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E�ect of Payload Variation on the
Residual Vibration of Flexible

Manipulators at the End of a Given Path

M.H. Korayem1;�, A. Heidari1 and A. Nikoobin1

Abstract. In rest-to-rest motion, the gripper of the 
exible manipulators vibrates not only in the
duration of the tracking but also after reaching the goal point. This vibration, which is called residual
vibration, continues with a speci�c amplitude and frequency after reaching the goal point. In this paper,
the e�ect of a carried payload on the residual vibration magnitude is investigated. The �nite element
method is employed for modeling and deriving the dynamic equations of the manipulator with 
exible
links and joints. Compared with previous works, the assumptions of low frequency and small amplitude of
vibration about the �nal con�guration are released and all terms in the dynamic equations are taken into
account. Some simulations for a two-link 
exible manipulator along two given paths are then performed
for di�erent payloads at the end-e�ector. In the �rst state, a polynomial-Fourier function is considered for
joint motion and then a linear path for gripper motion. Finally, a straightforward approach for predicting
the residual vibration amplitude, in terms of the payload, is proposed.
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INTRODUCTION

Most robotic manipulators are designed and built in
such a manner to maximize sti�ness in an attempt to
minimize the system vibration and achieve good posi-
tional accuracy. High sti�ness is commonly achieved by
using heavy material. This, in turn, limits the speed
of operation of the robot manipulation, increases the
size of the actuator, boosts energy consumption and
increases the overall cost. Flexible robot manipulators
exhibit many advantages over rigid ones: They require
less material, are lighter in weight, consume less power,
require smaller actuators, are more maneuverable and
transportable, have less overall cost and a higher
payload to robot weight ratio [1]. However, due
to the 
exible nature of the system, the dynamics
are highly non-linear and complex. Problems arise
due to the lack of sensing, vibration due to system

exibility, imprecise positional accuracy and di�culty
in obtaining an accurate model for the system [2]. The
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complexity of this problem increases dramatically when
a 
exible manipulator carries a payload. Practically,
a robot is required to perform a single or sequential
task such as picking up a payload, moving to a
speci�ed location or along a pre-planned trajectory and
placing the payload. However, the dynamic behavior
of the manipulator is signi�cantly a�ected by payload
variations, such that it can change the amplitude and
frequency of the vibration. If the advantages associated
with lightness are not to be sacri�ced, we should
have a comprehensive knowledge of their dynamic and
vibratory behavior.

These vibrations can be divided into two parts:
vibration along the path and the residual vibration
after reaching the goal point. The residual vibration
is caused by the residual kinetic and strain energy
of the robot arm at the goal position. Due to its

exible nature, it vibrates and is not able to satisfy
the desired path accurately; after reaching the end
point this vibration continues. As a result, the robot
manipulator needs some additional settling time after
�nishing each path and before starting a new one.
Residual vibration can e�ciently a�ect manipulator
performance and e�ciency during rest-to-rest motion
or pick-and-place tasks. Various approaches have pre-
viously been developed for reducing residual vibration.



E�ect of Payload Variation on the Residual Vibration 333

Most work was based on either open-loop or closed-
loop control strategies [3-6]. Residual vibration not
only arises from system dynamic speci�cations but
also depends on the path. In [7-9], residual vibration
reduction is performed with the aid of path planning.
As mentioned before, manipulator dynamical behavior
depends considerably on payload mass. In [10], the
e�ect of payload on vibration excitation along a path
is studied and, in [11], the e�ect of payload changes on
the resonance frequency of a single 
exible link manip-
ulator is considered; the e�ect of payload variation on
residual vibration has not been considered up to now.

The suppression of vibration by the use of open
loop control approaches or path planning methods
is highly computational because of nonlinear, highly
coupled and too lengthy equations. Furthermore, these
methods frequently are combined with a close loop
control strategy that necessitates the use of actuators
and sensors that can work at high frequencies. Em-
ployment of these control methods requires the use of
high speed computers, expensive sensors, actuators and
other equipment. Therefore, using an open loop control
without using the close loop control is more practical
for a 
exible robot manipulator, especially when a high
accuracy in tracking or positioning is not needed.

