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Research Note

Similarity Solution in the Study of Flow
and Heat Transfer Between Two Rotating
Spheres with Constant Angular Velocities

A. Jabari Moghadam1 and A. Baradaran Rahimi1;�

Abstract. The similarity solution of the steady-state motion and heat transfer of a viscous incom-
pressible uid contained between two concentric spheres, maintained at di�erent temperatures and rotating
about a common axis with di�erent constant angular velocities, is considered. The resulting ow pattern,
temperature distribution and heat transfer characteristics are presented for various cases. Aside from the
energy equation, the same results as previous works are obtained for Navier-Stokes equations, but with
less computational complexities.
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INTRODUCTION

A similarity solution for the motion of an incompress-
ible viscous uid and its heat transfer in a rotating
spherical annulus is considered numerically, when the
spheres are concentric and their angular velocities
about a common axis of rotation are constant. Such
motions may be described in terms of a pair of cou-
pled non-linear partial di�erential equations in three
independent variables and the energy equation is linear
when the velocity �eld is known.

Available theoretical work concerning such prob-
lems is primarily of the boundary-layer or singular-
perturbation character considered by Howarth [1],
Proudman [2], Lord & Bowden [3], Fox [4],
Greenspan [5], Carrier [6] and Stewartson [7]. The
�rst numerical study of time-dependent viscous ow
between two rotating spheres has been presented by
Pearson [8], in which the case of one (or both) spheres is
given an impulsive change in angular velocity, starting
from a state of either rest or uniform rotation. Munson
and Joseph [9] have considered the case of the steady
motion of a viscous uid between concentric rotating
spheres using perturbation techniques for small val-
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ues of Reynolds number and a Legendre polynomial
expansion for larger values of Reynolds number. In
both studies, the viscous dissipation terms have been
neglected. Thermal convection in rotating spherical
annuli has been considered by Douglass, Munson and
Shaughnessy [10], in which the steady forced convection
of a viscous uid contained between two concentric
spheres (which are maintained at di�erent tempera-
tures and rotate about a common axis with di�erent
angular velocities) is studied. Approximate solutions
to the governing equations are obtained in terms of a
regular perturbation solution valid for small Reynolds
numbers and a modi�ed Galerkin solution for moderate
Reynolds numbers. Viscous dissipation is neglected in
their study and all uid properties are assumed con-
stant. A study of viscous ow in oscillatory spherical
annuli has been done by Munson and Douglass [11], in
which a perturbation solution valid for slow oscillation
rates is presented and compared with experimental
results. Another interesting work is the study of the
axially symmetric motion of an incompressible viscous
uid between two concentric rotating spheres done by
Gagliardi et al. [12]. This work involves the study
of the steady state and transient motion of a system
consisting of an incompressible, Newtonian uid in
an annulus between two concentric, rotating, rigid
spheres. The primary purpose of their research is to
study the use of an approximate analytical method
for analyzing the transient motion of the uid in the
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annulus and spheres, which is started suddenly due to
the action of prescribed torques. Similar cases include
the study of Jen-Kang Yang et al. [13] and the �nite
element study by Ni and Negro [14]. These problems
include the case where one or both spheres rotate with
prescribed constant angular velocities and the case in
which one sphere rotates due to the action of an applied
constant or impulsive torque.

State-of-the-art work on the similarity solution of
ow and heat transfer problems is abundant in the
literature of which some recent examples can be found
in [15-34].

A similarity solution in the study of the steady-
state motion and heat transfer of an incompressible
viscous uid �lling the annuli of two concentric spheres
rotating with constant angular velocities has not been
considered in the literature. In the present study, a
numerical solution of the similarity equations of steady-
state momentum and energy equations are solved for
viscous ow between two concentric rotating spheres
maintained at di�erent temperatures and rotating with
constant angular velocities. Aside from the energy
equation, the same results as existing in the literature
for Navier-Stokes equations are obtained, but with less
computational complexities. Such rotating containers
are used in engineering designs like centrifuges and
uid gyroscopes and are also important in geophysics.
Other applications of the geometric con�guration used
in this problem are in meteorological instrumentations,
where such apparatus and equipment are used to obtain
quantitative information about weather.

