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Determining Maximum Load Carrying
Capacity of Flexible Link Manipulators

M.H. Korayem1;�, R. Haghighi1, A. Nikoobin1,
A. Alamdari1 and A.H. Korayem1

Abstract. In this paper, an algorithm is proposed to improve the Maximum Load Carrying Capacity
(MLCC) of 
exible robot manipulators. The maximum allowable load which can be achieved by a 
exible
manipulator along a given trajectory is limited by the joints' actuator capacity and the end e�ector
accuracy constraint. In an open-loop approach, the end e�ector deviation from the prede�ned path is
signi�cant and the accuracy constraint restrains the maximum payload before actuators go into saturation
mode. By using a controller, the accuracy of tracking will improve. The actuator constraint is not a major
concern and, therefore, the full power of the actuators, which leads to an increase in the Maximum Load
Carrying Capacity, can be used. In this case, the controller can play an important role in improving the
maximum payload, so a robust controller is designed. However, the control strategy requires measurement
of the elastic variables' velocity, which is not conveniently measurable. So, a nonlinear observer is designed
to estimate these variables. A stability analysis of the proposed controller and state observer is performed
on the basis of the Lyapunov Direct Method. In order to verify the e�ectiveness of the presented method,
simulation is done for a two link 
exible manipulator. The obtained maximum payload for open and
closed-loop cases is compared, and the superiority of the method is illustrated.
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INTRODUCTION

Finding the full load motion for a given point-to-
point task can maximize the productivity and economic
usage of the manipulators. The maximum allowable
load of a �xed base manipulator is often de�ned as the
maximum value of the load that a robot manipulator is
able to carry on a desired trajectory which is based on a
consideration of inertia e�ects on this desired path [1].
For rigid manipulators, the maximum load on a given
trajectory is primarily constrained by the joint actuator
torque and its velocity characteristic. However, for

exible manipulators another constraint, i.e. maximum
allowable de
ection, must be considered.

The maximum load carrying capacity along the
given path can be determined in both open loop and
closed-loop cases. In most previous works dealing
with determining the DLCC along a given path, only
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dynamic equations have been used without considering
the controller, while most manipulators in industrial
applications are working based on feedback. In open
loop cases, several algorithms are proposed for �nd-
ing the maximum load carrying capacity of parallel
robots [2], rigid mobile manipulators [3], 
exible joint
manipulators [4], 
exible link manipulators [5], cable-
suspended parallel manipulators [6] and redundant
manipulators [7]. In the closed-loop case, the controller
type and its parameters have a signi�cant e�ect on
increasing the maximum payload. In [8], a closed-loop
approach has been employed to determine the DLCC of
a 
exible joint manipulator by considering a feedback
linearization controller to track a prede�ned path.
Another work, based on a sliding mode technique, has
been undertaken for 
exible joint manipulators in [9].

In 
exible link manipulators, strong coupling
between the nonlinear rigid-body motions and the
linear elastic displacements of the links as well as the
strong coupling between the elastic displacements of
the links during large motions of the manipulator,
makes the dynamics of 
exible manipulators as highly
coupled nonlinear time-varying MIMO systems with
distributed parameters [10]. Complexities, such as
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the non-minimum-phase property of the tip transfer
function that contains unstable zeros and complex
poles in this transfer function and the existence of
unstructured uncertainties due to the truncation of
high-order resonance modes and system nonlinearities
makes it di�cult to accurately position the tip of
the 
exible manipulator [11-16]. Moreover, it creates
a very challenging task in designing controllers for

exible manipulators. One method that is excessively
used in the control of nonlinear systems is feedback
linearization [17-19]. However, for 
exible link robots,
due to highly nonlinear coupled dynamics and the
existence of passive degrees-of-freedom, only Partial
Feedback Linearization (PFL) is suitable. For 
exible
link robots, the portion of the dynamics corresponding
to the active degrees of freedom can be linearized by
the nonlinear feedback. The remaining portion of the
dynamics after such partial feedback linearization is
nonlinear and represents internal dynamics [20]. A
major drawback in this method, which cannot be used
solely as a controller, is its lack of robustness with
respect to uncertainties.

