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A Harmonic Balance Approach for the
Analysis of Flexible Rotor Bearing

Systems on Non-Linear Support

M.A. Rezvani1

Abstract. The purpose of this article is to describe the theoretical background to the Harmonic
Balance approach; adopted and further developed for the analysis of general multi degree of freedom
rotor bearing systems with nonlinear supports. System equations of motion are prepared for dynamic
systems with any number of degrees of freedom. Nonlinear behaviour can be associated with any number
of these freedoms. A computer program which uses the harmonic balance method to solve the system
equations of motion is also written. These equations are partitioned into linear and nonlinear parts. The
nonlinear sets of equations need to be solved prior to solving the linear sets of equations. Veri�cation of
the proposed method of solution is justi�ed through two examples. The frequency response of a well known
rotor bearing, the so called Jefcott rotor, is examined and tested against data reported by some other
researchers. Also, the versatility of this method is tested by comparing the harmonic balance approach
with the transient solution and some experimental measurements involving the nonlinear squeeze �lm
bearing supports, which have already been reported by this author. It is shown that by utilizing harmonic
balance with appropriate condensation, it is possible to considerably reduce the number of simultaneous
nonlinear equations inherent to such systems. The stability (linear) of the equilibrium solutions may be
conveniently evaluated using the Floquet theory.

Keywords: Non-linear dynamics; Flexible rotor bearing systems; Squeeze �lm bearings; Harmonic
balance approach; Floquet theory.

INTRODUCTION

The trend of increasing power-to-weight ratios in high
speed rotating machinery results in more 
exible rotors
and higher operating speeds. In many applications of
high speed rotating machinery, rolling element bearings
are preferred to hydrodynamic bearings, due to insta-
bility problems in the latter and their rapid failure in
case of malfunction. However, rolling element bearings
provide very little damping. Signi�cant vibration
isolation can be achieved by mounting these bearings
in appropriately designed damped 
exible supports.
As shown by Glienicke and Stanski [1], Squeeze Film
Dampers (SFD's) have proved extremely useful for this
purpose. An SFD is a journal bearing, wherein the
journal is mechanically prevented from rotating. In
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its simplest form, an SFD can be designed such that
the rotor locates itself within the clearance space, or
the rotor is preloaded within the clearance space by
retainer springs.

Squeeze �lm damper bearings are highly non-
linear elements with vibrational amplitude-dependent
sti�ness and damping coe�cients. Regardless of the
damper design, satisfactory linearization of a rotor
bearing system incorporating such dampers has not
been found possible owing to the strongly nonlinear

uid �lm forces that are motion dependent.

Many rotor bearing systems are inherently nonlin-
ear because of the existence of nonnegotiable nonlinear
sources such as bearings, dampers, seals, etc. They
cannot be approximately analyzed by a linear model.
Many numerical-analytical techniques have been pro-
posed to study nonlinear rotor bearing problems [2,3].

The in
uence of squeeze �lm dampers on the
dynamic behaviour of rigid and 
exible rotors has been
the subject of many theoretical and experimental inves-
tigations [4,5]. Properly designed, such dampers can
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signi�cantly reduce vibration amplitudes and bearing
transmitted forces due to rotor unbalance, and permit
safe passage through critical speeds. In application,
the dampers are usually either centrally preloaded
using centralizing springs or such support springs are
dispensed with altogether so that the damper journal
depends on unbalance excitation for lift-o� from the
damper bearing surface. Squeeze �lm dampers that
operate without a centralizing spring have the obvious
advantage of simplicity with a resulting reduction in
both production cost and complexity of assembly.
However, their analysis is more complex [6].

Circular orbit type equilibrium solutions and the
stability of centrally preloaded dampers have been
well documented [4,7]. For dampers which are not
centrally preloaded, the steady state journal centre
orbit need not be circular and its determination gener-
ally necessitates transient solutions [8,9]. It is often
computationally prohibitive to carry out parametric
design studies on the vibration behaviour of such
rotor bearing systems, and various attempts have been
made to quasi-linearize the damper forces [10]. Such
solutions assume that the journal centre motions are
synchronous with the excitation frequency and make
no allowance for the possibility of sub and super-
harmonic vibrations. More recently, trigonometric
collocation and harmonic balance techniques have been
successfully tried out over a limited range of relevant
parameters [11] for rigid rotors. Extension to general
rotor bearing systems necessitates a condensation of
the potentially large number of nonlinear simultaneous
equations to a manageable size, and the technique used
for determining equilibrium orbits in this report is
similar to that of [12]. As evidenced by the unexpected
instabilities discovered in [4], the stability evaluation
of equilibrium orbits is an essential requirement for
the assumed equilibrium solution analysis. Since the
perturbed orbits may now result in linear di�eren-
tial equations with periodic coe�cients, even with
rotating coordinates, the theory is developed with the
damper forces expressed directly in terms of stationary
coordinates, thereby, simplifying application of the
Floquet theory [13] in evaluating system stability.
The versatility of the technique is illustrated using
systems with and without centralizing springs and of
increasing complexity. Of particular interest is the
applicability of this approach to unsupported systems
with relatively large unidirectional loadings, i.e. at high
orbit eccentricities as occurs when the damper has just
lifted o� as well as to con�rmation of the instability
results reported in [4].

