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Practical Next Bit Test for
Evaluating Pseudorandom Sequences

A. Lavasani1 and T. Eghlidos2;�

Abstract. The Next Bit Test brie
y states that a sequence is random if and only if, given any i
bits of the sequence, it is not possible to predict the next bit of the sequence with a probability of success
signi�cantly greater than 1=2. In 1996, Sadeghiyan and Mohajeri proposed a so-called \new universal test
for bit strings", based on the theoretical next bit test. In this paper, we study di�erent aspects of this test
and show its weakness. Then, we improve it both theoretically and practically for better classi�cation of
the sequences. As a result, a Practical Next Bit (PNB) test is introduced in two Global and Local versions
and a histogram, which gives an impression of the global evaluation of the underlying sequence. Testing
samples of nonrandom sequences, using both the PNB test and the NIST Statistical Test Suite, indicates
the superiority of the PNB test power over that of the NIST.
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INTRODUCTION

Random (or pseudorandom) sequences play an essen-
tial role in many �elds. When there is a need to
model a dynamic system or in the implementation of
a simulation program, the use of random sequences
is inevitable. However, in cryptographic applications,
considering the sensitivity of the information, ran-
domness is the major concern [1]. The output of
an encryption algorithm is required to be random as
a necessary condition of security. Cryptosystems do
not reach their security level unless random keys are
employed. Many cryptographic protocols, like digital
signatures and challenge-response schemes, use random
sequences as auxiliary quantities.

In regard to the above mentioned facts, distin-
guishing random from nonrandom sequences is critical
in scienti�c areas and should be treated even more
strictly in cryptology. Since the introduction of modern
ciphers, various statistical tests have been developed,
each of which assessing the presence or absence of
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a \Pattern" in the output of the ciphers. Such a
pattern, if detected, would indicate that the sequence
is nonrandom [2]. In searching for a criterion to test
randomness, in 1982 Blum and Micali [3] were the
�rst to show that the ability of predicting the next
bit of a sequence is enough to judge the sequence to
be nonrandom. Yao [4] formalized the idea in [3]
by stating that a sequence is random if and only if
every probabilistic polynomial-time algorithm fails to
predict the next bit of the sequence with a signi�cant
probability.

However, using the universal quanti�er (every
algorithm) in Yao's statement con�nes it to a merely
theoretical rather than practical test. There has
been some e�ort to deduce practical tests based on
this theoretical idea. As a typical example see [5].
Another test algorithm was designed by Sadeghiyan
and Mohajeri, called the \new universal test for bit
strings", which presents a practical test for pseudo-
randomness, based theoretically on an extension of
Schrift and Shamir's next bit test [6], in order
to realize the theoretical universal next bit test at
least partially [7]. Throughout this paper, we re-
fer to this test as the Sadeghiyan-Mohajeri test.
However, the Sadeghiyan-Mohajeri test did not ap-
pear to be a powerful randomness test becouse of
some holes in the test algorithm. In this paper,
the authors show that this test cannot distinguish
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between pseudorandom and highly nonrandom se-
quences.

In this work, the Sadeghiyan-Mohajeri test is
improved in both theoretical and practical aspects and
extended to provide a deeper analysis of randomness.
By introducing the Extended Next Bit test, the the-
oretical problem of the test is solved. Then, the
algorithm is improved by modifying some of its steps.
By applying these improvements to the test, we call it
the Practical Next Bit (PNB) test.

The authors assess the performance of the PNB
test and show that it can remedy the disability of
the original proposed test. Then, it is compared
with other tests, which have been standardized by
the National Institute of Standards and Technology
(NIST) [2]. Practically, the performance of the PNB
test is shown. Although it consumes more time and
memory for many sample sequences it shows more
precise results compared with several NIST tests, in the
sense of �nding randomness anomalies in the sequence.
The complexity of the test is not regarded as a problem
anymore because the new technology provides users
with faster processing and a greater amount of memory.

The authors believe that accompanying the
PNB test with the NIST statistical test suite sig-
ni�cantly increases the power of cryptanalysts in
detecting nonrandom behavior in cryptographic se-
quences.

The outline of this paper is as follows: First, the
notations and de�nitions used throughout this paper
are brie
y introduced, and then an introduction to
the Sadeghiyan-Mohajeri test and the Practical Next
Bit test are given. Following that, the theoretical
base of the PNB test is rede�ned and the authors
give a theoretical improvement of the Sadeghiyan-
Mohajeri test from a global point of view. The
following section is devoted to the PNB test and
the corresponding algorithm. The benchmarks for
comparing the global test with the NIST's along with
the experimental results bring this section to an end.
Then, the theoretical aspect of predicting more than
one bit is discussed, which results in introducing
the local PNB test. After that, the algorithm for
obtaining the histogram from a sequence is given.
Finally, all discussions and results giving an overall
view on this paper along with concluding remarks are
presented.

