FI ; the
velocity of the end-e�ector

vn elastic bending deection at Sn along
the 2nd axis of FS0

n
being a function of

sn and t
wn elastic bending deection at Sn along

the 3rd axis of FS0
n

being a function of
sn and t

x0; y0; z0 components of b0 being functions of t
yn; zn components of pn
�n so-called elastic bending rotation angle

at Sn about the 3rd axis of FS0
n

being
a function of u0n; v0n and eventually a
function of sn and t

�n so-called elastic bending rotation
angle at Sn about the 2nd axis of the
updated FS0

n
by �n being a function of

u0n; v0n; w0n and eventually a function of
sn and t

n so-called elastic twisting angle at Sn
about the 1st axis of FSn being a
function of sn and t

�n elastic displacement of �n being
projected onto FS0

n

�un, �vn,
�wn, �sn

growth of un; vn; wn and sn

�b0
�
�x0 �y0 �z0

�T
�dn

�
�un �vn �wn

�T
�Dn �dn when sn = Ln
��0x , ��0y ,
��0z

components of ��B0

��nx , ��ny ,
��nz

components of ��Sn

��En elastic orthogonal virtual rotation of
FEn relative to FS0

n
being projected

onto FEn ; ��Sn when sn = Ln
��Sn elastic orthogonal virtual rotation of

FSn relative to FS0
n

being projected
onto FSn ;

�
��nx ��ny ��nz

�T
��B0 orthogonal virtual rotation of

FB0 being projected onto FB0 ;�
��0x ��0y ��0z

�T

��Bn orthogonal virtual rotation of FBn
being projected onto FBn

� �
Sn

Bn projection of ��Bn onto FSn ; R
SnBn

��Bn

� e�
Sn

Bn projection of �e�Bn onto FSn ;
R

SnBn
�e�Bn R

BnSn

"nxx , "nxy ,
"nxz , "nyy ,
"nyz , "nzz

exact components of the linear part
of Green-Lagrange geometric strain in
the nth link

�n position of �n from I being projected
onto FI

�n joint variable of the nth revolute joint
�0; �0;  0 euler angles corresponding to the

orientation of the mobile rigid base
about the 3rd axis of FI , 2nd axis
of the updated FI by �0 and about
the 1st axis of FB0 respectively being
functions of t

�En elastic normalized curvature of FEn
relative to FBn being projected onto
FEn ; �Sn when sn = Ln

�Sn elastic normalized curvature of FSn
relative to FBn being projected onto
FSn ;

�
�nx �ny �nz

�T
�nx twisting component of �Sn being about

the 1st axis of FSn
�ny ; �nz bending components of �Sn being

about the 2nd and 3rd axes of FSn ,
respectively

� Lame's elastic coe�cient for isotropic
beam

� Lame's elastic coe�cient for isotropic
beam; G

� poisson's ratio

�n; �0
n position of �n from Bn being projected

onto FS0
n

after and before elastic
deformation

�n density of the nth link
�n representative point in the cross-

sectional area of the nth link
�nxx , �nxy ,
�nxz , �nyy ,
�nyz , �nzz

components of stress in the nth link

'Tn agent variable;

An
�h
a
I
Bn
iT

R
IBn

+ �dTn � 2 _dTn e!Bn
+dTn

�e!Bne!Bn � e_!Bn�o
'Rn agent variable;
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�h
_
Sn
iT

+
�

_!Bn
�T

R
BnSn

�
[JSn ]

� �
Sn�T [JSn ] e
Sn +�
!Bn

�T
R

BnSn

n
2JSnp e
Sn

� [JSn ]
�

2e
Sn + R
SnBn

e!Bn R
BnSn

��

En elastic angular velocity of FEn relative

to FS0
n

being projected onto FEn ; 
Sn
when sn = Ln


Sn elastic angular velocity of FSn relative
to FS0

n
being projected onto FSn ;�


nx 
ny 
nz
�T


�n angular velocity of the nth revolute
joint; angular velocity of FBn relative
to FEn�1 or of FBnJ relative to FEn�1J

being projected onto FBnJ or FEn�1J ;�
0 0 _�n

�T
_
�n

�
0 0 ��n

�T
e
�n

240 �1 0
1 0 0
0 0 0

35 _�n

!B0 angular velocity of the mobile rigid
base being projected onto FB0

!Bn angular velocity of FBn being projected
onto FBn

!EN angular velocity of FEN being projected
onto FEN ; angular velocity of the
end-e�ector