Sliding Mode Control (SMC), as a powerful
method of tackling uncertain nonlinear systems, is
particularly suited for complex systems such as 
exible
manipulators [21]. In the design of SMC, it is assumed
that the control can be switched from one structure
to another in�nitely fast. However, because of the
switching delay computation and the limitation of
physical actuators that cannot handle the switching of
the control signal at an in�nite rate, it is practically
impossible to achieve high-speed switching control. As
a result of this imperfect control switching between
structures, the system trajectory appears to chatter
instead of sliding along the switching surface. Chatter
involves high frequency control switching and may lead
to the excitation of previously neglected high frequency
system dynamics. Smoothing techniques, such as
boundary layer normalization and replacement of the
discontinuous control term by a fuzzy system [22,23]
have been employed. The smoothing of control dis-
continuity inside the boundary layer essentially assigns
a lowpass �lter structure to the local dynamics of the
variable, s, thus eliminating chatter.

An accurate knowledge of arm state variables
is required by many advanced control techniques for

exible multi-link robots [24-29]. It can be conveniently
achieved by using a state observer. Some works have
been done using linear observers derived for a linearized
model of the arm [30]. Other papers propose the use of
nonlinear state observers to obtain the values of unmea-
surable state variables [31-32]. In 
exible manipulators,
it is possible to measure joint positions, velocities and

exible modes of manipulators using shaft encoders,
tachometers and strain gauges, respectively. However,
measuring the 
exural generalized velocities cannot

be easily or accurately accomplished. Thus, a state
observer is desirable in these circumstances. In order
to decrease computational e�ort, a reduced order ob-
server for estimating only 
exible variables can be very
helpful. The observer is designed based on a sliding
mode approach. Similar to sliding mode controllers,
sliding mode observers are designed by using sliding
surfaces and o�er robustness against both parametric
uncertainties and external disturbances. The proposed
observer requires positions and velocities of joints as
well as 
exible modes, and it estimates the rates of
change of 
exible modes.

An industrial manipulator usually requires six
Degrees Of Freedom (DOF) in order to e�ciently drive
the gripper to a speci�ed position with a prescribed
orientation in the workspace. If it is constructed as
a lightweight manipulator, practically, only the two-
DOF rotary long links will be deformed under heavy
loading and fast motion. So, the simulation is done
for a two link 
exible manipulator. In order to show
the e�ectiveness of the proposed closed-loop algorithm,
the simulation is done for both open loop and closed-
loop cases. In closed-loop cases, the controller and the
observer have been designed based on the �rst elastic
mode of the beam, while the dynamic model is based
on two elastic modes of the beam. The second elastic
mode has been included to investigate the e�ects of
unstructured uncertainties on the overall performance
of the closed-loop system.

The paper is organized as follows: First, the gen-
eral dynamic equations of a 
exible link manipulator
are derived. Then, by using partial feedback lineariza-
tion, a controller is designed for a partially linearized
model of a 
exible manipulator based on a sliding mode
approach. Following that, an algorithm is proposed
to compute maximum allowable load by considering
the limiting factors. Finally, some numerical result is
shown.

DYNAMICS OF FLEXIBLE-LINK
MANIPULATOR

Assuming that each arm does not undergo torsional
deformations and considering an Euler-Bernoulli beam
for each link, 
exible-link robotic manipulators can be
described as in�nite-dimensional dynamical systems by
using partial di�erential equations [33] (see Figure 1).
In order to derive a �nite-dimensional ordinary dif-
ferential equation, an approximation approach using
assumed mode methods, is taken into account.