PRELIMINARIES

De�nitions and Notations

In this section, some notations and de�nitions used
frequently throughout this paper are brie
y introduced.
These notations are the same ones used by Schrift and
Shamir [6]. Let sn1 denote a binary sequence of length

n in f0; 1gn. The ith bit of the sequence is denoted
by si, while a subsequence starting with the jth bit
and ending with the kth bit (1 � j < k � n) is
denoted by skj . The notation O(�(n)) is used for any
function, f(n), that vanishes faster than the inverse
of any polynomial, that is for every polynomial, poly
(n), and n large enough, f(n) < 1=poly (n). Also, in
the context of the test de�nition, notation A is used to
denote every probabilistic polynomial time algorithm,
A : f0; 1gi�1 ! f0; 1; �g. Throughout this paper, the
leftmost bit is considered the least signi�cant, since the
sequence length is unknown.

De�nition 1 [7]

A binary source, S, passes the next bit test if, for
every i; 1 < i � n and every probabilistic polynomial-
time algorithm, A: f0; 1gi�1 ! f0; 1g, the following
inequality holds:��probSfA(si�1

1 ) = sig � 1=2
�� � O(�(n)): (1)

SADEGHIYAN-MOHAJERI TEST

Motivation

In order to evaluate a sequence from the view of
randomness, there exist several statistical tests, which
compare the overall behavior of the sequence with some
particular probabilistic models.

A statistical test that measures the randomness
of a sequence was presented by Sadeghiyan and Mo-
hajeri [7]. This test was designed, based on the pre-
dictability of the next bit of the underlying sequence,
given the former bits. In this section, the theoretical
base of this test and the detailed description of the
algorithm are presented.

Theoretical Base of Sadeghiyan-Mohajeri
Universal Test

The Sadeghiyan-Mohajeri Universal Test was pre-
sented, based on the ideas of statistical tests and the
Predict Or Pass (POP) Test of Schrift and Shamir [6]
presented in De�nition 2. Based on their proposed test,
Sadeghiyan and Mohajeri claimed that the Universal
Test attempts to implement the concept of Yao's
theoretical Next Bit test [7].

De�nition 2 [7]
A biased source, S, with a �xed bias, b, 1=2 � b < 1,
passes the Extended-POP test, if for every i and l,
1 < i, l � n, for every �xed c and every probabilistic
polynomial time algorithm:
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A: f0; 1gi�1 ! ff0; 1gl; �g;
if prob fA(si�1

1 ) 6= �g � 1=nc;

then
��probSfA(si�1

1 ) = si�1+l
i jA(si�1

1 ) 6= �g � b��
� O(�(n)): (2)

The Sadeghiyan-Mohajeri Test

In this part, we introduce the Sadeghiyan-Mohajeri
test. The test algorithm takes advantage of a tree
structure, which stores information on the patterns or
subsequences in the sequence.

The counting of m-bit patterns can be depicted
as a weighted tree, which is called a pattern tree. In

the pattern tree, each node in depth l represents the
number of occurrences of a binary pattern of length
l in the underlying sequence. In this weighted tree,
each edge connecting two nodes denotes the ratio
of the number of child patterns located in the next
layer to the number of their parent patterns in the
previous layer [7]. As an example, a 16-bit sequence
and the related pattern tree is depicted in Figure 1.
According to the above explanation, the number of
each pattern can be computed by adding the numbers
associated with its child patterns. For a large enough
random sequence, it is expected that all the ratios
corresponding to the edges of the pattern tree to be
approximately equal to 1=2.

Algorithm 1 presents the Sadeghiyan-Mohajeri
test [7] for sequence of length, n.

Figure 1. Pattern tree for the �rst 16 bits of binary expansion of e, the conditional probability of the occurrence of each
pattern (node) on each branch given the parent pattern.

Algorithm 1. Sadeghiyan-Mohajeri test.
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The Sadeghiyan-Mohajeri test does not give any
precise explicit criteria for global judgment about the
randomness of the sequence. Instead, the designers
suggested deriving a histogram for each sequence,
which can give a general idea about its global random
behavior. When the algorithm successfully predicts a
block of (l + 1) bits after a pattern, it admits that a
local non-randomness has occurred in the sequence.