!
Sn

Bn projection of !Bn onto FSn ; R
SnBn

!Bn

e!
Sn

Bn projection of e!Bn onto FSn ;
R

SnBn
e!Bn R

BnSn

_[ ] partial di�erentiation with respect to
t; @

@t [ ]

[ n]0 partial di�erentiation with respect to
sn; @

@Sn [ ]
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APPENDIX A

The agent variables, having sizes dependent on N ,
namely:

fAn1 ; An2 ; � � � ; An6 ; 0 < n � Ng ;�
An5k+2; 0 < k � n � N	 ;
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and:

fAn5k+3; � � � ; An5k+6; �An5k+4; � � � ; �An5k+6;

1 < k + 1 � n � Ng;
are determined for N = 2, here, in Appendix A. The
agent variables:

fAn1 ; An2 ; � � � ; An6 ; 0 < n � N = 2g
are given by Equations A1-A3:�

An1 An2 An3
�

= ��nAn
�h
a
I
Bn
iT

+ b'n R
BnI

�
� g�nAn �0 0 1

�
;

n = 1; � � � ; N; (A1)�
A1

4 A1
5 A1

6
�

= g�1A1
�
0 0 1

�
R
IB0

� eD0

+ R
B0B1

ed1 R
B1B0

�
� �1

�
'R1 R

S1B0

�A1

�h
a
I
B1
iT

R
IB0

+b'1 R
B1B0

�� eD0

+ R
B0B1

ed1 R
B1B0

��
; (A2)

�
A2

4 A2
5 A2

6
�

= ��2

�
'R2 R

S2B0

�A2

�h
a
I
B2
iT

R
IB0

+b'2 R
B2B0

�h eD0

+ R
B0B1

� eD1 + R
B1B2

ed2 R
B2B1

�
R

B1B0

��
+ g�2A2

�
0 0 1

�
R
IB0

h eD0

+ R
B0B1

� eD1 +R
B1B2

ed2 R
B2B1

�
R

B1B0

�
: (A3)

The agent variables
�
An5k+2; 0 < k � n � N = 2

	
are

given by Equations A4-A6:

A1
7 = ��1

*
'R1 R

S1B1

�A1

 h
a
I
B1
iT

R
IB1

+ b'1

! ed1

+
R

B1B1J

�
0 0 1

�T
+ g�1A1

�
0 0 1

�
R
IB1

ed1 R
B1B1J

�
0 0 1

�T ; (A4)

A2
7 = ��2

�
'R2 R

S2B1

�A2

�h
a
I
B2
iT

R
IB1

+b'2 R
B2B1

�
� eD1+ R

B1B2

ed2 R
B2B1

��
R

B1B1J�
0 0 1

�T + g�2A2
�
0 0 1

�
R
IB1� eD1+ R

B1B2

ed2 R
B2B1

�
R

B1B1J

�
0 0 1

�T ; (A5)

A2
12 = ��2

*
'R2 R

S2B2

�A2

 h
a
I
B2
iT

R
IB2

+ b'2

! ed2

+
R

B2B2J

�
0 0 1

�T
+ g�2A2

�
0 0 1

�
R
IB2

ed2 R
B2B2J

�
0 0 1

�T :
(A6)

The agent variables fAn5k+3; � � � ; An5k+6; �An5k+4; � � � ;
�An5k+6; 1 < k + 1 � n � N = 2g are given by
Equations A7-A9:

A2
8 = ��2

*
'R2 R

S2E1

�A2

(h
a
I
B2
iT

R
IE1

+ b'2 R
B2E1

)
R

E1B2

ed2 R
B2E1

+�
1 0 0

�T
+ g�2A2

�
0 0 1

�
R
IB2

ed2 R
B2E1

�
1 0 0

�T ; (A7)