BASIC THEORY

Empirical methods for the analysis of large rotor
bearing systems must include many degrees of freedom.

A general trend for the development of numerical-
analytical methods is to avoid unnecessary complica-
tions. Hence, linear methods of analysis are prefer-
able. The presence of nonlinear e�ects associated
with any of the system degrees of freedom contradicts
the simplicity of the methods. Transient methods of
solution resorting to the direct integration of system
equations of motion are a general remedy for such cases.
However, transient methods are time consuming and
run the risk of numerical instabilities. In order to
reduce the computation time, many other techniques
have also been developed. The accuracy and stability of
numerical solutions combined with the total execution
time of computer software are major concerns for
analysts of rotating machinery.

The harmonic balance method of solution pre-
sented in this article is a numerical-analytical method
for the prediction of the steady-state periodic re-
sponse of large order nonlinear rotor dynamic systems.
Using this method, the set of nonlinear di�erential
equations governing the motion of rotor systems is
transformed to a set of nonlinear algebraic equations.
A condensation technique is proposed to reduce the
nonlinear algebraic equations to only those related
to the physical coordinates associated with nonlinear
components.

The condensation technique can result in a sub-
stantial reduction for a large order system with a small
number of nonlinear coordinates, compared to that of
system degrees of freedom.

System idealization and its equilibrium solutions
are explained in the next sections. Squeeze �lm
dampers are the source of nonlinearity for the system.
The addition of unbalance masses to the rotor degrees
of freedom is the source of external excitation to the
system. This excitation can be in the form of force or
couple unbalances. Nonlinear hydrodynamic bearing
forces associated with damper degrees of freedom are
calculated based on the short bearing approximation,
as explained later in the text. System mass, sti�ness
and damping matrices and the amount of its unbalance
excitation are input to the program. After partitioning
the system equations of motion into their nonlinear and
linear parts, the nonlinear sets of equations need to be
solved simultaneously, prior to solving the linear sets of
equations. A computer program based on the proposed
methodology is developed.

System Idealization

Consider an r-degree of freedom rotor bearing system
with nonlinear forces associated with q of these degrees
of freedom running in one or more squeeze �lm damped

exible support. The multi-mass 
exible rotor in
Figure 1 is an example of such a system, wherein highly
nonlinear damper forces exist at each damper location.
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Figure 1. Flexible, unbalanced symmetric rotor
supported on identical squeeze �lm dampers and retainer
springs.

One can write the equations of motion as:

M �X + C _X +KX = F; (1)

where the �rst p equations do not involve non-linear
motion dependant forces. The nonlinearity at the
damper locations is re
ected in the corresponding force
(F ) terms, i.e.:

p = r � q: (2)

Equilibrium Solutions

If steady-state conditions have been reached with the
system being subjected to a periodic excitation force
of frequency !, such as unbalance excitation, one can
assume that the equilibrium or steady state solutions
are of the form:

XE = A0 +
nX
k=1

(Ak cos�kt+Bk sin�kt); (3)

where:

�k = k!=N = k
: (4)

It is assumed that there are n harmonics of the
fundamental frequency (
). Required are the (2n+1)r
coe�cients, A0; A1; � � � ; An, B1; � � � ; Bn, which are to
be found by harmonic balance. Thus:

_XE = �
nX
k=1

�k(Ak sin�kt�Bk cos�kt); (5)

and:

�XE = �
nX
k=1

�2
k(Ak cos�kt+Bk sin�kt); (6)

and Equation 1 becomes:

M �XE + C _XE +KXE = FE ; (7)

where:

FE = C0 +
nX
k=1

(Ck cos�kt+ Sk sin�kt): (8)

The Fourier coe�cients of FE , viz. C0; Ck and Sk are
functions of XE ; _XE and the external excitation.

FE in Equation 8 generally represents the force
component associated with the system degrees of free-
dom. This research has considered two sources for these
external forces; the �rst one being the hydrodynamic
bearing forces at damper degrees of freedom and the
second one being unbalance excitation that can be
applied to any of the rotor degrees of freedom.