In this paper, the e�ect of payload on the residual
vibration of 
exible robot manipulators at the end of
the speci�ed path is studied. The dynamic equation is
derived by the Finite Element Method (FEM). One of
the main advantages of FEM over most approximate
solution methods is that the boundary conditions and
the changes in geometry and physical properties can
easily be considered to derive closed-form equations
of motion. Unlike previous works, the 
exibility in
robot joints is considered in deriving the dynamic
equations. Using the obtained equations, an approach
is developed to determine the trajectory for a given
path during the motion and after reaching the goal
point. Additionally, all nonlinear terms are used to
calculate residual vibration. Then, two simulations are
performed for a two-link 
exible manipulator along a
linear path for the end e�ector and also for a combined
Fourier-polynomial path for the joints. Then, these
simulations are repeated for a 
exible link and joint
manipulator. Finally, using the obtained results, a
new approach for prediction of the residual vibration
amplitude, in terms of the payload mass, is presented.

MODEL DEVELOPMENT FOR A N-LINK
FLEXIBLE MANIPULATOR

A multiple 
exible link and joint manipulator consist-
ing of mlink 
exible links and mjoint 
exible revolute
joints is considered in the modeling (Figure 1). The
authors in [12] have derived the dynamic equations
of a 
exible link manipulator using the �nite element

Figure 1. Schema of a two-link 
exible manipulator.

approach without considering joint 
exibility. In the
present paper, 
exibility is considered in both joints
and links. The links are laid in a serial fashion and are
actuated by rotors and hubs with individual motors.
An inertial payload mass, mL, is connected to the distal
link. The proximal link is clamped and connected to
the rotor with a hub.

Consider link i to be divided into elements `i1',
`i2', : : : , `ij', � � � `ini' of equal length, li, where ni is
the number of elements of the ith link. Let us de�ne
the following notation, where subscript i refers to link
i, and subscript ij refer to the jth element of link i.
OXY is the inertia system of coordinates, OiXiYi is
the body-�xed system of coordinates attached to link
i. ui;2j�1 is the 
exural displacement at the common
junction of elements `i(j � 1)' and `ij' of link i. ui;2j
is the 
exural slope at the tip of the common junction
of elements `i(j � 1)' and `ij' of link i. This slope is
measured with respect to axis OiXi.

For each element, kinetic energy, Tij , and poten-
tial energy, Vij , can be computed in terms of a selected
system of generalized coordinates, q, and their rate of
change with respect to time, _q. It is convenient to
de�ne ri as the position vector of link i in the inertia
reference frame in terms of the position of each point in
the body-�xed coordinate system, OiXiYi (Figure 1),
i.e.:

~r1 = T 1
0

�
(j � 1)l1 + x1j

y1j

�
;

~ri =
�
T 1

0

�
L1

u2n1+1

�
+ � � �+ T 1

0 T
2
1 � � �T i�1

i�2

�
Li

u2ni+1

��
+ T 1

0 T
2
1 � � �T ii�1

�
(j � 1)li + x2j

y2j

�
;

for i = 2; 3; � � � NL (Number of Links); (1)
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where T ii�1 is the transformation matrix from OiXiYi
to its previous body-�xed coordinate system. It is
obvious that O0X0Y0 = OXY is the inertia system
of coordinates.

T 1
0 =

�
cos �1 � sin �1
sin �1 cos �1

�
;

T ii�1 =
�
cos(�i + u2ni�1+2) � sin(�i + u2ni�1+2)
sin(�i + u2ni�1+2) cos(�i + u2ni�1+2)

�
;

for i = 2; 3; � � �NL; (2)

where xij is the distance along OiXi in a body-�xed
coordinate system from node (j � 1), li is the length
of the elements in the ith link and �i is the joint angle
between link i and i � 1 (Figure 1). Finally, yij is
de�ned as the element displacement and expresses the
deformation of each link due to its original shape:

yij =
4X
k=1

�k(xij)ui;2j�2+k(t); (3)

where u is 
exural displacement at the common junc-
tion of elements `i(j � 1)' and `ij' of link i and �k are
the shape functions (Hermitian functions) of a beam
element (Equation A1). Consequently, kinetic energy,
Tij , and potential energy, Vij , for the jth element of
link i can be computed by the following equation [12]:

Tij =
1
2

Z li

0
mi

�
@rTi
@t

:
@ri
@t

�
dxij ; (4)

Vij = Vgij + Veij

=
Z li

0
mig

�
0 1

�
T 1

0

�
(j � 1)li + xij

yij

�
dxij

+
1
2

Z li

0
EIi

"
@2yij
@x2

ij

#
dxij : (5)

As can be seen, potential energy consists of two parts.
One part is due to gravity (Vgij) and another is related
to the elasticity of the links, Veij . These energies
of elements are then combined to obtain the total
kinetic energy, T , and potential energy, V , for each
link. Total kinetic and potential energies of links are
computed for a two-link robot in Equations A2 and A3.
Knowledge of the kinetic and potential energies is
needed to specify the Lagrangian $ of the system, given
by $ = T � V . The overall Lagrangian for a two-link

exible manipulator is calculated in Equation A4.