�
A2

9 A2
10 A2

11
�

= ��2A2

�h
a
I
B2
iT

R
IB1

+b'2 R
B2B1

�
� g�2A2

�
0 0 1

�
R
IB1

; (A8)

� �A2
9

�A2
10

�A2
11
�

= ��2

*
'R2 R

S2E1

�A2

(h
a
I
B2
iT

R
IE1

+ b'2 R
B2E1

)
R

E1B2

ed2 R
B2E1

+
C1

+ g�2A2
�
0 0 1

�
R
IB2

ed2 R
B2E1

C1: (A9)

APPENDIX B

Here, in Appendix B, the agent variables, having sizes
independent of N , namely [A0

1; � � � ; A0
6] and:
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fAn5n+3; � � � ; An5n+6; B
n
5n+3; � � � ; Bn5n+6; �Bn5n+4; � � � ;

�Bn5n+6; 0 < n � Ng;
are determined for any N . The agent variables:

fA0
1; � � � ; A0

6g;
are given by Equation's B1 and B2:�

A0
1 A0

2 A0
3
�

= �m0
�
�x0 �y0 (�z0 + g)

�
; (B1)�

A0
4 A0

5 A0
6
�T = �[I0] _!B0 � e!B0 [I0]!B0 : (B2)

The agent variable corresponding to the equation of
torsion, i.e. twisting deformation, of the nth link is
given by Equation B3:

�An5n+3 = +�n

"h
_
Sn
iT

[JSn ]� �
Sn�T [JSn ] e
Sn
� 2

�
!Bn

�T
R

BnSn
[JSn ] e
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R

BnSn
e
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# �
1 0 0
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(1� �)EJ
(1 + �)(1� 2�)

1
r2
n(1 + en)2 f�nx [v02n (1 + en)2

+ h2
nw
02
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� �nz sin n) + hnw0n(�ny sin n + �nz cos n)]g

+GJ
1

r2
n(1 + en)2 f�nx [r4
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� hnw0n(�ny sin n + �nz cos n)]g
+0

+
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� (v02n + w02n )rn]g: (B3)

The agent variable corresponding to the equation of
tension/compression, i.e. axial deformation of the nth
link is given by Equation B4:

�An5n+4 = +�nfAn([a
I
Bn ]T R

IBn
+ �dTn � 2 _dTn e!Bn

+ dTn [e!Bne!Bn � e_!Bn ])� h[[ _
Sn ]T [JSn ]

� [
Sn ]T [JSn ]e
Sn � 2[!Bn ]T R
BnSn

[JSn ]e
Sn
+ 2JSnp [!Bn ]T R

BnSn
e
Sn

� [!Bn ]T R
BnSn

[JSn ] R
SnBn

e!Bn R
BnSn

+

+ [ _!Bn ]T R
BnSn

[JSn ]]Cni0g �1 0 0
�T

+ h (1� �)EJ
(1 + �)(1� 2�)

1
r4
n(en + 1)4 f(�ny cos n

� �nz sin n)hnrnw0n[r2
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The agent variables corresponding to the spatial bend-
ing equations of the nth link are, respectively, given by
Equation's B5 and B6:
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The twisting moment about the 1st axis of the cross-
sectional frame of the nth link is given by Equation B7:
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The axial force along the 1st axis of the cross-sectional
frame of the nth link is given by Equation B8:
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The transverse shear forces along the 2nd and 3rd
axes of the cross-sectional frame of the nth link are,
respectively, given by Equasiton's B9 and B10:
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+
v0n�nx
r4
n
f�h2

n�nx � v0n
1 + en

[hnrn(�nz sin n

� �ny cos n) +
v0nw0n
1 + en

[w0n�nx + rn(�ny sin n

+�nzcos n)]]g+ v0n�nx
rn(1+en)2 [rn�nx�w0n(�nysin n

+ �nz cos n)] +
v02n

r2
n(1 + en)3 [hnrn�nx(�ny cos n

� �nz sin n)� v0n
1 + en

[w02n �2
nx + r2

n(�2
ny + �2

nz )