REDEFINING THE THEORETICAL BASE
OF THE PNB TEST

The method of choosing decision threshold � in the
Sadeghiyan-Mohajeri test shows that the probabilistic
algorithm predicts when the next bit of a block occurs
with a probability signi�cantly di�erent from 1=2.
Therefore, with an appropriate choice of signi�cance
level, the sequence generated from a non-uniform
random generator fails in this test. However, the
Extended-POP test accepts such biased sequences as
random ones independent of any signi�cance level.
Therefore, it cannot be a basis for the Sadeghiyan-
Mohajeri test. So, we can state that the Sadeghiyan-
Mohajeri test works, based on the Extended Next Bit
(ENB) test, which we present in the next part. In
fact, this test is a natural extension of the next bit test
and provides a theoretical basis for the Sadeghiyan-
Mohajeri test.

Extended Next Bit Test

De�nition 3
A binary sequence, sn1 , originated from source S, passes
the ENB test if for every i and l, 1 < i, l � n, and
for every probabilistic polynomial time algorithm, A:
f0; 1gi�1 ! f0; 1gl, such that either A(si�1

1 ) = �means
A cannot predict the next bit(s), or if A predicts the
next bit(s), then the following inequality holds:��probSfA(si�1

1 ) = si�1+l
i g � (1=2)l

�� � O(�(n)): (3)

Theorem 1
The following statements are equivalent:

i) The Next Bit test,

ii) The Extended Next Bit test.

Proof: See Appendix A.

Hence, we can consider the Sadeghiyan-Mohajeri test
as an algorithm for the ENB test, and NOT an
algorithm for their proposed Extended-POP test, since
the non-uniform (biased) pseudorandom sequences fail
the Sadeghiyan-Mohajeri test theoretically.

IMPROVING THE
SADEGHIYAN-MOHAJERI TEST FROM
THE GLOBAL VIEW

The Relation Between Theoretical and
Practical Next Bit Tests

As mentioned in De�nition 3, the next bit test dis-
quali�es a supposedly random sequence whenever there
exists a polynomial-time algorithm that can predict the
next bit of that sequence, given all its previous bits.
Any polynomial-time algorithm, which can predict the
next bit (or equivalently some next bits) of a sequence,
is a disquali�er of that sequence. Regarding the ran-
domness de�nition [3], it can be proven mathematically
that such a sequence is globally nonrandom. In this
sense, the PNB test is an instance of such a polynomial-
time algorithm.

Our next step is to improve the performance of
the test algorithm.

The Depth of Start Layer

The Sadeghiyan-Mohajeri test assumes that each sub-
sequence of a certain length of underlying sequence is
known to the algorithm. In the next step, the algorithm
tries to predict the next bit of those subsequences
and uses the result of this step to judge about the
randomness of the complete sequence. Ideally, all
previous bits of the complete sequence are known to
the algorithm to predict its next bit. However, as
the prediction process relies on the statistics deduced
from the sequence itself, the society of the bits of the
sequence is too small to be regarded as a reference for
inferring any information about the next bit of the
whole sequence. Instead, we can exploit information
about the distribution of the next bit of relatively
short subsequences of the original sequence, using that
society.

In this section, we try to �nd out which length of
subsequences best suits this purpose.

The Relation Between Next Bit Prediction and
the Depth of Start Layer
In the �rst step of Algorithm 1, for each pattern in
the pattern tree, the algorithm checks if the number
of occurrences of the child of a speci�c pattern ending
with 0 di�ers signi�cantly from that ending with 1; the
algorithm predicts the next bit of the subsequence.

As depicted in Figure 1, the depth of each layer
of the tree is equal to the length of the patterns
(that is corresponding subsequences in the underlying
sequence) of that layer. According to the above-
mentioned structure we de�ne the Depth of Start Layer
as follows.

The pattern for which the algorithm compares
the number of occurrences of its children, is called
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the Known Pattern; the layer in the pattern tree
including all known patterns (which belong to the same
layer) of the tree is called the start layer. The length
of those patterns remains constant during each run
of the algorithm, and is equal to the depth of the
corresponding layer in the pattern tree. This length
is called the Depth of Start Layer.

Algorithm 1 sets the depth of start layer equal
to l = log2(n) � 1. This length was chosen, since it
is possible for a sequence of length n to contain all
possible subsequences of length l + 1 [7].

However, as the prediction process is independent
of choosing the depth of the start layer, it is possible to
choose a better depth for the start layer other than l.