By replacing the selected system of a local gen-
eralized coordinate, q, applying Lagrange's equation,
performing some algebraic manipulations and applying

associated boundary conditions, the compact form of
the dynamic equations becomes:

M(q)�q + C(q; _q) +G(q) +Kq = �: (6)

M(q) is the manipulator con�guration dependent gen-
eralized mass matrix, C(q; _q) considers the contribution
of other dynamic forces such as centrifugal and Coriolis
forces, while G is the vector of gravitational terms and
K is the generalized structural sti�ness matrix. Finally,
� is the vector of input torques (or forces) applied at
the joints. The applied local generalized coordinate
system, q, consists of all variables used in the modeling,
as depicted in Figure 1:

q = f�1; �2; � � � ; �m; u1;1; u1;2; � � � ; u1;2n1+2; � � � ;
um;1; um;2 � � � ; um;2nm+2g : (7)

The extension of the model to a case where a load, mL,
is added at the tip of the manipulator can be carried
out by the mentioned approach. For computing kinetic
and potential energies of the tip mass, position rm can
be expressed as follows:

~rm = T 1
0

�
L1

u2n1+1

�
+ � � �+ T 1

0 T
2
1 � � �T i�1

i�2

�
Li

u2ni+1

�
;

for i = 2; 3; � � �NL; (8)

where u2ni+1 is the 
exural displacement of the of
link i and Li is the total length of this link. After
computing the kinetic and potential energies of the tip
mass from Equations 4 and 5, they can be added to
the total energy of the robot in the Lagrangian of the
system. Then, the matrix di�erential model of the
overall system, with additional mass at the tip, can
be derived through Lagrange equations [13].

On the other hand, Equation 6 can be separated
and rewritten, based on rigid and 
exible deformation
variables, as follows:

Mrr�qr +Mrf �qf + Crr _qr + Crf _qf +Gr(q) = �; (9)

Mrf �qr+Mff �qf+Cff _qf+Cfr _qr+Gf (q)+Kqf =0;
(10)

where qr = f�1; �2g and qf = fu1;1; � � � ; u1;2ni+2;� � � ; um;1; � � � ; um;2nm+2g are generalized joint position
and 
exible deformation variables, respectively, Mrr is
the manipulator con�guration dependent generalized
mass matrix of the rigid part, Mff is that of the

exible part, Mrf is that for the interaction of rigid
and 
exible variables, Crr, and Cff are the generalized
matrix of Coriolis and centrifugal terms for rigid and

exible parts, respectively, Crf and Cfr are those for
the interaction of rigid and 
exible variables, Gr and
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Gf are the vector of gravitational terms for rigid and

exible parts, respectively, and K is the generalized
structural sti�ness.

Up to here, the dynamic model of a robot manip-
ulator with 
exible links and considering the payload
at the end e�ector has been justi�ed. For considering
joint 
exibility e�ects in dynamic simulations, the
elasticity at the ith joint can be modeled as a linear
torsional spring with spring constant, Kti. According
to Figure 2, �i is representative of motor rotation, while
�i shows joint rotation in modeling. By this assumption
and using Equations 9 and 10, the dynamic equations
of motion, considering both joint and link 
exibility,
will be changed as follows:

Mrr�qr +Mrf �qf + Crr _qr + Crf _qf +Gr(q)

+Kt(qr � qac) = 0; (11)

Mrf �qr+Mff �qf+Cff _qf+Cfr _qr+Gf+Kqf = 0; (12)

Ir�qac +Kt(qac � qr) = �; (13)

where qac = f�1; �2; � � � ; �mg represent the motor
angles, Kt = diag [kt1; kt2; � � � ; ktm] is the diagonal
matrix of the restoring force constant, which models
joint elasticity, Ir = diag [Ir1; Ir2; � � � ; Irm] is the
diagonal matrix which represents motor inertia, and
� is the vector of the input torque applied by the
actuators.