PROBLEM FORMULATION

The geometry of the spherical annulus considered is
indicated in Figure 1. A Newtonian, viscous incom-
pressible uid �lls the gap between the inner and outer
spheres, which are of radii Ri and Ro, with constant
surface temperatures, Ti and To, and which rotate
about a common axis with angular velocities, 
i and

o, respectively. The components of the velocity in
directions r, � and � are vr, v� and v�, respectively.
These velocity components for incompressible ow and
in a meridian plane satisfy the continuity equation
and are related to stream function  and angular
momentum function, 
, in the following manner:

�r =
 �

r2 sin �
; �� =

� r
r sin �

; �� =



r sin �
: (1)

Since the ow is assumed to be independent of the lon-
gitude, �, the non-dimensional Navier-Stokes equations
and energy equation can be written in terms of the
stream function and the angular velocity function as
follows:
 �
r �  r
�

r2 sin �
=

1
(Re)

D2
; (2)

Figure 1. Spherical annulus.
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and the non-dimensional quantities of Reynolds num-
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ber (Re), Prandtl number (Pr), Peclet number (Pe)
and Eckert number (Ek) are de�ned as:

Re = 
oR2
o

� ; Pr = �=�;
Pe = Re.Pr = 
oR2

o
� ; Ek = �
o

cP (To�Ti) :
(6)

The following non-dimensional parameters have been
used in the above equations and then the asterisks have
been omitted:

r� = r
Ro ;  � =  

R3
o
o ;


� = 

R2
o
o ; T � = T�Ti

To�Ti :
(7)

The non-dimensional boundary and initial conditions
for the above governing equations are:

� = 0! f = 0; D2 = 0; 
 = 0g; @T
@�

= 0;

� = � ! f = 0; D2 = 0; 
 = 0g; @T
@�

= 0;

r=
Ri
Ro

= b!
(
 = 0;  r = 0; 
 = 
iob2 sin2 �
T = 0

r = 1!
(
 = 0;  r = 0; 
 = sin2 �
T = 1 (8)

where:
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@
@�
;


io = 
i=
o: (9)

These governing equations, along with their related
boundary conditions, are to be changed into di�erential
equations with related appropriate boundary condi-
tions by using similarity parameters and are then to
be solved numerically in the following sections.

SIMILARITY VARIABLES

Using the following similarity parameters, one indepen-
dent variable can be omitted:

� =
(r � b) sin2 �

1� r + b sin2 �
; (10)

8><>:
 = sin2 �F (�)
 = sin2 �G(�)
T (r; �) = H(�)

(11)

The momentum and energy equations become:

c1(F 0G�G0F ) =
1
Re

(c2F 00 + c3F 0 + c4F ); (12)

(d1F 0 + d2F )F + (d3G0 + d5G00)G0

+ (d4G0 + d6G+ d7G000 + d8G00)G

=
1
Re

(d9G0 + d10G+ d11G000 + d12G00

+ d13G0000); (13)

(e1�r + e2��)H 0 =
1

Pe
(f1H 00 + f2H 0)

+ Ek. (dissipation terms); (14)

where the c and d coe�cients are functions of r and
�. Maple software has been used to do all the algebra
producing the following coe�cients in a compact form
as:

� = (�1 + r � b sin2 �);

 =(�1+r�b+b cos2 �);

c1 = 2 cos � sin2 � (1�b cos2 �)�2;

c2 = sin2 �f�b2r2 cos6 � +b(2+b)r2 cos4 �

+[4r4�8(1+b)r3+(3+14b+4b2)r2

�8b(1+b)r+4b2] cos2 �+r2g;
c3 =�2�fb[2r2�(1+b)r+b] cos4 �

+[5r3� (8b+11)r2+ (2b2+12b+5)r�5b

�2b2] cos2 ��r3+ (3+2b)r2� (1+3b+b2)r

+b(1+b)g;
c4 = �2�4;

d1 = 2r2�6 sin2 � cos �fbr sin2 � + 2r2

� (3b+ 1)r + 2bg;
d2 = �4r2 cos ��8;

d3 = 4 sin2 ��3f[2r3b2 � b2(1 + b)r2 + rb3] cos6 �

+ [�2b(b+ 4)r3 + b(3b+ 5� b2)r2 + b2(5b� 1)r

� 4b3] cos4 � � [20r5 � (65 + 47b)r4 + (63

+ 30b2 + 129b)r3 � (124b+ 5b3 + 20 + 79b2)r2

+ b(13b2 + 40 + 70b)r � 20b2 � 8b3] cos2 �
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+ 4r5 � (21 + 11b)r4 + (23 + 10b2 + 37b)r3