By applying the Lagrange formulation, the dy-
namics of any multi-link 
exible-link robot can be
represented by:

M(q)�q +N(q; _q) = �; (1)
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Figure 1. Flexible manipulator.

where q(t) = [qTr ; qTf ]T , in which qr is the vector of rigid
modes (generalized joint coordinates) and qf is the
vector of 
exible modes. M(q) represents the inertia
matrix, N(q; _q) is a n � 1 vector of centripetal and
Coriolis velocity terms.

The 
exible manipulator dynamics are parti-
tioned into rigid and 
exible degrees-of-freedom as:(

Mrr�qr +Mrf �qf +Nr = u I
Mfr�qr +Mff �qf +Nf = 0 II

(2)

where the following properties are known to be veri�ed
by the Lagrangian structure de�nite matrices.

Properties
I. M(q);Mrr(q) and Mff (q) are non-singular, sym-

metric, positive de�nite matrices.
II. Mrr+MrfM�1

ff Mfr is a symmetric positive-de�nite
matrix.

CONTROLLER DESIGN

The controller design of a 
exible link manipulator
is divided into two steps. First, by applying partial
feedback linearization, the dynamic of the 
exible link
is divided into two parts: a partially linearized model
and an internal model. Second, use of the sliding mode
approach forces the state trajectory of a system to the
origin in the error phase hyperplane during two distinct
phases: reaching phase and sliding phase.

Partial Feedback Linearization

For 
exible manipulators that have a passive degree,
instead of applying fully feedback linearization, it is
convenient to use partial feedback linearization. The
formulation of partial feedback linearization is as fol-
lows.

From Equation 2-II, �qf can be expressed as below:

�qf = M�1
ff [Mfr�qr �Nf ]: (3)

Substituting for �qf from Equation 3 in Equation 2-I
gives:

[Mrr +MrfM�1
ff Mfr]�qr +Nr �MrfM�1

ff Nf = u:
(4)

It can be easily seen that Equation 4 is similar in
form to rigid manipulator modeling with the equivalent
symmetric and positive de�nite mass matrix, Mrr +
MrfM�1

ff Mfr, based on property II. The zero dynamic
is de�ned for a nonlinear system Equation 2 by putting
qr and its derivatives equal to zero. So:

Mff �qf +Nf = 0; (5)

where Nf is simpli�ed to Kqf where:

K = diagf!2
11; !

2
12; : : : ; !

2
ij ; � � � ; !2

nmg: (6)

So, Equation 5 can be written as:

Mff �qf +Kqf = 0: (7)

Since Mff and K are the positive de�nite symmetric
matrices, the equilibrium point [qf ; _qf ] of Equation 7 is
stable in the sense of Lyapunov but not asymptotically
stable.

Sliding Mode Design

In the sliding-mode control theory, control dynamics
have two sequential modes; the �rst is the reaching
mode and the second is the sliding mode. In particular,
the Lyapunov sliding condition forces system states to
reach a hyperplane and keeps them sliding on this hy-
perplane. Essentially, a SMC design is composed of two
phases: hyperplane design and controller design. There
are various methods for designing hyperplane [34],
however, in this paper, a method proposed by Slotine is
used [35]. In this method, the sliding surface is de�ned
as:

s = ( _~qr + �0 _~qf ) + �(~qr + �0~qf ); (8)

where ~qr = qr � qrefr and ~qf = qf � qreff . qrefr is the
desired trajectory of joints and qreff = 0 because the
desired value for 
exible variables is zero. Also, � and
�0 are positive constants.

To determine the control law, the derivative of the
sliding surface must be determined.