The prediction process does nothing other than
running a frequency test [2] on the bits occurred after
each subsequence. Then, it computes the �2 statistic
of this observation and uses it to test if the observation
can signi�cantly result in the rejection of the null
hypothesis, which states that the next bit(s) of the
underlying subsequence have a Bernoulli distribution
with a mean of 1=2. However, the �2 test is not
applicable to all random experiments. Knuth [8] stated
that the �2 distribution is an approximation that is
valid only for a large enough number of observed
experiments. Accordingly, if we repeat a random
experiment k times, a common rule of thumb is to take
a large enough k, such that each of the expected values
occurs �ve or more times, otherwise the test is not
valid and we cannot rely on its result [8]. In our case,
where the random sequence bits have an independent
Bernoulli distribution with a mean of 1=2, we need the
subsequence to be repeated k = 2� 5 = 10 times along
the sequence to ful�ll the validity criterion of the �2

test.
Algorithm 1 does not consider the validity of the

�2 test; it leads to some unreasonable prediction and
disquali�es some pseudorandom sequences.

To quantify the above statement, we de�ne the
notion of occurrence of nonrandom behavior. Suppose
that a pattern fails the test and, consequently, it is
possible for the prediction algorithm to predict its next
bit. Any occurrence of such patterns in the pattern tree
of the underlying sequence is called an Occurrence of
Nonrandom Behavior (ONB).

Figure 2 gives evidence of the weakness of the
Sadeghiyan-Mohajeri test. The pseudorandom se-
quences are generated by the double AES encryption of
the output of SHA-2. Both algorithms are believed to
show good randomness properties in their output [9,10].
On the other hand, the nonrandom sequences are
either extracted from graphical data or compression
of texts and executable programs. As can easily be
seen, the Sadeghiyan-Mohajeri test �nds more ONBs
in sequences from a pseudorandom category than those
from nonrandom ones.

Figure 2. Comparison between the number of ONBs
resulting from executing Sadeghiyan-Mohajeri test on
pseudorandom and nonrandom categories.

In fact, a subsequence with length l = log2(n)� 1
is too large to happen 10 times in an n-bit sequence.
More precisely, the expected number of times that such
a subsequence occurs in an n-bit random sequence can
be calculated as follows:

(The total no. of overlapping patterns that
can be �tted into the reference sequence)
(The no. of possible patterns with length l)

=
n
2l

= 2: (4)

It means that we do not expect to be able to apply
the �2 test for any pattern length and the test might
have no result for many sequences with no obvious non-
random behavoir. However, using l = log2(n) � 2 as
the depth of the start layer, the clear deviation from
randomness is still detectable. The practical results,
depicted in Figure 3, signify the same fact.

From the other aspect, the way of prediction of
the next bit of subsequences within a sequence can
be related to the reference sequence, using binomial
distribution.

Each subsequence of length equal to the depth
of the start layer can be considered an occurrence of
either random or nonrandom behavior. Therefore, the
state of all such subsequences, with the length equal
to the depth of the start layer, is a random variable
with binomial distribution. It is always desirable to
approximate binomial distribution with the normal
distribution because it makes the computation easier.
However, this approximation is only valid when the
mean of the binomial distribution is greater than
10 [11]. In this context, by \mean of the binomial
distribution", we mean the average number of ONBs
corresponding to a random sequence. It is not easy to
calculate this average number by sticking only to the
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Figure 3. Comparison of the number of occurrences of
nonrandom behavior w.r.t. the sample sequences
computed for three di�erent start layers.

theory; nevertheless we can obtain it by the practical
results of the test on pseudorandom sequences. Using
normal distribution as an approximation to the bino-
mial distribution leads us to choose the depth of the
start layer, which provides us with an average number
of ONBs more than 10.

Practical Results of the Di�erent Layers
In order to �nd the suitable layer to be taken as
the start layer, the PNB test was run on the 61
sample sequences shown in Table B1, Appendix B, for
start layers with depth 1 to 24 (where no nonrandom
behavior is detected). The result of layers 14 to 16 is
depicted in Figure 3.

Setting start layer one from the �rst to the
14th, we observe that the curve does not show any
signi�cant di�erence between the number of ONBs
of pseudorandom (the sequences in the �rst and
the second categories, according to Table B1) and
that of nonrandom sequences (third category). How-
ever, there are intrinsic di�erences in their generation
methods, which NIST tests can signi�cantly distin-
guish.

Regarding the 16th to 24th layers as start layers,
the di�erence between pseudorandom and nonrandom
sequences can easily be observed. However, the number
of ONBs in pseudorandom sequences is too small to
be a basis for comparing the randomness quality of
pseudorandom sequences with each other.

Among these layers, the result of the 15th layer
is an acceptable distinguisher between pseudorandom
and nonrandom sequences and, on the other hand, the
wide range of 80 to 140 ONBs (the di�erence between
the ONB of the �rst and the 52nd sample sequences in
Figure 3) provides a good tool for ranking the quality
of pseudorandom sequences, compared with those of
the 16th layer.