The above equations can be rearranged into the
�nal form as below:24Ir 0 0

0 Mrr Mfr
0 Mfr Mff

3524�qac
�qr
�qf

35
+

240 0 0
0 Crr(q; _q) Crf (q; _q)
0 Cfr(q; _q) Cff (q; _q)

3524 _qac
_qr
_qf

35+

24 0
Gr(q)
Gf (q)

35
+

24Kt 0 0
0 Kt 0
0 0 K

3524qac � qrqr � qac
qf

35 =

24�0
0

35 :
(14)

CALCULATING THE RESIDUAL
VIBRATION FOR A GIVEN PATH

Residual vibration, sustained after tracking the path, is
the free oscillation of the manipulator with its natural
frequencies of the �nal con�guration depends on the
initial condition. Here, displacement and velocity
errors at �nal time tf constitute initial conditions. In
previous studies [9], by assuming the small deformation
about the �nal con�guration, centrifugal and Coriolis
forces, which increased nonlinearity e�ects, were ne-

Figure 2. Schema of a 
exible joint model.

glected. Considering these assumptions, the equations
of motion in a 
exible robot can be linearized; stopping
the manipulator in the end point. In other words, the
high order terms like q2

f , _q2
f , qf _qf , qf _� etc. can be

ignored in the equations of motion. These assumptions
are true when the residual vibrations about the �nal
con�guration have small amplitude and frequency. In
this paper, all the above mentioned assumptions were
violated and all non-linear terms were taken into
account.

There will be four possible situations for the
solving of a robot manipulator depending on in-
put.

Firstly, for 
exible link-rigid joint manipulators,
if joint trajectory is assumed as input, the values of qr,
_qr and �qr will be the known parameters. Therefore,
qf can be calculated directly from Equation 10. These
obtained values of qf can then be used to calculate the
joint torque with Equation 9.

Secondly, for the 
exible link-rigid joint ma-
nipulators, if motor rotation, qac, is considered as
input, the values of qr and qf can be derived by
solving Equations 11 and 12 simultaneously. Corre-
spondingly, the joint torque can be calculated from
Equation 13.

On the other hand, if the gripper () moves along a
pre-planned trajectory, the joints trajectory can easily
be found from the inverse kinematic of a two-link robot
with rigid joints and links.

The above-mentioned sets of equations are highly
nonlinear and cannot be solved analytically; they
should then be solved numerically in a state-space form.
The 
exible deformation variables can be considered as
a vector:

15X =
�
X1
X2

�
=
�
qf
_qf

�
: (15)

By this new de�nition of variables, Equation 10 can be
rewritten in state-space form as:



336 M.H. Korayem, A. Heidari and A. Nikoobin

8>><>>:
_X1 = X2
_X2 =�M�1

ff (Mrf �qr + Cfr _qr + CffX2 +Gf

+KX1)
(16)

Because qr and _qr are two-valued functions (before and
after tf ), Equation 16 should be solved in two steps:
First, 0 � t � tf , for which the main path of the
robot will be tracked and then, for t > tf , it has
residual vibration. Finally, for this case, the unknown
generalized coordinates of robot (qf ) can be found from
Equation 16.

Thirdly, for the 
exible link and joint cases, for
which the motor rotation, qac, is considered as input,
the following variables can be de�ned:

X=
�
X1 X2 X3 X4

�T =
�
qr _qr qf _qf

�T : (17)

Equations 11 and 12 will change to the state-space form
as:8>>>>>>>><>>>>>>>>:

_X1 = X2; _X3 = X4"
_X2
_X4

#
=�

"
Mrr Mfr

Mfr Mff

#�1 "
Crr Crf
Cfr Cff

#"
X2

X4

#
+

"
Gr
Gf

#
+

"
Kt 0
0 K

#"
X1 � qac
X3

#!
:

(18)

Solving Equation 18, the generalized coordinates, q =
fqr; qfg, can be computed. Finding these generalized
coordinates is an introduction to determining the real
trajectory, which has been tracked by the end-e�ector.
Following this equation is another presentation of
Equation 8 for the gripper position.

rfx =
mX
k=1

(Lk cos(�k + u2nk�1+2)

� u2nk+1 sin(�k + u2nk�1+2));

rfy =
mX
k=1

(Lk sin(�k + u2nk�1+2)

+ u2nk+1 cos(�k + u2nk�1+2));

m = 1; 2; � � �NL: (19)

The desired path for a rigid robot can be expressed
using the kinematic relation as follows:

rrx =
mX
k=1

Lk cos

 
kX
i=1

�i

!
;

rry =
mX
k=1

Lk sin

 
kX
i=1

�i

!
;

m = 1; 2; � � �NL: (20)

Therefore, deviation from the desired path and the
�nal point after tf can be calculated by the following
equations:(

ex = rfx � rrx; ey = rfy � rry t � tf
ex = rfx � xf ; ey = rfy � yf t > tf

(21)

where xf and yf represent the position of the gripper.
Finally, the absolute value of the position error can be
de�ned as:

Pe =
q
e2
x + e2

y: (22)