_s = (�~qr + �0�~qf ) + �( _~qr + �0 _~qf ): (9)

Treating the term �0�~qf as disturbance, Equation 9 is
rearranged as below:

_s = �qr � �qrefr + �( _~qr + �0 _~qf ): (10)
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Since the sliding condition is de�ned by:

_s � �K sign(s); (11)

so, Equation 10 in order to satisfy the sliding condition
must be written as:

�qr � �qrefr + �( _~qr + �0 _~qf ) = �K sign(s): (12)

By substituting �qr from Equation 4, Equation 12
becomes:

[Mrr +MrfM�1
ff Mfr]�1[u�Nr �MrfM�1

ff Nf ]

� (�qrefr � �( _~qr + �0 _~qf ) = �K sign(s): (13)

By extracting u from Equation 13, the control law is
de�ned as:

u = M [�qrefr � �( _~qr + �0 _~qf )�K sign(s)] +N; (14)

where M = [Mrr + MrfM�1
ff Mfr] and N = Nr �

MrfM�1
ff Nf . From the practical point of view, deriving

the exact model of the system is a hard task, so it is
convenient to use the nominal model. By de�ning the
M̂ and N̂ which are the nominal values of M and N ,
respectively, the control law can be rewritten as follows:

u = M̂ [�qrefr � �( _~qr + �0 _~qf )�K sign(s)] + N̂ : (15)

Stability Analysis of SMC

For purpose of design integrity, a simple stability anal-
ysis based on the Lyapunov Direct method is carried
out. The Lyapunov function candidate is de�ned as
follows:

V =
1
2
s2: (16)

Di�erentiating Equation 16 and using Equations 4, 11
and 15, one can write:

_V =s _s = sfM�1[M̂ [�qrefr � �( _~qr + �0 _~qf )

�K sign(s)]+N̂ �N ]��qrefr ��( _~qr + �0 _~qf )g: (17)

By using simpli�cation, Equation 17 becomes:

_V =sfM�1M̂ [�qrefr � �( _~qr + �0 _~qf )�K sign(s)]

+M�1�N � �qrefr � �( _~qr + �0 _~qf )g: (18)

For stability _V must be negative. Since _V = s _s another
condition that assures the stability of the system can be
de�ned as s _s � ��jsj or _s � �� sign(s) which is called

a sliding condition. By applying the sliding condition,
we have:

(M�1M̂ � I)(�qrefr � �( _~qr + �0 _~qf ))

�M�1M̂:K:sign(s) +M�1�N � ��:sign(s): (19)

By multiplication of both sides of Equation 19 by
M̂�1M , one gets:

(I � M̂�1M)(�qrefr � �( _~qr + �0 _~qf ))

�K:sign(s) + M̂�1�N � �M̂�1M�:sign(s): (20)

So, the condition which guarantees the stability can be
expressed as follows:

K >j(I � M̂�1M)(�qrefr � �( _~qr + �0 _~qf ))

+ M̂�1�N j+ M̂�1M�: (21)

Since M is unknown, one can de�ne the following
known bounds:

Mmin �M �Mmax: (22)

Since M acts multiplicatively in the dynamics of the
manipulator, it is reasonable to choose the estimate M̂
of M as the geometric means of the above bounds [35]:

M̂ = (MminMmax)1=2: (23)

Therefore, the bounds for M̂�1M can be de�ned as
follows:

	�1 � M̂�1M � 	; (24)

where:

	 =
�
Mmax

Mmin

�1=2

: (25)

So, Equation 21 can be rewritten in terms of 	:

K> j(I �	)(�qrefr ��( _~qr+�0 _~qf ))+M̂�1�N j+	�:
(26)

Boundary Layer

An essential drawback of SMC is that owing to the
signum term, it causes abrupt changes (chattering) to
the control signal, u. However, this can be avoided by
introducing a boundary layer (�) from both sides of
the sliding surface, s = 0, as shown in Figure 2.