Moreover, by choosing the 16th layer as the
start layer (as is considered in the original design
of the Sadeghiyan-Mohajeri test) the average number
of ONBs in a pseudorandom sequence becomes 2.8
for the experimental sample. As stated previously, a
binomial distribution with such a \mean" cannot be
approximated by a normal distribution. The mean of
103.2 of the 15th layer, however, ful�ls the prerequisite
of the approximation.

Improved Depth of the Start Layer
Considering both the theoretical and practical results,
it seems that log2(n) � 2 is a more proper choice for
the start layer than log2(n) � 1, which is proposed
in Algorithm 1. The reasons are as follows: First,
the variety of the patterns in the (log2(n) � 1)th
layer results in their less frequent occurrence in the
sequence, which causes the �2 validity condition to be
rarely satis�ed; for most patterns, their randomness
cannot be judged. Second, the average number of
ONBs in this layer is too small to approach the normal
distribution. Finally, the inability of this layer in
ranking pseudorandom sequences weakens the power
of this test in discovering nonrandom sequences with
higher levels of entropy (Figure 3).

Study of the Length of Prediction Block

Length of Prediction Block in the
Sadeghiyan-Mohajeri Algorithm
In [7], the authors suggested that a node is recognized
as an ONB if more than l bits can be predicted after
it. Moreover, it is claimed that in such a situation
there is a block of length l, where its next block could
be guessed and the sequence may be rejected as being
generated with a random generator under the required
properties.

This criterion is more heuristic than mathe-
matical, and for �nding a prediction length upon a
mathematical basis, we should observe the process of
predicting subsequent bits. According to Algorithm 1,
for each pattern in the (l � 1)th layer, when the
algorithm predicts its lth bit, it omits the left most bit
of the resulted l bit pattern to achieve another (l�1)-bit
pattern, which again is a node of the start layer. Again,
if this new pattern is an ONB, its next bit, that is the
(l+1)th bit of the original pattern, is predictable. The
algorithm stops when either it meets a pattern whose
next bit is unpredictable or it loops these steps l + 1
times. In the latter case, it admits that the original
pattern is an ONB.

Assessing and Improving the Original Length
of the Prediction Block
For studying the proper length of the prediction block,
we employ the discrete random variable, Xi, which
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shows the nonrandom behavior in the ith pattern of
the lth layer of the tree such that:

Xi = 0, if the next block after the ith pattern is
not predictable.

Xi = 1, if the next block after the ith pattern is
predictable.

By this convention, the number of ONBs in the
underlying sequence is a random variable, Y , as follows:

Y =
X2l�1

1
Xi: (5)

If we set the length of the prediction block equal
to 1 (that is we only predict one bit to admit an
ONB), the Xi variables are independent of each other.
Under this condition, according to the number of
patterns in the (l � 1)th layer (in the way that we
have chosen previously) and the fact that all Xis are
identically distributed, the Central Limit Theorem can
be employed to deduce that Y is normally distributed.
Knowing the probability distribution of Y enables us
to �nd easily the P -value for this test.

However, if we admit an ONB whenever it is
possible to predict more than one bit, the Xi variables
are not independent any more. Actually, predicting the
second bit of a pattern is the same as the prediction of
the �rst bit of the next pattern shifted by one bit. In
this case, due to the lack of independence between Xis,
we cannot approximate the distribution of Y as normal,
using the central limit theorem.

A deeper look at the Sadeghiyan-Mohajeri test
reveals that the number of patterns, whose one next
bit is predictable, is an estimation of the number of
patterns, whose k next bits are predictable.

Improved Length of the Prediction Block
According to Theorem 1, there is no theoretical dif-
ference between predicting one or more bits. For this
reason, and also because of the results of this section,
we exploit the advantages of predicting one next bit of
a pattern within a given sequence as a sign of ONB.
Hence, in our proposed randomness test, we set the
length of the prediction block equal to 1.

The Improved Test

By applying the improvements of this section to the
Sadeghiyan-Mohajeri test, we introduce the PNB Test
in the next section.

THE PNB TEST

The Algorithm

Test Purpose
The purpose of this test is to determine whether there
is a deviation in the statistic of the next bits of a

subsequence whenever it appears; if there is such a
deviation, then the test exploits it to predict the next
bit of the subsequence. A sequence is considered
nonrandom if it contains many subsequences whose
next bit is predictable.

Test Statistic
Let Yobs be the number of ONBs in the pattern
tree of the sequence, that is equal to the number of
subsequences whose next bit is predictable.

The reference distribution for this test statistic is
the normal distribution (see previous sections).