On substituting Equations 3, 5, 6 and 8 into Equa-
tion 7, one can solve the set of equations represented
by Equation 7 by equating the similar terms on the left
and right sides of this equation. Therefore, equating
coe�cients for the constant terms, equating coe�cients
for the cosine terms and equating coe�cients for the
sine terms are the three steps required in that equation.

Starting with equating coe�cients for the con-
stant terms, one obtains:

KA0 = C0: (9)

K represents the system sti�ness matrix.
As the solution procedure includes solving for

the nonlinear degrees of freedom before solving for
the linear freedoms, one needs to partition the system
equations of motion into linear and nonlinear parts.

In the case of Equation 9, the partitioned form is:�
Kpp Kpq
Kqp Kqq

� �
Ap0
Aq0

�
=
�
Cp0
Cq0

�
; (10)

where Kpq is a matrix of order p� q and Cp0 is a vector
of order p.

At this stage, it is necessary to eliminate all co-
e�cients corresponding to linear freedoms, Ap0, and to
keep all coe�cients corresponding to nonlinear degrees
of freedom, Aq0.

By eliminating the Ap0 from Equation 10, one
obtains:

[Kqq �KqpK�1
pp Kpq]Aq0 +KqpK�1

pp C
p
0 = Cq0 : (11)

Equation 11 is a set of q nonlinear simultane-
ous equations in the (2n + 1)q unknowns, namely
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Aq0; A
q
1; � � � ; Aqn; Bq1 ; � � � ; Bqn, which determine the Cq0 .

Note that in the absence of linear spring forces K = 0,
and the left hand side of Equation 11 is then zero.

It should be mentioned that, while partitioning
system motion equations into linear and nonlinear
parts, there need to be attempts to calculate the
corresponding Fourier coe�cients Ao, Ak and Bk
accordingly. Since the total degrees of freedom for
the general case of a rotor bearing system is de�ned
as r, the total number of Fourier coe�cients to be
calculated is equal to (2n + 1)r. In order to �nd
the (2n + 1)q unknown coe�cients, Aq0; A

q
1; � � � ; Aqn,

Bq1 ; � � � ; Bqn, corresponding to all nonlinear degrees of
freedom, one needs to con�gure (2n+1)q simultaneous
nonlinear equations. Likewise, the procedure to calcu-
late the (2n+1)p unknown coe�cients corresponding to
linear degrees of freedom, Ap0; A

p
1; � � � ; Apn, Bq1 ; � � � ; Bpn,

needs the con�guring of (2n + 1)p simultaneous linear
equations.

Again, on equating coe�cients for the cosine
terms in Equation 7 for each kth harmonic, one obtains:

[K � �2
kM ]Ak + �kCBk = Ck; (12)

or:

QAk +RBk = Ck: (13)

Similarly, on equating coe�cients for the sine terms for
each kth harmonic, one obtains:

QBk �RAk = Sk: (14)

Elimination of Ak from Equations 13 and 14 by pre-
multiplying Equation 13 by Q�1 and substituting into
Equation 14 gives:

[Q+RQ�1R]Bk = Sk +RQ�1Ck; (15)

or:

TBk = W: (16)

In partitioned form:�
Tpp Tpq
Tqp Tqq

� �
Bpk
Bqk

�
=
�
W p

W q

�
: (17)

Note that W p and W q are functions of XE and _XE .
Elimination of Bpk from Equation 17 gives:

[Tqq � TqpT�1
pp Tpq]B

q
k + TqpT�1

pp W
p = W q: (18)

Equation 18 constitutes a further set of nq nonlinear
simultaneous equations in the (2n+ 1)q unknowns.

Again, elimination of Bk from Equations 13
and 14 by pre-multiplying Equation 14 by Q�1 and
substituting into Equations 13 gives:

TAk = Ck �RQ�1Sk = V: (19)

By partitioning, as previously done to obtain Equa-
tion 17 from Equation 16, one can solve for the Aqk to
obtain:

[Tqq � TqpT�1
pp Tpq]A

q
k + TqpT�1

pp V
p = V q; (20)

where again V p and V q are functions of XE and _XE .
Equation 20 constitutes yet another set of nq nonlinear
simultaneous equations in the (2n + 1)q unknowns.
Hence, together with Equations 11 and 18, one has
a set of (2n+ 1)q nonlinear simultaneous equations in
the (2n+ 1)q unknowns, Aq0; A

q
1; � � � ; Aqn, Bq1 ; � � � ; Bqn.

These equations need to be solved by some it-
erative procedure, such as Newton-Raphson, which is
the procedure adopted in this report. Convergence
is assumed when changes in the successive values
of the unknowns are less than 0.0001C. Signi�cant
values for amplitudes of the highest assumed harmonics
indicate the need for including additional harmonics,
and such further addition of harmonics continues until
there is no signi�cant change in the lower harmonic
values. Once found, the remaining (2n+1)p unknowns,
Ap0; A

p
1; � � � ; Apn, Bq1 ; � � � ; Bpn, can be found from the

present simultaneous linear sets of equations obtained
by eliminating Aq0 from Equation 10, Bqk from Equa-
tion 17 and Aqk from Equation 19.