Pe represents the amount of deviation from the given
path for t � tf , on the one hand, and the amplitude of
Residual Vibration (RV) for t > tf on the other. All
mentioned procedures for computing gripper position,
residual vibration and actuator torque in a 
exible link
and joint manipulator along a given path are outlined
here:

Step 1 Specify the number of elements for each link
and derive the dynamic equations by Equa-
tions 1 to 10 for the elastic link and Equa-
tions 11 to 13 for considering the 
exibility of
joints;

Step 2 Solve the inverse kinematic of a rigid robot to
�nd qr;

Step 3 Replace qr in Equation 10 or qac (which is
input) in Equations 11 and 12 then convert the
variables using Equations 15 or 17 and rewrite
the equations in the state-space form, as in
Equations 16 or 18, for 
exible link-rigid joint
or 
exible link-
exible joint cases, respectively;

Step 4 Solve Equations 16 and 18 numerically and �nd
the unknown variables;

Step 5 Determine the simulated path of the gripper
and calculate the amount of deviation from
the tracked path and amplitude of residual
vibration, using Equations 19 to 22;

Step 6 Compute the torque of actuators using Equa-
tions 9 or 13 for rigid or 
exible joints.

SIMPLIFYING FOR TWO-LINK
MANIPULATOR

Dynamic equations and required relations to calculate
the residual vibration for a multiple 
exible link and
joint manipulator have been presented in the preceding
sections. In this section, a two-link manipulator
is considered and the above-mentioned equations are
applied for this case. Considering two elements in each
link (n = 2) and using Equation 8, the position vectors
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of the �rst and second links change as follows:

~r1 = T 1
0

�
(j � 1)l1 + x1j

y1j

�
;

~r2 = T 1
0

��
L1

u2n1+1

�
+ T 2

1

�
(j � 1)l2 + x2j

y2j

��
; (23)

where transformation matrixes will be simpli�ed as
follows:

T 1
0 =

�
cos �1 � sin �1
sin �1 cos �1

�
;

T 2
1 =

�
cos(�2 + u2n1+2) � sin(�2 + u2n1+2)
sin(�2 + u2n1+2) cos(�2 + u2n1+2)

�
: (24)

By substituting Equations 23 and 24 into Equations 4
and 5, respectively, potential and kinetic energies can
be derived. Using the Lagrange method, dynamic
equations can be derived. In this formulation, it is
assumed that the �rst joint of link 1 is constrained to
have no displacement and angular displacement due
to body-�xed axis O1X1 (u1 and u2, respectively). It
means that boundary variables u1 and u2 must be zero,
i.e. u1(t) = 0 and u2(t) = 0. The �rst joint in
link 2 is similarly constrained and has no displacement
and angular displacement due to O2X2 (w1 and w2,
respectively). Therefore, constraint variables w1 and
w2 must be zero, i.e. w1(t) = 0 and w2(t) = 0.
It must be considered that both links have angular
displacements, �1 and �2 with their body-�xed axis.
After applying these boundary conditions, dynamic
equations in the form of Equations 9 and 10 are derived.
After de�ning the variables, using Equation 15 as the
state variables:

X =
�
u3 u4 u7 u8 _u3 _u4 _u7 _u8

�
; (25)

the state-space form of the equation can be obtained for

exible link-rigid joint cases, according to Equation 16.
For the 
exible joint and link manipulator, the state
variables are de�ned as follows:

X = b �1 �2 _�1 _�2 u3 u4 u7 u8 _u3

_u4 _u7 _u8 c: (26)

The state-space form of the equations can similarly be
obtained from Equation 18.

EFFECTS OF PAYLOAD ON RESIDUAL
VIBRATION

In order to initially check the validity of the presented
model for 
exible manipulators, a simulation test is
performed for a rigid link and joint state (i.e. high sti�-
ness EI). The obtained results are in good agreement
with the existing solution for two-link rigid robots.

Since for the purpose of calculating residual vi-
bration, the driven equations are highly coupled and
nonlinear, studying the e�ect of payload variation on
residual vibration can be undertaken via a number
of simulations. Here, the simulations are performed
for two di�erent paths. In the �rst, a polynomial-
Fourier function is considered for joint motion and in
the second, a linear path has been selected for the
gripper motion.

Path 1: Polynomial-Fourier Function for Joint
Motion

In this simulation, a two-link 
exible link-rigid joint
manipulator is considered at the �rst stage and, then,

exibility in the joints is added. Required physical
parameters are given in Table 1. Parameters used in
the simulation of a two-link robot and its path are
depicted in Figure 3. Two elements are considered in
each link for the �nite element model.