Test Description
Note that since no known theory is available to de-
termine the exact values of � and � for the last step
of Algorithm 2, these values were computed (under
the assumption of randomness) using a double AES
encryption of SHA-2 with di�erent random keys for
each session [2]. Refer to Appendix B for further
details.

As expected, the PNB test shows more reason-
able results in comparison to the original Sadeghiyan-
Mohajeri test. The PNB Test can easily distinguish
between pseudorandom and nonrandom categories of
sequences, as depicted in Figure 4.

Global Test Versus NIST's

The Benchmarks for Comparing the Global
Test with the NIST's
NIST proposed a Statistical Test Suite [2], which is a
package consisting of 16 tests. These were developed
to test the randomness properties of binary sequences.
These tests focus on a variety of di�erent types of non-
randomness that could exist in a sequence. Although
it is not claimed that this suite can completely assess
all aspects of randomness of the underlying sequence,

Figure 4. Comparison between the number of ONBs
resulting from executing the PNB test on pseudorandom
and nonrandom categories.
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Algorithm 2. Practical next bit test.

they are considered as being useful in detecting its
deviations from randomness [2].

As a measure of quali�cation, we compare the
power of the PNB test with that of NIST's.

De�nition 4
The power of a statistical test is the probability that
the test will reject a false null hypothesis, or in other
words, it will not make a Type II error [12].

In this context, the power of a test is the probabil-
ity that the underlying test will not admit a nonrandom
sequence as being random. As power increases, the
chances of a Type II error decrease and vice versa.

Having higher power makes for a more e�cient
test; e�ciency in the sense that the user can have
con�dence in the random behavior of a generator
by testing a smaller sample. Also, the nonrandom
behavior of a bad generator can be discovered by
testing a smaller number of outputted sequences.

One of the primary goals of introducing the NIST
test suit was to minimize the probability of a Type II
error [2]; it is reasonable to employ the new test, which
makes this kind of error less probable. However, it does

not mean that other tests can be replaced by the PNB
test, as the new test merely checks a new aspect of
randomness, but it does not cover the aspects checked
by the other tests.

Both the PNB and the NIST tests are run on
three categories of nonrandom sample sequences in
Appendix B. NIST tests are executed using the NIST
recommended parameters. For each category, the tests
are ranked according to the power they showed corre-
sponding to that category. The results are depicted in
Tables C1 to C3, Appendix C.

Experimental Results
Tables C1 to C3 in Appendix C show a comparison
between the power of the PNB test and NIST's. In
all the three categories, the PNB test is privileged in
recognizing nonrandomness within the sequence, as its
power ranked �rst in all the three categories. In other
words, there are some nonrandom anomalies in the
sequences, which remain undetectable considering the
NIST tests.

The PNB test judges the global random behavior
of a sequence by �nding the local nonrandom occur-
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rences that happen in the sequence. The judgment
is based on the assumption that the diversity of the
patterns in the sequence is as high as the expected
value for a random sequence. To ful�ll this assumption,
it is crucial that a pattern diversity evaluator test is
executed. A practical suitable example of such a test
is the serial test [2]. In other words, the PNB test
makes sure that the occurrences of existing patterns in
the sequence are independent of each other, but it does
not judge about their mere existence. The result of
the PNB test cannot be considered valid on a sequence
that fails the serial test.

It is also worth mentioning that the experimental
computation of the test distribution shows that the
PNB test is not conservative.

IMPROVING THE
SADEGHIYAN-MOHAJERI TEST FROM
THE LOCAL POINT OF VIEW

Sadeghiyan-Mohajeri's Algorithm for
Prediction of More Than One Bit

In this part, we want to study, in more detail, the way
that Algorithm 1 predicts each bit of the next block.

Study of Sadeghiyan-Mohajeri's Algorithm for
the Next Block Prediction

Theoretical View
Although the prediction process of Algorithm 1 does
well in predicting the �rst bit of the predicted block,
the algorithm seems not to be valid for predicting more
than one bit. Our deduction about the second next
bit of an (l � 1)-bit pattern could be in
uenced by
another l-bit pattern that has the same bits as the
derived l-bit pattern (the concatenation of the (l � 1)-
bit subsequence with the predicted bit) except for its
leftmost bit, which di�ers from the leftmost bit of the
(l�1)-bit subsequence. The statistics of such a pattern
interfere in the prediction process and leads us to a
wrong result. The following lemma states this claim
mathematically.