Note that no matter how many degrees of freedom
there are in the system, the number of nonlinear simul-
taneous equations to be solved is still only (2n+1)q. In
general, each damper introduces nonlinear forces into
four equations of motion, reducing to two equations
when the damper connects to the ground. Thus, q = 4
or 2 for a system with one damper only, whereas there
is no limit to the total degrees of freedom, r. Also,
for physical systems with real values for system mass,
sti�ness and damping matrices, Q�1 and T�1

pp always
exist. Therefore, the only computational problem is
generally associated with numerical iterative schemes,
viz. convergence to all possible solutions. The other
potential disadvantage of this approach is the initial
choice of the fundamental frequency. Subharmonic
solutions (solutions with frequency components lower
than the lowest excitation frequency) are occasionally
possible [14]. These are catered for, by assuming
a fundamental frequency of 
 = !=N where N is
assumed to be an integer. However, there is no sure way
of knowing whether all possible values on N have been
exhausted, as multi-equilibrium solutions of the same
or of di�erent fundamental frequencies to the excitation
frequency are occasionally possible.

Stability of Equilibrium Solutions

The stability in the linear sense of the above equilib-
rium solutions still has to be addressed. Consider a
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small perturbation, �X, to the equilibrium solution,
XE , so that Equation 1 is relevant.

Then, subtraction of Equation 7 from Equation 1
gives:

M( �X � �XE) + C( _X � _XE) +K(X-XE) = F � FE ;
(21)

or:

M� �X + C� _X +K�X = �F =
�

0p

�Fq

�
: (22)

Since:

F q = F (Xq; _Xq); (23)

�F q =
qX
j=1

 
@F qi
@Xq

j
�Xq

j +
@F qi
@ _X

q
j

� _Xq
j

!
+ Higher order terms;

for i = 1; 2; � � � ; q: (24)

All partial derivatives are evaluated at the equilibrium
state at any given time.

) �F q = F x�Xq + F _x� _Xq: (25)

Substitution of Equation 25 into Equation 22 and
multiplying through by M�1 gives:

� �X +M�1C�� _X +M�1K��X=0; (26)

where:

C� =
�
Cpp Cpq
Cqp Cqq � F _x

�
; (27)

and:

K� =
�
Kpp Kpq
Kqp Kqq � F x

�
: (28)

Equation 26 represents a set of r linear second-order
di�erential equations with periodic coe�cients of pe-
riod 2�=
 (because the elements of F x and F _x are
periodic, with period 2�=
). Linear stability requires
that �X approach zero with time. The Floquet the-
ory [13] may be conveniently used to test for stability.
Thus, Equation 26 may be written as the 2r �rst-order
linear equations:�

� _X
� _Y

�
�
�

0 I
M�1K� M�1C�

� �
�X
�Y

�
=
�
0
0

�
; (29)

where:

Y = _X: (30)

Let G be the 2r�2r matrix whose columns contain the
2r solutions at time t = 2�=
 of the above equations,
having as initial conditions the corresponding columns
of a 2r � 2r identity matrix. Then, the system is
stable if all the eigenvalues of G have magnitudes
less than unity. The 2r solutions of Equation 29
may be carried out by a variety of techniques; a 4th
order Runge-Kutta with variable step size is used in
this report. Though various alternative schemes have
been suggested to reduce the computational e�ort, it
is doubtful whether the alleged time savings warrant
the increased complexity involved, particularly since
stability predictions can be very sensitive to numerical
inaccuracies. Computation of the eigenvalues of G to
a su�cient degree of accuracy for large systems, may
itself be problematic.

APPLICATION TO SQUEEZE FILM
DAMPERS

The above theory is developed quite generally and
may be applied to any system with nonlinear motion
dependent forces. However, the illustrative examples
in this report involve nonlinear forces arising from end
feed squeeze �lm dampers. Therefore, it is necessary
to introduce a brief discussion about such dampers and
the corresponding nonlinear hydrodynamic forces.