The combined Polynomial-Fourier functions are
considered for joints motions as follows:

�k(t) =
4X
j=0

�kj t
j + ak0 cos

�t
tf
: (27)

In the above equation, there are six unknown param-
eters altogether for each joint. Applying boundary
conditions at the start and goal point of the path,
these six unknown parameters can be found. Using i
to represent a joint number, the kinematic constraints
at both ends, i.e. at t = 0 and t = tf = 1:5 seconds,
are given by:

�i0(0) = �di0; �if (tf ) = �dif ;

_�i(0) = _�i(tf ) = ��i(0) = ��i(tf ) = 0; i = 1; 2:
(28)

Table 1. Physical parameters of robot arm.

Link/Joint
Number

Length of
Link
(m)

Mass of
Link
(kg)

Moment of
Inertia

(m4)�10�9

Modulus of
Elasticity

(GPa)

Spring
Constant
(N/m)

Inertia of
Motor

(kg.m2)
1 1 5 5 200 10000 0.1

2 1 5 5 200 10000 0.1
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Figure 3. Parameters are used in two-link robot and its path.

The initial and �nal positions of the �rst and second
joints, �di0 and �dif , are given as follows:

�d10 = 60�; �d20 = �120�;

�d1f = �45�; �d2f = �90�: (29)

Vibration at the goal point has been measured for
1.5 seconds after stopping the manipulator at the goal
point. The mentioned steps in the previous section can
be applied to determine the Residual Vibration (RV).
The desired and real path of a 
exible link manipulator,
considering gravity, are shown in Figure 4. A scaled
view of the gripper vibration (at the goal point) is
also represented. When the gripper reaches its goal
point, the manipulator vibrates due to its residual
energy. Residual vibration is depicted in Figure 5 for
two di�erent payloads, mL = 0; 2 kg. The residual
vibrations can be placed in two circles, considering
the goal point as their centre. The radius of these
circles, Ri, which shows the maximum deviation of
the gripper, can be used as a criterion for measuring
residual vibration magnitude. R1 and R2 are the
equivalent radius of residual vibration per mL = 0 kg
and mL = 2 kg, respectively. It can be shown that the
centre of the vibrations has a deviation, with respect
to the goal point, due to gravity.

In order to study the e�ect of payload on the
amount of residual vibration amplitude, a number of
simulations have been done for di�erent end-e�ector
payloads and the relation between the radius of Resid-
ual Vibration (Ri) and the payload magnitude (mL)
has been depicted in Figure 6. Here, the 
exible link
manipulator with a Polynomial-Fourier function for

Figure 4. Desired and real path for mL = 2 kg.

joint motion is considered. This simulation is repeated
for a 
exible link and joint manipulator and the results
are shown in Figure 7. As can be seen from Figures 6
and 7, the RV rises generally by increasing the payload,
except for a slight decrease in the second case. This
decrease is due to the nonlinearity caused by 
exibility
in the joint.

Path 2: Linear Path

In this simulation, the gripper trajectory is linear which
starts from point (x1 = 0, y1 = 1 m) and ends at a
point with coordinates (x2 = 0:75 m, y2 = 1:5 m). The
velocity pro�le of the end e�ector at each segment is as
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Figure 5. Radii of residual vibrations for mL = 0, 2 kg.

Figure 6. RV versus payload (
exible link-rigid joint).

Figure 7. RV versus payload (
exible link and joint).

below:8><>:v = at 0 � t < T=4
v = at T=4 � t < 3T=4
v = �at 3T=4 � t � T

(30)

where T is the overall motion time along the path equal
to 1.452 seconds. The Residual Vibration is calculated
for 1 second after stopping the robot at the goal point.
Maximum velocity and acceleration of the are Vmax =
0:75 m/s and a = 3 m/s2, respectively. Physical
parameters of the simulation are similar to the �rst
simulation (Table 1). Because the gripper path is pre-
de�ned for this problem, an inverse kinematic should
be �rstly employed for determining the joint rotation.
Afterwards, the real path and Residual Vibration can
be achieved by the aforementioned procedure.

In Figure 8, the desired and tracked path of the
end e�ector is depicted for the manipulator with a

exible link and mL = 2 kg, and in Figure 9, the

exibility of the joints is also considered. As expected
and easily seen in Figure 9, joint 
exibility will increase
the deviation along the path as well as the amplitude
of the residual vibrations at the goal point.

The relation between the radius of the residual
vibration and the amount of payload (mL) is shown
in Figures 10 and 11, for 
exible link-rigid joint and

exible link-
exible joint manipulators, respectively,
with a linear path. As expected, increasing the payload
will increase the amplitude of the residual vibration.
Also, the joints 
exibility intensi�es the deviation.