+ 2w0nrn�nx(�ny sin n + �nz cos n)]]

� v0n
(1 + en)4 [r2

n�
2
nx + w02n (�2

ny + �2
nz )
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� 2w0nrn�nx(�ny sin n + �nz cos n)]

+
�w0n

r6
n(en + 1)3 fh2

n�nx +
v0n

1 + en
[hnrn(�nz sin n

� �ny cos n) +
v0nw0n
1 + en

[w0n�nx + rn(�ny sin n

+ �nz cos n)]]g � f[2(en + 1)2 + r2
n]hnv0nv00n

+ [(en + 1)2h2
n � v02n [(en + 1)2 + r2

n]]u00ng

+
�w0n

r3
n(en + 1)5 [rn�nx � w0n(�ny sin n

+ �nz cos n)]f[2(en + 1)2 + r2
n]hnv0nv00n

+ [(en + 1)2h2
n � v02n [(en + 1)2 + r2

n]]u00ng

+
1

r4
n(en + 1)6 f[(h4

n � 2v04n � h2
nv
02
n + w02n h2

n)w0nv00n

� (3r2
n + w02n )hnw0nv0nu00n + (r2

n � w02n )v0nr2
nw
00
n]

� [(v02n + w02n )rn(�ny cos n � �nz sin n)

� v0n(en + 1)hn�nx ] + [�(2r2
n + w02n )hnv0nv00n + (v04n

� h4
n � w02n h2

n)u00n](en + 1)[(v02n + w02n )rn(�ny sin n

+ �nz cos n)� h2
nw
0
n�nx ]gg; (B9)

�Bn5n+6 = +�n[[ _
Sn ]T [JSn ]� [
Sn ]T [JSn ]e
Sn
� 2[!Bn ]T R

BnSn
[JSn ]e
Sn + 2JSnp [!Bn ]T R

BnSn
e
Sn

� [!Bn ]T R
BnSn

[JSn ] R
SnBn

e!Bn R
BnSn

+ [ _!Bn ]T R
BnSn

[JSn ]]Cn
�
0 0 1

�T
� h (1� �)EJ

(1 + �)(1� 2�)
hn

(en + 1)3 [�v0n�nx

+
hnrn

1 + en
(�nz sin n � �ny cos n)]

+GJ
1

(en + 1)4 f(en + 1)hnv0n�nx + rn(�nz sin n

� �ny cos n)(v02n + w02n )gi0 + hGAnw0n

+
(1� �)EJ

(1 + �)(1� 2�)
f h2

n�nx
r2
n(1 + en)2 [w0n�nx

+ rn(�ny sin n + �nz cos n)]

+
w0nhn

r2
n(1 + en)3 [v0nrn�nx(�nz sin n � �ny cos n)

� hn
1 + en

[w02n �2
nx + r2

n(�2
nz + �2

ny )

+ 2w0nrn�nx(�ny sin n + �nz cos n)]]

+
1

r2
n(en + 1)3 (hnv00n � v0nu00n)fv02n �nx

+
hn

1 + en
[v0nrn(�ny cos n � �nz sin n)

+
hnw0n
1 + en

[w0n�nx+rn(�ny sin n+�nzcos n)]]g

+
hn

r2
n(en + 1)5 f[(r2

n � w02n )(hnu00n + v0nv00n)

+2r2
nw
0
nw
00
n][v0n�nx+

hnrn
1+en

(�nycos n��nz sin n)]

+(v0nu00n�hnv00n)(en+1)w0n
hn

1+en
[w0n�nx

+ rn(�nz cos n + �ny sin n)]gg

+GJf 1
(1 + en)2 [w0n[

v02n
r2
n
�2
nx + (�2

ny + �2
nz )]

� h2
n�nx
rn

(�ny sin n + �nz cos n)]

+
v0nw0n

r2
n(1 + en)3 [hnrn�nx(�ny cos n � �nz sin n)

� v0n
1 + en

[w02n �2
nx + r2

n(�2
ny + �2

nz )

+ 2w0nrn�nx(�ny sin n + �nz cos n)]]