Damper Forces

A section view of such a damper is shown in Figure 2.
It is assumed that the 
uid is Newtonian with constant
properties at some mean temperature, the 
ow is

Figure 2. Schematic view of a squeeze �lm damper.
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laminar, the 
uid inertia forces are negligible, there
is no slip at the bearing surfaces, h=L is of order 10�3,
the short bearing approximation is applicable (valid
provided L=D < 0:25 [15]), and there is no variation in
�lm thickness in the axial direction. The momentum
and continuity equations for the damper 
uid then
result in the simpli�ed Reynolds equation [16], viz:�

h3 @2p
@Z2

�
= 12�

dh
dt
; (31)

where:

h = C � z sin � y cos : (32)

The solution of Equation 31 with pressure boundary
conditions pertaining to the end feed/drain oil supply,
i.e.:

p = pi at Z = �L=2;
p = p0 at Z = +L=2; (33)

yields:

p = pi +
p0 � pi
L

�
Z +

L
2

�
+

6�
h3

�
Z2 +

L2

4

�
dh
dt
:
(34)

Assuming that p0 = pi = 0 gives:

p =
6�
h3

�
L2

4
� Z2

�
( _z sin + _y cos'): (35)

In general, this pressure distribution will not be
continuous, owing to the emergence of dissolved gas
bubbles at sub-supply pressures, 
uid vaporization at
the cavitation pressure and the possibility of sucking in
air at the ends of the damper. Assuming further that
once the pressure is less than the cavitation pressure,
it will equal the cavitation pressure, the pressure is
positive in the regions where:

'� � ' �  � + �; (36)

where:

tan � = � _y= _z; (37)

and:

y sin + z cos > 0: (38)

This simpli�ed cavitation condition does not satisfy
continuity at the cavitation boundary and the more
realistic Reynolds cavitation condition could have been
used at the cost of introducing an additional iteration
into the computation. Since the purpose of this report
is to illustrate the utility of the harmonic balance
approach to systems with a nonlinear component, such

as a damper, the extra complication of more realistic
cavitation conditions with only a minimal change to
the damper forces was not felt to be warranted.

Thus, at any instant of time, the pressure is
positive over half the circumferential extent, with
the precise location of this � �lm-dependent on the
instantaneous motion of the journal centre. The 
uid
�lm force components are then given by:�

Fy
Fz

�
= ��RL3

Z  �+�

 �

(y cos + z sin )
(C � z sin � y cos )3�

cos 
sin 

�
d : (39)

Note that with more complicated damper geometries,
e.g. oil feed holes, greater aspect ratios (L=D > 0:25)
and cavitation pressure, pc 6= p0 or pi, the damper
force expressions will not be expressible as simply as
in Equation 39, but will still be functions of y; z; _y and
_z, i.e. of XE and _XE so that this approach is still
applicable.

COMPUTER PROGRAM

Based on the basic theory presented in this report, a
computer program for the harmonic balance analysis
(HBA) of general squeeze �lm damped multi-degree of
freedom rotor bearing systems is developed.

This computer program consists of a main pro-
gram that opens input/output �les, initializes data,
sets system equations of motion according to input
data, initializes solver subroutines and prints out
the results. The main program is also accompanied
by many subprograms to perform operations such
as matrix algebra, matrix partitioning and nonlinear
equation solvers, etc. A subprogram builds the ideal-
ized system equations of motion based on input data.
System mass, damping and sti�ness matrices are input
to this program. It then reads in some constant terms
in forcing functions and the amount of rotor unbalance.
This program then calls in a second subprogram to
reduce degrees of freedom to those corresponding to
the number of non-linear equations.

Another subprogram reads in squeeze �lm damper
parameters, the amount of preload on damper freedoms
and the initial guessed values. Damper parameters
include oil viscosity, clearance, radius and the length
and number of dampers involved. It, then, calculates
the bearing parameter. A general routine sets up the
system of nonlinear equations. From displacements
speci�ed by the initial guessed values, a subroutine is
called to evaluate the hydrodynamic bearing forces in
the vertical and horizontal directions and returns them
in the form of their Fourier components.
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Program Input/Output

Elements of mass, damping and sti�ness matrices are
initialized with null in the main program. As a result,
the user needs only to �ll in the nonzero elements
of the corresponding matrices. Squeeze �lm damper
parameters, including oil viscosity, radial clearance,
radius, length and the number of squeeze �lm dampers,
should also be given as input data. The preload
assumed to be e�ective on damper vertical freedoms,
is also a�ected by gravity. Initial assumptions are
essential for harmonic balance solutions. This program
can �nd its initial guessed values from two sources:
from data available in the input �le, or from rewinding
the temporary output �le and reading the last stage
data as initial data for the next stage.

Output from this program includes information
about the system total degrees of freedom, the number
of linear and nonlinear freedoms, the level of sub-
harmonics included, the number of Fourier terms used
and the rotation frequency for the rotor. Mass,
damping and sti�ness matrices plus damper speci-
�cations together with the amount of preloads on
damper freedoms are also included. Displacement
of damper inner and outer freedoms, corresponding
absolute eccentricities, eccentricity of the inner ring
relative to the outer ring and stability analysis data
in the form of eigenvalues, are also part of the output
data.