The amount of residual vibration amplitude is due
to the residual kinetic and potential energies (strain
energy in 
exible joints and link) of the manipulator
arm at the goal position. Because of the nonlinear
relation between payload and residual vibration, to

Figure 8. Desired and simulated path for mL = 2 kg
(
exible link-rigid joint).
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Figure 9. Desired and simulated path for mL = 2 kg
(
exible link-
exible joint).

Figure 10. E�ect of payload increment on deviations for

exible link-rigid joint.

estimate the variation of residual vibration amplitude
in terms of payload value, a tangent line can be
considered over the local maximum value of RV, as
shown in Figures 10 and 11. This line can be used
for estimating the amplitude of residual vibration with
a negligible error. This line represents the maximum
value of RV, which a 
exible link and joint robot
manipulator may have at the end of the given path
with a speci�ed payload.

CONCLUSION

In this paper, a new method for computing the residual
vibration of a 
exible manipulator is proposed and
then the e�ects of the payload on the magnitude of

Figure 11. E�ect of payload increment on deviations for

exible link-
exible joint.

the residual vibration are investigated. First, the
FEM method is employed for modeling the 
exible link
manipulator and then, by considering the e�ects of the
payload and also joint 
exibility, the required relations
are obtained. The solution of open loop dynamics
has been tackled by decoupling the equation into rigid
and 
exible parts, which is well-known and e�ective
in 
exible manipulator dynamics. For predicting the
relation between RV and the payload, a number of
simulations are performed and, with good estimation,
a tangent line has been found. Using this line, the
maximum value of RV for a given payload can be
estimated. The obtained results show that the overall
trend of RV in a rigid joint-
exible link case is the
same as in a 
exible joint-
exible link case; joint

exibility just increases the amplitude of RV. Since
in 
exible link and joint robots the driven equations
are highly coupled and too lengthy, an appropriate
algorithm such as the presented procedure in this paper
should be proposed for estimating RV for a given path
and payload, without engaging in massive calculations.
Using this algorithm, one can calculate the amount of
error of the gripper for some payloads and estimate it
for other values using the tangent line.
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APPENDIX A

Model Development for a Two-Link Flexible
Manipulator

This appendix is considered to show some unde�ned
parts of the paper and also to describe how some parts
of the general relation can be simpli�ed. In Equation 3,
the Hermitian function, �k(xj), for a beam element is

as below:

'1(x) = 1� 3
�x
l

�2
+ 2

�x
l

�3
;

'2(x) = x
�
1� 2

�x
l

�
+
�x
l

�2
�
;

'3(x) = 3
�x
l

�2 � 2
�x
l

�3
;

'4(x) = x
�
��x

l

�
+
�x
l

�2
�
: (A1)

Kinetic Energy Computation

Total Kinetic Energy of Link 1
As link 1 is divided into n1 elements, the total kinetic
energy of link 1 is computed by adding over all element
energies, `1j', of link 1 from Equation 4:

T1 =
n1X
j=1

T1j =
1
2

_~qT1 ~M1 _~q1; (A2)

where ~q1 = [�1; ~ T1 ]T , ~ 1 = [u1;11 u1;12 u1;13 u1;14 � � �
u1;2n1�1 u1;2n1 u1;2n1+1 u1;2n1+2]T and ~M1 is the
generalized inertia matrix of link 1.

Total Kinetic Energy for Link 2

The kinetic energy, T2, of link 2 is computed by
summing the elemental energies, T2j , over all the
second link, i.e.:

T2 =
n2X
j=1

T2j =
1
2

_~qT2 ~M2 _~q2; (A3)

where ~q2 = [�1 u1;2n1+1 u1;2n1+2 �2 ~ T2 ]T , ~ 2 =
[u2;1 u2;2 � � � u2;2n2+1 u2;2n2+2]T and ~M2 is the gener-
alized inertia matrix of link 2.

Potential Energy Computation

The potential energy for the whole system is obtained
by computing the potential energy for each element of
the assemblage and adding them up overall.