By applying a boundary layer at both sides of the
sliding surface, Equation 15 is written as below:

u = M̂
h
�qrefr � �( _~qr + �0 _~qf )�K sat

� s
�

�i
+ N̂ ;

(27)
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Figure 2. Variable boundary layer.

where \sat" is saturation function. If we rewrite _s
based on the \sat" function, we have:

_s =(M�1M̂ � I)(�qrefr � �( _~qr + �0 _~qf ))

�M�1M̂:K:sat
� s

�

�
+M�1�N: (28)

By considering the system trajectories inside the
boundary layer:

_s =(M�1M̂ � I)(�qrefr � �( _~qr + �0 _~qf ))

�M�1M̂:K:
� s

�

�
+M�1�N; (29)

and Equation 29 can be rewritten as:

_s+
M�1M̂:K

�
s = (M�1M̂ � I)

(�qrefr � �( _~qr + �0 _~qf )) +M�1�N: (30)

In fact, Equation 30 shows that the smoothing of con-
trol discontinuity inside the boundary layer essentially
assigns a low pass �lter structure to the local dynamics
of the variable, s, thus, eliminating chattering. Fur-
thermore, the sliding condition is rede�ned as below:

_s � ( _��K)sign(s): (31)

In the presence of a boundary layer, we need to
guarantee that the distance from the boundary layer
always decreases. System robustness is a function of
the boundary layer; in other words, a thinner boundary
layer gives more robust control, but larger chattering.

STATE OBSERVER DESIGN

In the control law (Equation 15), measurements of the
velocity of elastic variables are needed and since it

cannot easily be measured, there is a demand to design
a state observer for the measuring of these variables.
By extracting �qr from Equation 2-I, and substituting
in Equation 2-II, we have:

MfrM�1
rr [u�Mrf �qf �Nr] +Mff �qf +Nf = 0; (32)

and it can be rearranged to:

[Mff �MfrM�1
rr Mrf ]�qf +Nf �MfrM�1

rr Nr

+MfrM�1
rr u = 0: (33)

Equation 33 can be expressed in state space form:8<: _xf1 = xf2

_xf2 =[Mff �MfrM�1
rr Mrf ]�1

[�Nf +MfrM�1
rr Nr �MfrM�1

rr u]
(34)

where xf1 = qf and xf2 = _qf .
Using a sliding mode observer technique, the

dynamic of the observer is written as:(
_̂xf1 = x̂f2 + k11~xf1 + k12sign(~xf1)
_̂xf2 = f̂(xr; xf1 ; x̂f2) + k21~xf1 + k22sign(~xf1) (35)

where f̂(xr; xf1 ; x̂f2) = [Mff�MfrM�1
rr Mrf ]�1[�Nf+

MfrM�1
rr Nr�MfrM�1

rr u] and kij are positive parame-
ters. ~xf1 is the estimation error and equal to xf1 � x̂f1 .

The dynamic of error is achieved by subtracting
Equation 34 from Equation 35:(

_~xf1 = ~xf2 � k11~xf1 � k12sign(~xf1)
_~xf2 = ~f � k21~xf1 � k22sign(~xf1)

(36)

where it can be written in the following simple form:

_e = ~f� �Kee�Kssign(e); (37)

where ~f� =
�

~xf2
~f

�
and e =

�
~xf1

~xf2

�
. Using Taylor

expansion around e = 0, Equation 37 can be given
as:

_e = Ae+O(e2)�Ks sign(e); (38)

where:

A =

 
@ ~f�
@e
�Ke

!
e=0

=

"
0 1

@ ~f
@~xf1

��~xf1=0
@ ~f
@~xf2

��~xf2=0

#
+
��k11 0
�k21 0

�
: (39)

The eigenvalues of A can be speci�cally placed by
properly choosing Ke. If matrix A has negative
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eigenvalues (it must be a negative de�nite matrix), then
the error will converge to zero.

From matrix algebra, we know that a square ma-
trix is negative de�nite if determinants of all principal
minors have the following pattern:

jD1j < 0; jD2j > 0; jD3j < 0; � � � ; (40)

where Di is the ith principle minor. So, by applying
the above conditions, we have:

�k11
@ ~f
@~xf2

�����~xf2=0 + k21 � @ ~f
@~xf1

�����
~xf1=0

> 0: (41)

It can be easily seen that, if k21 is chosen big enough,
the above condition is satis�ed.