Lemma 1
Let sl�1

1 be the primary pattern and the algorithm
predict its second next bit, a 2 f0; 1g. Then, the
following assertion holds:

prob(sl+1 =ajsl1) 6=prob(sl+1 =ajsl2; s1)prob(s1jsl2)

+ prob(sl+1 = ajsl2; s1)prob(s1jsl2): (6)

Proof: The left hand side of Relation 6 is the de�-
nition of predicting the next bit, given the previous
l bits. However, the local nonrandomness detector
algorithm computes the right hand side and outputs

the wrong result, because the second term at the
right hand side of Relation 6, namely prob(sl+1 =
ajsl2; s1)prob(s1jsl2), is totally unrelated to the second
next bit of the underlying pattern. It is, however,
considered in the prediction process and dismisses its
validity.

Practical View
To evaluate the Sadeghiyan-Mohajeri's prediction pro-
cess, the Sadeghiyan-Mohajeri test has been carried out
on a sample of random sequences to predict two bits of
each subsequence. The number of bits that have been
predicted wrongly has been signi�cantly higher than
the theoretical expectation. This rejects the validity
of the sequential prediction algorithm in practice as
well.

Correction of the Sadeghiyan-Mohajeri's
Algorithm

The main problem with the sequential prediction in the
next block method is that it does not include the known
information in the prediction process. For example,
the leftmost bit of the original subsequence is known.
However, it is not used in the prediction of the second
and further next bits of that subsequence. We solve
this problem as follows.

Let the prediction of k bits after a pattern
indicates the local nonrandomness behavior of the
underlying sequence, whenever such a pattern exists.
The tree constructed for this algorithm is no longer
a binary tree. Instead, a B-Tree [12] of 2k children
(that is the number of all possible patterns of k-
bit length) for each node is constructed. Note that
k is a �xed value, which should not depend on the
length of the sequence, otherwise, the algorithm would
no longer be polynomial time. For each child of
each pattern, the algorithm counts the number of
occurrences of that child after the subsequence in
the underlying sequence. Then it judges the ran-
domness of the pattern by performing a goodness-
of-�t test for the equal occurrence of its children.
If the pattern fails the test, the local nonrandom
behavior is reported, wherever that pattern occurs in
the sequence.

As long as the �2 test is valid, the choice of
greater k results in a greater number of nonrandom
patterns. Therefore, regarding the sensitivity of the
case, users can specify the desired length of the pre-
diction block. The validity condition of the �2 test,
as stated previously, requires that the length of the
parent pattern (depth of start layer) should be short
enough to permit the occurrence of total 2k � 5 times
of each subsequence (parent pattern) in the sequence.
The probability of the validity condition of �2 decreases
exponentially, whenever longer prediction blocks are
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chosen. From the point of view of complexity, there
is a trade-o� between the length of the prediction
block and the memory needed to store the B-Tree of
2k children. In other words, increasing the length
of the prediction block causes the memory needed
for storing the B-Tree to grow exponentially making
execution of the test much harder or even impossible.
Therefore, users should wisely choose a short prediction
block to get valid practical results. By applying this
solution, we present the local PNB test in the next
section.

LOCAL TEST

Algorithm

Test Purpose
The focus of the local next bit test is on �nding the
subsequences in the sequence for which some of the
next bits are predictable.

The Test Statistic and Reference Distribution
Let �iobs be a measure, for each possible ith sub-
sequence of length l, which indicates how well the
observed proportion of the next l0 bits after that
subsequence match the expected proportion, 1

2l0 .

The Test Description
A description of the local test is given in Algorithm 3.

NEXT BIT HISTOGRAM

In order to have evidence of the randomness behavior
of a sequence, it is desirable to have a histogram which
plots an intuitive scheme of the nonrandom behavior
of that sequence.

Construction

The histogram of the practical next bit test uses the
same idea as the Sadeghiyan-Mohajeri's histogram [7].
Therefore, the new histogram is constructed by the
same method, but supports more 
exibility. The
histogram construction algorithm runs several local
tests, setting di�erent lengths for the prediction block.
Each node of the histogram shows the number of local
nonrandomness with a speci�ed length of prediction.
Algorithm 4 shows the detailed process of the his-
togram construction.

Interpretation of the Results

Many heuristic results can be obtained by looking at
the PNB histogram. Here, we just point out the
obvious ones.

As can be observed from Appendix D, Figures D1,
most of the histograms start with a positive slope, reach
a peak and then decrease. The less the area covered
by the histogram, the more the random properties of
the tested sequence. Naturally, the histogram should
increase and decrease steadily. If in a sequence the

Algorithm 3. Local Practical Next Bit test.
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Algorithm 4. Practical Next Bit test histogram.

histogram becomes 
at after it passes the peak, a
serious local nonrandomness is expected to occur in
some subsequences of the sequence.