ILLUSTRATIVE EXAMPLES

Veri�cation of the harmonic balance approach in pre-
dicting the dynamic response of the multi-degree of
freedom rotor bearing systems with some non-linearity
is examined through the following two examples.

Flexible Rotor-Centralized Damper

Figure 1 presents a 
exible symmetric unbalanced
rotor, the so-called Je�cott rotor, supported on identi-
cal squeeze �lm dampers and centralizing springs of
constant radial sti�ness. The lumped mass at the
bearing ends is m2, the centralizing spring has sti�ness
k2 and the rotor sti�ness between the central and either
end node is k1. All unbalance is assumed to be at the
disk, resulting in a disk mass eccentricity, �1. Viscous
damping at the disk is c1. Damping at the disk is
negligible compared with that provided by the damper;
hence, may be neglected. Since the rotor is symmetric
about the disk, it su�ces to consider one half of the
system only. Thus, for cylindrical whirl, the motion
of the system will be described by the plane motion
in the damper of a journal of mass, m = m1=2 + m2,
with unbalance eccentricity, � = �1m1=(m1 + 2m2).
Working frequency extends beyond the pin pin critical

speed of the rotor, !c, centralizing springs are retained
and the rotor is centrally preloaded. Such a system
results in synchronous circular orbit type solutions, and
has been analysed previously in the literature for both
equilibrium solutions and their stability in the linear
sense [4]. By virtue of the synchronous nature of the
orbits, such stability analyses were possible without the
need to resort to the Floquet theory, by writing the
perturbed equations of motion with respect to a rotat-
ing reference frame; thereby, obtaining linear di�eren-
tial equations with constant coe�cients. Once super
and/or sub-harmonics of the excitation frequency are
also present, as they will be in general, such a procedure
no longer removes the periodicity of the coe�cients
in the perturbed equations of motion. Solutions for
this 
exible rotor model, therefore, proved particularly
useful in evaluating the Floquet theory based stability
analysis, since there are circular orbit solutions which
are alleged to be unstable and, indeed, unexpectedly so
[4]. Referring to Figure 1, the equations of motion are
given by:

m1�x1 + c1 _x1 + k1(x1 � x3) = �1m1!2 cos�;

m1�x2 + c1 _x2 + k1(x2 � x4) = �1m1!2 sin�;

m2�x3 + k1(x3 � x1) + k2x3 = Fy;

m2�x4 + k1(x4 � x2) + k2X4 = Fz;

where:

y = x3; z = x4:

The equations are in the form of Equation 1 with
r = 4 and q = 2. The following values of non-
dimensional system parameters were used to allow
comparison with [4]:

M1 = 0:75;

M2 = 0:25;

K1 = 0:75=(!=!c)2;

K2 = 0:25=(!=!c)2;

C1 = 0:0075=(!=!c);

U = 0:3;

!r=!c = 0:5:

The equilibrium solutions for various values of the
bearing parameter, !b=!c, are reported in [4]. Using
the generalized theory that is presented in this article,
the same frequency response curve was obtained for
!b=!c = 0:3 as indicated in Figure 3.
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Figure 3. Predicted frequency response of circular orbit
eccentricities for the Je�cot rotor, a comparison between
results of this work (marked as E1-solid line) and the
equilibrium solutions reported in [4] (marked as E2-dashed
lines); U = 0:3, M1 = 0:75, M2 = 0:25, !r=!c = 0:5,
!b=!c = 0:3.

Flexible Rotor-Modi�ed Damper-Under
Gyroscopic E�ect

Figure 4, reproduced from [6], is a schematic repre-
sentation of a rotor-bearing rig, speci�cally designed
to evaluate the ability of squeeze �lm dampers to
attenuate critical speeds due to gyroscopic e�ects. This
experimental test rig was also used to evaluate a tran-
sient method of solution for predicting the frequency

Figure 4. Dynamic model of test rig, reproduced from [6].

response of general multi-mass rotor bearing systems
supported by squeeze �lm dampers.

The left hand end of the rotor with lumped mass
m3 is supported by self-aligning ball bearings, the disc
of mass m1 is centrally located and the right-hand end
of the rotor with lumped masses m2 and m4 is 
exibly
supported by a circumferentially grooved modi�ed
squeeze �lm damper together with centralizing springs
of constant radial sti�ness. All unbalance is assumed
to be at the disk resulting in disk mass eccentricities,
�1 and �2. Viscous damping corresponding to the disk,
c1 and c2, are assumed to be equal in the y and z
directions.