DETERMINING MAXIMUM LOAD
CARRYING CAPACITY

The maximum allowable load of a �xed base manipu-
lator is often de�ned as the maximum payload that
can be carried by the manipulator with acceptable
accuracy. For rigid manipulators, it can be seen that
MLCC is directly in relation to actuator strength, while
for 
exible manipulators additional constraints must be
considered and that is maximum allowable de
ection
which depends on 
exible variables.

The above condition can be taken into account
in MLCC determination by imposing a constraint on
the end e�ector de
ection, in addition to the actua-
tor torque constraint imposed for rigid manipulators.
De
ection of the end e�ector can cause excessive
de
ection from the pre-de�ned trajectory, even though
the joint torque constraints are not violated. By consid-
ering the actuator torque and de
ection constraints and
adopting a logical computing method, the maximum
load-carrying capacity of a 
exible manipulator for a
pre-de�ned trajectory can be computed.

MLCC can be obtained in either open loop or
closed-loop cases. In open loop, the controller is not
considered, and only a dynamic equation is used. In
closed-loop cases, MLCC is obtained, while both the
dynamic equation and controller are considered. The
actuator torque constraint is formulated on the basis of
the typical torque-speed characteristics of DC motors:(

�U = K1 �K2 _q
�L = �K1 �K2 _q

(42)

where �U and �L are the upper bound and the lower
bound of the actuator constraint, respectively. The
coe�cients Ki are de�ned as:(

K1 = Ts
K2 = Ts

!nl

(43)

where Ts is the stall torque and !nl is the maximum
no-load speed of the motor.

In the following sections, determining the MLCC
is presented for these two cases.

Determining MLCC in Open Loop Case

For computing the maximum load carrying capacity in
an open loop condition, the following steps must be
taken:

1. Determining the actuator path within which the
arms are in fully extended con�gurations;

2. Finding qr; _qr; �qr by solving the inverse dynamic for
the same rigid manipulator;

3. Determining qf ; _qf ; �qf from Equation 2-II;
4. Computation of the actuators torque (�nl) and end

e�ector path for a no load manipulator;
5. Choosing an initial value for mmax;
6. Putting mp = mmax and computing the actuators

torque (�l) and end e�ector path;
7. Compute the actuators bounds based on Equa-

tions 42 and 43;
8. Determining the load coe�cient Ca based on actu-

ator constraints [8]:

Ca =min(min(C�rst joint
a (1 : n));

min(Csecond joint
a (1 : n))): (44)

9. Determining the load coe�cient Cp based on accu-
racy constraints:

Cp(k) =
Rp ��e(k)

max(�e(k))�max(�n(k))
; (45)

where �e(k) is the error of the end e�ector in the
presence of load and �n(k) is the error of the end
e�ector without load.

10. Determining the load coe�cient C

C = min(Cp; Ca): (46)

11. If jCi+1 � Cij � error then mmax = C � mp,
otherwise mp = C �mp and go to 6.

Determining MLCC in Closed-Loop Case

The algorithm used for �nding MLCC in closed-loop
cases, as shown in Figure 3. In closed-loop cases,
the actuator constraint is the major parameter in
determining MLCC, while in open loop cases the end
e�ector accuracy is the major parameter in determining
MLCC. The desired path is chosen the same as in
open loop cases to compare these two cases. Since in
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Figure 3. Flowchart of computing dynamic load carrying
capacity.

closed-loop cases the system input is computed by a
controller for applying the actuator constraints instead
of de�ning the load coe�cient, we put a constraint on
the controller output such that, if controller output
doesn't violate the actuator constraint, the system
input is equal to controller output, otherwise, it is equal
to the bounds of actuator constraints.

The accuracy constraint is checked by the distance
between the desired and actual trajectory, which must
not violate the accuracy constraint.

As can be seen, the controller plays a major role
in determining the maximum load carrying capacity;
in other words, improvement in controller leads to
increasing MLCC.