� (25b2 + 8 + 37b+ 3b3)r2 + b(19b+ 12 + 7b2)r

� 4b2(1 + b)g cos �;

d4 = �4�4frb3 cos8 � � [6r2b2 � 4b2(1 + b)r

+ 8b3] cos6 � � [22r3b� 2b(21b+ 22)r2

+ b(70b+ 18b2 + 23)r � 32b2 � 24b3] cos4 �

� [24r4 � (65b+ 71)r3 + (62 + 154b+ 58b2)r2

� (112b+ 104b2 + 20b3 + 18)r + 48b2 + 24b3

+ 24b] cos2 � + 8r4 � (23b+ 27)r3+

+ (22 + 54b+ 22b2)r2 � (38b2 + 6 + 37b+ 7b3)r

+ 8b3 + 8b+ 18b2g cos �;

d5 = �4 cos � sin4 ��2[r2b2(3r2

� 2(1 + b)r + b)] cos6 � + [4r5b� b(11b+ 14)r4

+ 2b(4 + 3b2 + 11b)r3 � b2(10 + 9b)r2

+ 4rb3] cos4 � + [�8r6 + (24 + 22b)r5

� (62b+ 21 + 20b2)r4 + (64b+ 60b2 + 6

+ 6b3)r2 + b2(24 + 22b)r � 8b3] cos2 �

� 2r5 + (1 + 4b)r4 � 2b(b+ 3)r3

+ b(3 + 4b)r2 � 2rb2);

d6 = 168 cos �;

d7 = 2r�2 cos � sin4 �(b cos2 � � 1)fb2r2 cos6 �

� b(b+ 2)r2 cos4 � � [4r4 � 8(1 + b)r3

+ (4b2+3+14b)r2�8b(1 + b)r+4b2] cos2 ��r2g;
d8 = 4 sin2 ��3fr2b3 cos8 � + [5r3b2 � b2(3b+ 4)r2

+ rb3] cos6 � + [5r4b� b(7b+ 15)r3

+ b(5 + 2b� b2)r2 + b2(10b+ 6)r � 8b3] cos4 �

+ [�8r5 + (19b+ 15)r4 � (14b2 + 39b+ 2)r3

� (2� 3b3 � 41b2 � 31b)r2 � b(11b2 + 7

+ 37b)r + 8b2 + 8b3] cos2 � + r4 � (2b+ 6)r3

+ (b2 + 4b+ 2)r2 � b(b+ 1)rg cos �;

d9 =8r�3fcos10 �rb4+b3[4r2�4(1+b)r � b] cos8 �

+ [6r3b2 � b2(15b+ 18)r2 + b2(6b2 + 9 + 14b)r

+ 4b4 + 4b3] cos6 � + [�14r4b+ (63b+ 28b2)r3

� (78b+ 3b3 + 102b2)r2 + (26b+ 30b3 + 120b2

� 4b4)r � 41b2 � 32b3 � 6b4] cos4 � + [10r5 � (49

+ 17b)r4 � (2b2 � 48b� 90)r3 � (60b� 11b3

� 30b2 + 64)r2 � (38b3 � b4 + 43b2 � 16� 42b)r

+ 14b2�10b+ 4b4+28b3] cos2 ��2r5 + (7b+9)r4

� (22 + 8b2 + 27b)r3 + (16 + 34b+ 3b3 + 18b2)r2

� (16b+ 4 + 2b3 + 14b2)r + 3b2 + 2b� b4g;
d10 = �8r8;