Potential Energy for a Single Element `1j' of
Link 1
Against kinetic energy, the mobility of the robot base
does not add any extra term to the potential energy
of the system; the potential energy of element `1j' of
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link 1 only consists of gravity and elasticity in the links:
V1j = Vg1j + Ve1j

=
Z l1

0
m1g

�
0 1

�
T 1

0

�
(j � 1)l1 + x1j

y1j

�
dx1j

+
1
2

Z l1

0
EI1

h
@2y1j
@x2

1j

i2
dx1j : (A4)

By substitution of y1j from Equation A3 and taking
the integrative (with respect to time) the elemental
potential energy of link 1 becomes:

V1j =
1
2
 T1jk1j 1j +m1g

�
0 1

�
T 1

0"
(j � 1

2 )l21
l1
2 u1;2j�1 + l21

12u1;2j + l1
2 u1;2j+1 � l21

12u1;2j+2

#
; (A5)

where  T1j = [u1;2j�1 u1;2j u1;2j+1 u1;2j+2] and K1j is
the sti�ness matrix of the beam element.

Total Potential Energy for Link 1
Since link 1 comprises n1 elements, its total potential
energy is:

V1 =
n1X
j=1

V1j = m1g
�
0 1

�
T 1

0

� 1
2n

2
1l21

R0 ~ 1

�
+

1
2

~ T1 ~K1 ~ 1;
(A6)

where ~ 1 is given in Equation A6 and R0 =h
l1 0

�� ��l1 0
�� � � � ��l1 0

�� l1
2 � l21

12

i
.

Potential Energy for a Single Element `2j'
Considering OX as the reference, the potential energy,
V2j , of jth element of link 2 is the sum of two
components. One is due to gravity and the other is
due to the elasticity of the system, i.e.

V2j =
Z l2

0
m2g

�
0 1

� �
T 1

0

�
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+T 1
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2
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l22
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2 u2;2j+2

##
+

1
2
 T2jK2j 2j ; (A7)

where:

 T2j = [u2;2j�1 u2;2j u2;2j+1 u2;2j+2]:

Total Potential Energy for Link 2
Summing over all elements, `2j', of link 2, the total
potential energy of this link becomes:

V2 =
n2X
j=1

V2j = m2g
�
0 1

� �
T 1

0

�
L1

u1;2n+1

�
n2l2

+T 1
0 T

2
1

� 1
2n

2
2l22

R1 2

��
+

1
2

~ T2 K2 ~ 2; (A8)

where ~ 2 has been de�ned in Equation A7 and R1 =h
l2 0

�� ��l2 0
�� � � � ��l2 0

�� l2
2 � l22

12

i
.

Final Lagrangian of the Links

The overall Lagrangian for a two-link 
exible manipu-
lator can be written as:

$ =$1(�1; u1;3; u1;4; � � �u1;2n1+2)

+ $2(�1; u1;2n1+1; u1;2n1+2; �2; u2;3;

u2;4; � � �u2;2n2+2): (A9)

From Equations A2 and A6, the Lagrangian of the �rst
link is as follows:

$1 = T1 � V1 =
1
2

_qT1 M1 _q1 �m1g
�
0 1

�
T 1

0

24 1
2n

2
1l21

R0 1

35
� 1

2
 T1 K1 1: (A10)

From Equations A3 and A8, the Lagrangian of link 2
can be derived:

$2 =
1
2

_qT2 M2 _q2

�m2g
�
0 1

�
T 1

0

24� L1
u1;2n1+1

�
n2l2+T 2

1

24 1
2n

2
2l22

R1 2

3535
� 1

2
 T2 K2 2: (A11)

After computing the total kinetic and potential ener-
gies, the Lagrangian of the links of a 
exible planar
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two-link manipulator can be found:

$1 = T1 � V1 =
1
2

_qT1 M1 _q1 �m1g
�
0 1

�
T 1

0

24 1
2n

2
1l21

R0 1

35
� 1

2
 T1 K1 1; (A12)

$2 = T2 � V2 =
1
2

_qT2 M2 _q2

�m2g
�
0 1

�
T 1

0

24� L1
u2n1+1

�
n2l2 + T 2

1

241
2n

2
2l22

R1 2

3535
� 1

2
 T2 K2 2; (A13)

where:
q1 = [�1;  T1 ]T ;

R0 = [l1 0
�� ��l1 0

�� � � ���l1 0
�� l1

2 � l21
12

];

 1 =[u1;1 u1;2 u1;3 u1;4 � � �
u1;2n1�1 u1;2n1 u1;2n1+1 u1;2n1+2]T ;

q2 = [�1u1;2n1+1 u1;2n1+2 �2  T2 ]T ;

R1 = [l2 0
�� ��l2 0

��� � � ��l2 0
�� l2

2 � l22
12

]

 2 = [u2;1 u2;2 � � �u2;2n2+1 u2;2n2+2]T ;

M1 and M2 are the general mass matrices of the �rst
and second links, respectively, while K1 and K2 are the
sti�ness matrices of these two links [13].