SIMULATION STUDIES

To investigate the proposed algorithm, some simulation
studies are presented for a two link 
exible manipu-
lator. In these studies, a speci�ed trajectory for the
load is assumed. Note that the second elastic mode

is included in the model to investigate the e�ects of
unstructured uncertainties on the overall performance
of the closed-loop system. By applying the proposed
algorithm for a closed-loop plant, the maximum allow-
able load was computed to be mload = 4:51, meanwhile,
the maximum allowable loop for an open loop in
three iterations was found to be mload = 3:63. The
simulation results are shown in Figures 4 to 7. The
parameters used in the simulation are given in Table 1.

Figure 4 shows the elastic variables in an open
loop case, wherein these variables do not converge
to zero. Figure 5 shows that in a closed loop case,
the capacity of the actuators is better in comparison
to the open loop case. Figure 6 shows the good
performance of the state observer in estimating elastic
variable velocities. Moreover, it shows the convergence
of 
exible link vibrations. Figure 7 shows the elastic
variables used in the dynamic of the system, but in
the controller and observer design, it is neglected to
show the robustness of the controller, with respect to
unstructured uncertainties.

Another simulation is done for a 
exible robot
manipulator with less rigidity. The parameters of the
simulation are shown in Table 2. In this case, the

Figure 4. Flexible mode shapes in open loop case.

Figure 5. Control torque in two cases; open loop (solid
thin line) and closed-loop (dashed thick line).
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Figure 6. Flexible mode shapes in two cases (without load and full load); the actual signal is shown in solid thin line and
the estimated variables are shown in dashed thick line (closed-loop case).
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Figure 7. Flexible mode shapes considered only in plant
(closed-loop case).

Table 1. Parameters of the simulation.

Parameter Value Unit

Length of links L1 = L2 = 1 m

Density �1 = �2 = 4:68 kg/m

Flexural rigidity E1I1 = E2I2 = 1025 N.m2

Actuator stall torque Ts1 = 66; Ts2 = 29 N.m

Actuator no-load speed !n1 = !n2 = 3:5 Rad/s

Controller constants � = 10;K = 25

Observer constants k11 = 100, k12 = 1e5

k21 = 100, k22 = 1e5

Table 2. Parameters used for simulation.

Parameter Value Unit

Length of links L1 = L2 = 1 m

Density �1 = �2 = 4:68 kg/m

Flexural rigidity E1I1 = E2I2 = 100 N.m2

Actuator stall torque Ts1 = 46, Ts2 = 19 N.m

Actuator no-load speed !n1 = !n2 = 3:5 Rad/s

maximum load carrying capacity computed as mload =
2:74 in open loop and as mload = 3:87 in closed loop.
The simulation result is shown in Figures 8 and 9.

CONCLUSION

The main objective of this investigation was to deter-
mine the maximum load for a 
exible link manipulator
in the presence of a controller. Therefore, in this case,

Figure 8. Control torque in two cases; closed-loop (solid
thin line) and open loop (dashed thick line).

Figure 9. End e�ector path in two cases; open loop and
closed-loop.

except for actuator constraints, end e�ector accuracy
should be considered. The controller is designed based
on a sliding mode method, and for alleviation of
the chattering phenomena a boundary layer is used.
However, in a control law, the velocity of the elastic
variables, which cannot be measured easily, is used.
So, a nonlinear state observer is designed based on a
sliding mode approach to estimate these variables. The
controllers and the observer have been designed in this
study, based on a simpli�ed version of the model of
the arm in which only the �rst elastic mode of the link
is taken into account, while for the model, the second
mode shape is also considered in order to investigate
the e�ects of unstructured uncertainties on the overall
performance of the closed-loop system. By applying
the proposed algorithm for a closed-loop case, the
maximum allowable load computed as mload = 4:51,
meanwhile, the maximum allowable loop for open loop
was found as mload = 3:63.
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