Working frequency extends beyond the pin-pin
critical speed of the rotor, !c, centralizing springs are
retained and the rotor is centrally preloaded. Such
a system results in synchronous circular orbit type
solutions. The equations of motion for this system,
in the form of Equation 1, are given by:

m1�x1 + c1 _x1 + k11x1 + k15x5 = m1�1!2 cos�1

+m1�2!2 cos�2;

m1�x2 + c1 _x2 + k22x2 + k26x6 = �m1g

+m1�1!2 sin�1 +m1�2!2 sin�2;

Id�x3 + c2 _x3 + Ip! _x4 + k33x3 + k36x6 =

� bm1�1!2 sin�1 + bm1�2!2 sin�2;

Id�x4 + c2 _x4 � Ip! _x3 + k44x4 + k45x5

= bm1�1!2 cos�1 � bm1�2!2 cos�2;

m2�x5 + c3 _x5 + k51x1 + k54x4 = 2Fy;

m2�x6 + c3 _x6 + k62x2 + k63x3 = 2Fz �m2g + pl1;

m4�x7 + c4 _x7 + k4x7 = �2Fy;

m4�x8 + c4 _x8 + k4x8 = �2Fz �m4g + pl2; (40)

where kij is the spring force in the ith degree of freedom
direction at the node associated with that degree of
freedom upon unit displacement in the jth degree
of freedom direction of the node associated with the
jth degree of freedom; all other displacements being
considered zero. The equations are in the form of
Equation 1 with r = 8 and q = 4. From the rig
measurements [6] the following data apply:

m1 = 9:059 kg;
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m2 = 2:106 kg;

m4 = 0:500 kg;

Id = 27:43� 10�3 kgm2;

Ip = 15:43� 10�3 kgm2;

c1 = 4:46 Ns/m;

c2 = 0:0854 Ns/m;

c3 = 0:973 Ns/m;

c4 = 0:973 Ns/m;

k11 = k22 = 380700 N/m;

k33 = k44 = �19273 Nm/rad;

k55 = k66 = 277050 N/m;

k51 = k62 = �190350 N/m;

k54 = �k63 = �42829 N/rad;

k4 = 277050� 20 N/m;

R = 0:0327 m;

C = 0:2� 10�3 m;

L = 0:01 m;

! = 0 to 320 Hz;

m1�1 = 0:498825� 10�3 kgm;

m1�2 = 0:337875� 10�3 kgm;

�1 = �2;

� = 15:717� 10�3 Ns/m2 at 25�C (Tellus 15):

Note that m4, c4 and k4 correspond to a modi�ed
squeeze �lm damper when the damper outer ring is
also 
exibly supported.

Using the above set of data, the frequency re-
sponse for damper inner and outer rings calculated by
using the harmonic balance method is summarized in
Figures 5a and 5b.

The accuracy of the results presented in Fig-
ure 5 can be examined by comparing them with the
results presented in [6]. Figure 6 from [6] presents
the frequency response of the same test rig. This
�gure presents the frequency response predicted by a

Figure 5a. Predicted frequency response of circular orbit
eccentricities for the centrally preloaded experimental
rotor, orbit of mass m2 relative to mass m4 (").

Figure 5b. Predicted frequency response of circular orbit
eccentricities for the centrally preloaded experimental
rotor, absolute eccentricities of masses m2 and m4 ("1 and
"2, respectively).

transient method of solution in comparison with the ex-
perimentally measured frequency response. The points
marked with squares present theoretical predictions
while the points with an asterisk present measured
frequency responses. The �rst critical speed of the test
rig is equal to 32.6 Hz and the second critical speed
is equal to 195.6 Hz [6]. The data points in Figure 6
are normalised for the 1st critical speed of the system.
Bearing in mind the normalization factor of 32.6 Hz and
comparing Figures 5a and 6, it becomes clear that the
eccentricity values predicted by the harmonic balance
method are comparable to those presented in Figure 6.

As the same data were used to obtain the results
presented in Figures 5a and 6, it can clearly be noted
that the damper eccentricity ratio and the critical
speeds predicted by the harmonic balance approach
are tightly related to the earlier predictions reported
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Figure 6. Frequency response of the test rig with
centrally supported damper [6]. A comparison between
predictions by a transient method of solution and
experimental measurements.

in [6]. As the rotor speed increases, the trends of
the damper movements predicted and measured by
the three di�erent methods are comparable; a credit
to the predictions of the harmonic balance approach
and to the accuracy of the strategy selected for the
development of this method.

CONCLUSION

The harmonic balance approach for �nding equilib-
rium solutions for general multi-degree of freedom
rotor bearing systems with squeeze �lm dampers can
result in a considerable reduction in the number of
simultaneous non-linear equations required to be solved
iteratively.

Weaknesses of the harmonic balance approach
include dependence on an e�ective convergent iterative
scheme for solving greatly reduced, yet high number of
simultaneous non-linear equations, and the di�culty
of ensuring that all possible equilibrium solutions have
been exhausted. Also, the method implicitly assumes
knowledge of the response fundamental frequency.