� w0n
(1 + en)4 [r2

n�
2
nx + w02n (�2

ny + �2
nz )

� 2w0nrn�nx(�ny sin n + �nz cos n)]

+
1

r2
n(en + 1)3 (hnv00n � v0nu00n)fh2

n�nx

+
v0n

1 + en
[hnrn(�nz sin n � �ny cos n)

+
v0nw0n
1 + en

[w0n�nx + rn(�ny sin n + �nz cos n)]]g
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+
rn

(1 + en)5 (hnv00n � v0nu00n)[rn�nx � w0n(�ny sin n

+ �nz cos n)] +
1

r2
n(en + 1)6 f(v0nu00n

� hnv00n)(en + 1)w0n[rn(v02n + w02n )(�ny sin n

+ �nz cos n)� h2
nw
0
n�nx ] + [(r2

n � w02n )(hnu00n

+ v0nv00n) + 2r2
nw
0
nw
00
n][rn(v02n + w02n )(�ny cos n

� �nz sin n)� hnv0n�nx(en + 1)]ggi: (B10)

The agent variables �Bn5n+4 is given by Equation B11:

� �Bn5n+4 =
(1� �)EJ

(1 + �)(1� 2�)
f� w0nv0n

r4
n(en + 1)

fv02n �nx

+
hn

1 + en
[v0nrn(�ny cos n � �nz sin n)

+
hnw0n
1+en

[w0n�nx+rn(�nysin n+�nzcos n)]]g

+
h2
n

r2
n(en + 1)3 fv0nw0n�nx

+
1

1 + en
fhnw0nrn(�ny cos n � �nz sin n)

� (en + 1)v0n[rn(�ny sin n + �nz cos n)

+ w0n�nx ]ggg+GJf� w0nv0n
r4
n(en + 1)

fh2
n�nx

+
v0n

1 + en
[hnrn(�nz sin n � �ny cos n)

+
v0nw0n
1+en

[w0n�nx+rn(�nysin n+�nzcos n)]]g

+
1

rn(en + 1)4 (v02n + w02n )[hnw0n(�ny cos n

��nz sin n)�(en+1)v0n(�nysin n+�nzcos n)]

� w0nv0n
rn(1+en)3 [rn�nx�w0n(�nysin n+�nzcos n)]g:

(B11)

The bending moments about the 3rd and the 2nd
axes of the cross-sectional frame of the nth link are,
respectively, given by Equation's B12 and B13:

� �Bn5n+5 =
(1� �)EJ

(1 + �)(1� 2�)
f w0nhn
r4
n(en + 1)

fv02n �nx
+

hn
1 + en

[v0nrn(�ny cos n � �nz sin n)

+
hnw0n
1+en

[w0n�nx+rn(�ny sin n+�nzcos n)]]g

+
hn

r2
n(en + 1)3 [�nxv

02
n w
0
n

+
hn

1 + en
[+v0nw0nrn(�ny cos n � �nz sin n)

+ (en + 1)hn(w0n�nx + rn�nz cos n

+ rn�ny sin n)]]g+GJf w0nhn
r4
n(en + 1)

fh2
n�nx

+
v0n

1 + en
[hnrn(�nz sin n � �ny cos n)

+
v0nw0n
1+en

[w0n�nx+rn(�ny sin n+�nzcos n)]]g

+
1

rn(en + 1)4 fv0nw0n(v02n + w02n )(�ny cos n

� �nz sin n) + (en + 1)hn[(v02n + w02n )(�ny sin n

+ �nz cos n)� rnw0n�nx ]g+
w0nhn

rn(1 + en)3 [rn�nx

� w0n(�ny sin n + �nz cos n)]g; (B12)

� �Bn5n+6 =
(1� �)EJ

(1 + �)(1� 2�)
f hn

(en + 1)3 [�v0n�nx

+
hnrn

1 + en
(�nz sin n � �ny cos n)]g

+GJ
1

(en + 1)3 [hnv0n�nx

+
rn(v02n + w02n )

en + 1
(�nz sin n � �ny cos n)]: (B13)