d11 =�4r� sin2 �f[�4r4b3+ (b4+b3)r3�r2b4] cos10 �

� [17r5b2 � (30b3 + 37b2)r4 + (7b4 + 11b2

+ 31b3)r3 � (3b4 + 7b3)r2 � 4rb4] cos8 � � [4r6b

� (46b+42b2)r5+ (82b+154b2+64b3)r4�(129b3

+ 141b2 + 23b4 + 31b)r3 + (39b4 + 96b3 + 47b2)r2

� (28b3 + 28b4)r + 12b4] cos6 � + [36r7 � (116b

+ 152)r6 + (119b2 + 432b+ 223)r5 � (131 + 614b

+ 419b2 + 34b3)r4 + (638b2 + 147b3 � 5b4 + 419b

+ 27)r3 � (233b3 � b4 + 441b2 + 103b)r2 + (156b3

+4b4+112b2)r�36b3] cos4 ��[12r7� (56+48b)r6

+ (78 + 190b+ 72b2)r5 � (248b2 + 48b3 + 262b

+ 30)r4 + (150b3 + 335b2 + 12b4 + 2 + 159b)r3

� (36b4 + 30b+ 199b2 + 178b3)r2 + (36b4 + 88b3

+ 40b2)r � 12b3(1 + b)] cos2 � � r5 + (2b+ 5)r4

� (1 + 3b+ b2)r3 + b(b+ 1)r2g;
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d12 = 4r�2f�68r3b+ (38b+ 2)r2 + (�28b2 � 8b)r

+ [�4r3b3 + (4b3 + 4b4)r2 + 2rb4] cos10 �

+ [�15r4b2 + (24b2 + 18b3)r3 + (8b3 � 3b4

� 3b2)r2+(�20b3�14b4)r � b4] cos8 � + [�22r5b

+ (132b+ 112b2)r4 + (�114b3 � 378b2 � 198b)r3

+ (366b2 + 16b4 + 70b+ 234b3)r2 + (�210b3

� 12b4 � 110b2)r + 24b4 + 74b3] cos6 � + [71r6

+(�168b�320)r5+(594b+55b2+510)r4+(�840b

� 326� 118b2 + 82b3)r3 + (251b2 � 190b3

� 31b4 + 74 + 610b)r2 + (�256b2 + 52b4 + 166b3

� 160b)r � 42b4 � 46b3 + 71b2] cos4 � + [�50r6

+ (240 + 154b)r5 + (�584b� 146b2 � 400)r4

+ (818b+ 244 + 30b3 + 434b2)r3 + (�86b3

� 526b� 536b2 � 52 + 12b4)r2 + (�22b4 + 90b3

+ 298b2 + 120b)r � 50b2 � 34b3 + 16b4] cos2 �

� 16r5 + (34 + 50b)r4 + (�14� 58b2)r3 + (30b3

+ 66b2)r2 + (�26b3 � 6b4)r + 3b2 + 6b3 + 3b4

� cos12 �r2b4 + 3r6 � 12r3b3 + 18r4b2 + 3r2b4

� 12r5bg;

d13 = �r sin4 �fb2r2 cos6 � � (2b+ b2)r2 cos4 �

� [4r4 � 8(1 + b)r3 + (3 + 14b+ 4b2)r2

� 8b(1 + b)r + 4b2] cos2 � � r2g2;

e1 =
(1� b cos2 �) sin2 �

�2 ;

e2 =
(r � b)(1� r) sin 2�

r�2 ;

f1 =
r2 sin4 �(1�b cos2 �)2+sin2 2�[(r�b)(1�r)]2

r2�4 ;

f2 =
2 sin2 �(1� b cos2 �)(1 + b sin2 �)

r�3

+
2(r � b)(1� r)[(�+ 2b sin2 �) cos 2� � b sin4 �]

r2�3

+
2(r � b)(1� r) cos2 �

r2�2 ; (15)

with boundary conditions:

�=0! G(�)=0; G0(�)=0; F (�)=
iob2; H=0;

�=
1
b
� 1! G(�)=0; G0(�)=0; F (�)=1; H=1:

(16)

The di�erential Equations 12-14, along with boundary
conditions (Equations 16), constitute a closed form sys-
tem, which is solved numerically with less complexity
compared to the initial system of partial di�erential
equations. Note that the formulation of the problem
this way enables one to �nd the functions  (r; �)
and 
(r; �) at any desired point within the ow �eld
independently, without having to solve for the whole
region.