The converged equilibrium solution orbits are not
necessarily stable in the linear sense. Perturbation of
the equilibrium solutions results in as many second
order linear di�erential equations with periodic coe�-
cients as there are degrees of freedom. The Floquet the-
ory may be conveniently applied to determine stability,
particularly if the damper or bearing force components
are expressed directly in terms of �xed reference axes
directions.

Accuracy of the harmonic balance orbit predic-
tions was successfully tested for uncentralized rigid
rotors operating at high eccentricities for centralized
dampers supporting the Je�cott rotor and for a central-

ized and uncentralized 
exible rotor with gyroscopic
and bending criticals in the operating range.

NOMENCLATURE

Ak r � 1 vector of Fourier coe�cients
de�ned by Equation 3; k = 0; � � � ; n

Bk r � 1 vector of Fourier coe�cients
de�ned by Equation 3; k = 0; � � � ; n

B angular velocity for non-
dimensionalization =
�RL3=[(m1 + 2m2)!C3] in Figures 1
and 4

c1; � � � ; cn the damping coe�cients associated
with degrees of freedom x1; � � � ; xn in
Figures 1 and 4

C radial clearance of damper
C1 c1=[(m1=2 + m2)!] non-dimensional

damping in Figure 3
C r � r damping and gyroscopic matrix
C� r � r matrix de�ned by Equation 27
Ck r � 1 vector of Fourier coe�cients

de�ned by Equation 8; k = 0; � � � ; n
d diameter of rotor in Figure 4
D bearing or journal diameter
e; " journal eccentricity; " = e=C
E equilibrium value
F r � 1 vector of forces as de�ned in

Equation 1

F x; F _x q � q matrices of partial derivatives
de�ned by Equations 24 and 25

Fy; Fz 
uid �lm force components in the y
and z directions

G 2r � 2r fundamental matrix of the set
of 2r linear di�erential equations of the
perturbed equilibrium solution

h 
uid �lm thickness
I r � r identity matrix
k order of Fourier series component;

k = 0; 1; � � � ; n
k1; k2 sti�ness of retainer springs and rotor

segments in Figure 1
K r � r sti�ness matrix
K1 2k1=[(m1 + 2m2)!2], non-dimensional

sti�ness in Figure 3
K2 2k2=[(m1 + 2m2)!2], non-dimensional

sti�ness in Figure 3
K� r � r matrix de�ned by Equation 28
L length of axial land of damper
m m1=2 +m2
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m1; m2,
m3; m4

the lumped masses in Figures 1 and 4

M r � r mass matrix
M1 m1=[m1 + 2m2], non-dimensional mass

in Figure 3
M2 2m2=[m1 + 2m2], non-dimensional

mass in Figure 3
n highest harmonic of truncated Fourier

series
N integer, usually 1 or 2
O r � r null matrix
O r � 1 null vector
p degrees of freedom without nonlinear

forces; also gauge pressure relative to
cavitation pressure

pi; po inlet and outlet pressure
P preload for centralizing the damper
q degrees of freedom involving nonlinear

forces
Q;R r � r matrices de�ned by Equations 12

and 13
r degrees of freedom of rotor bearing

system
R bearing radius
Sk r � 1 vector of Fourier coe�cients

de�ned by Equation 8; k = 1; � � � ; n
t time
T r � r matrix de�ned by Equations 15

and 16
U unbalance parameter, �1m1=[(m1 +

2m2)C] = �=C
V;W r � 1 vectors de�ned by Equations 19,

20, 15 and 16, respectively
W Static load parameter = g=(C!2

b )
x; y; z coordinate system with x in direction

of shaft rotation and origin located
along the line joining bearing centres

X r � 1 vector of the degrees of freedom
Y r � 1 vector de�ned by Equation 30
Z axial coordinate measured from

bearing centre Ob in x direction;
Z = Z=L

�; �1; �2 location of unbalance eccentricities at
time (t) (Figures 1 and 4)


 speed or frequency ratio; 
 = !=!b
� eigenvalue of G
�k de�ned by Equation 4
� absolute viscosity of lubricant
� �1m1=(m1 + 2m2)
�1; �2 unbalance eccentricities at lumped

rotor mass in Figures 1 and 4

' angular location of point A from y axis
in Figure 2


 fundamental frequency of steady state
response

! angular velocity of rotor
!b a bearing parameter = �RL3=[(m1 +

2m2)C3] in Figure 3
!c a characteristic system frequency =p

(2k1=m1) in Figure 3
!r a characteristic system frequency =p

(k2=[(m1=2 +m2)] in Figure 3
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