COMPUTATIONAL PROCEDURE

The ow Equations 12 and 13 are not coupled with the
energy Equation 14 and, therefore, need to be solved
before the latter can be solved. These non-linear ow
equations are solved numerically using �nite di�erence
approximations. A quasi-linearization technique is �rst
applied to replace the non-linear terms at a linear stage,
with the corrections incorporated in subsequent itera-
tive steps until convergence. Then, a Crank-Nicolson
algorithm is used to replace the di�erent terms by their
second-order central di�erence approximations [35].
An iterative scheme is used to solve the quasi-linear
system of di�erence equations. An initial guess is
chosen and the iterations are continued until conver-
gence within the prescribed accuracy. Finally, the
resulting block tri-diagonal system is solved using the
generalized Thomas algorithm. Energy Equation 14
is a linear second-order ordinary di�erential equation
with variable coe�cients which are known from the
solution of the ow equations. This equation is solved
numerically, using central di�erences for the derivatives
and the Thomas algorithm for the solution of the set
of discretized equations. Convergence is assumed when
the ratio of every one of the quantities for the last
two approximations di�er from unity by less than 10�5

at all values of the independent variable. Aside from
the energy equation, the same results for Navier-Stokes
equations are obtained as [8-9].

PRESENTATION OF RESULTS

If the bounding spherical surfaces were stationary,
there would be no uid motion and the temperature
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distribution would simply be a conduction distribution.
Any rotation of the bounding spheres sets up a primary
ow (!) around the axis of rotation. This relative
motion induces an unbalanced centrifugal force �eld
which drives the secondary ows ( ) in the meridian
plane. Thus, if the bounding spheres are of unequal
temperatures, this secondary ow produces forced
convection within the annulus, resulting in a tem-
perature distribution which is di�erent from the pure
conduction distribution. The relative magnitudes of
the secondary ow and forced convection e�ects depend
on the parameters involved including those concerning
the geometry of the ow and those concerning the
dynamics of the ow such as 
io = 
i=
o, b =
Ri=Ro, Prandtl number and Reynolds number. These
secondary ows, known as vortex, have a clockwise
or counterclockwise motion, depending on whether
the outer sphere or the inner sphere is dominant, as
far as the secondary ow is concerned. Results for
temperature �elds are presented when the outer sphere
is hotter than the inner one. The cases considered here
are constant angular velocities and presentations are
only at selected 
io.

The velocity �elds and temperature distribution
for the particular case of constant angular velocity

io = �3:0 (negative sign indicates rotation in di�erent

directions) are presented in Figure 2 for Reynolds
number Re = 50, Pr = 10 and Ek = 0. As expected,
the  contours show that the annulus space is under
the e�ect of both spheres. The vortex close to the inner
sphere is dominating the ow �eld since it is rotating
three times faster than the outer sphere. The same
type of dominating e�ect is shown in Figure 2b for
the 
 function. In terms of velocity vectors, Figure 2c
is displaying the same e�ect. Figure 2d is presenting
the temperature �eld and showing that there is a large
delay in heat transfer because of the rotation of the
inner sphere.

Figures 3 to 5 present the same situations but for
the case 
io = �1 and for Re = 100, Pr = 1 and Ek
= 0; for the case 
io = �2 and Re = 250, Pr = 10 and
Ek = 0; and for the case 
io = �1 and Re = 500, Pr
= 1 and Ek = 0. The e�ect of Reynolds number can be
seen obviously in these �gures in comparison with each
other and also compared with Figure 2. A detailed
physical discussion regarding the ow �eld and heat
transfer characteristics can be presented using these
�gures.

CONCLUSION

A similarity solution for the problem of the ow and

Figure 2. Flow and heat patterns for Re = 50, Pr = 10, Ek = 0 and 
io = �3.
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Figure 3. Flow and heat patterns for Re = 100, Pr = 1, Ek = 0 and 
io = �1.

Figure 4. Flow and heat patterns for Re = 250, Pr = 10, Ek = 0 and 
io = �2.
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Figure 5. Flow and heat patterns for Re = 500, Pr = 1, Ek = 0 and 
io = �1.

heat transfer of a viscous incompressible uid within a
rotating spherical annulus has been investigated when
the spheres have constant angular velocities. The
results, aside from the energy equation, are the same
as in previous works [8-9] for Navier-Stokes equations,
but with less computational complexities. Besides, the
formulation of the problem this way enables one to �nd
the functions  (r; �) and 
(r; �) at any desired point
within the ow �eld independently, without having to
solve for the whole region.
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