CONCLUSIONS

In this paper, the Sadeghiyan-Mohajeri test was stud-
ied and analyzed from both theoretical and practical
aspects. First, contrary to the authors' claim, it was
proved that the Sadeghiyan-Mohajeri test does not rely
on the proposed Extended-POP test as a theoretical
basis. Instead, the Extended Next Bit (ENB) test was
introduced as the theoretical basis for the Sadeghiyan-
Mohajeri test and proved to be the equivalence of
the Next Bit test and ENB test. Then, the authors
derived the Practical Next Bit (PNB) test from the
Sadeghiyan-Mohajeri test in two new versions; Global
Next Bit test and Local Next Bit test.

For the Global version, di�erent aspects of the
Sadeghiyan-Mohajeri test were studied to improve
its power in recognizing nonrandom behaviors in the
underlying sequence. Then, the length of the prediction
block was replaced from the proposed log2(n)+1 bits to
one bit and the validity condition of the goodness-of-�t
test was considered during the prediction. Using both
theoretical and practical results, the authors chose the
(log2(n)�2)th layer as the best start layer. By applying
these improvements, it was called the PNB test and
signi�cant improvements in its results were observed.

In the next step, we suggest a way to compute the
P -value corresponding to every applied sequence.

The standardization makes it possible to compare
the PNB test with the existing tests such as NIST's.
Experimentally, the superiority of the PNB test in
�nding nonrandomness anomalies was shown.

To solve the problem in the Sadeghiyan-Mohajeri
test algorithm, while predicting more than one bit, the
authors have introduced a new algorithm for the Local
Next Bit test. Using this algorithm for predicting more
than one bit, a new histogram has been introduced,
which can give the user a better impression, view and
comparison tool for the global random behavior of the
underlying sequence.

Considering the experimental results of the power
comparison and the variety of the information about
the randomness of the sequence (the global randomness
behavior via P -value calculation, drawing a histogram
and the local nonrandomness behavior), the authors
suggest that the user runs the PNB test prior to the
other tests, among them the NIST tests, for analyzing
the random behavior of the underlying sequence.

Moreover, the Local Next Bit test enables the user
to �nd the exact positions of nonrandom behavior in
those sequences used for cryptographic applications.

Obviously, one cannot claim that there exists an
optimal statistical test which can detect all nonrandom
behaviors of every sequence. This is also true for the
PNB test. Certainly, further research in this �eld will
result in more e�cient test algorithms.
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APPENDIX A

Proof of Theorem 1

The following statements are equivalent:

i) The Next Bit test,

ii) The Extended Next Bit test.

Proof: First we prove that (i)! (ii) or, equivalently, :
(ii) ! : (i).

If the underlying sequence fails in the ENB test,
then there exists i, l and a probabilistic polynomial
time Algorithm A, such that it can predict the next l
bits of si�1

1 with probability p, that is:

jp� (1=2)lj � O(�(n)): (A1)

Let r be the l bit output sequence of A, then there
exists some j; 0 � j � l � 1, such that:

jprobSfrj+1 = si+jg � 1=2j � O(�(n));

otherwise, we face a contradiction to Relation A1.
Therefore, the following inequality holds:

jprobSfA(si+j�1
1 = si+jg � 1=2j � O(�(n)): (A2)

Relation A2 reveals that the underlying sequence fails
in the Next Bit (NB) test. Now, we prove that (ii) !
(i).

If the underlying sequence passes the ENB test,
then it passes the test for every l; 1 � l � n.

So, by setting l = 1, the sequence also passes the
NB test.�

APPENDIX B

Sample Sequences

Sample Sequences for Finding Suitable Start
Layer
The chosen spectrum, from pseudorandom to highly
nonrandom sequences, is used for experimental tests to
�nd a proper start layer. These sequences are listed
in Table B1. All of the sequences have the same
length of 128 Kbits, but they are categorized in three
sections: Binary expansion sequences of some irrational
numbers, the sequences resulted from standard hash
algorithms and ordinary data sequences resulted from
some graphical data. The �rst and second ones
are assumed to be pseudorandom, but the third one
contains highly nonrandom data.

Sample Nonrandom Sequences for Comparison
Between Di�erent Tests
The three categories of nonrandom sequences are used
for the comparison purpose. These sequences are listed
in Table B2. All of the sequences have the same length
of 128 Kbits, but they are categorized in three sections,
that is sequences resulted from lossy compression of
graphical data in frequency space (JPEG), sequences
resulted from lossless compression of graphical images
with the LZW algorithm (GIF) and sequences resulted
from compression of executable programs and texts
using the \GZip" program.

The compression algorithms in all sequences in-
crease the entropy of data to hide obvious nonrandom
behaviors. The high entropy in nonrandom samples
provides a more decisive challenge for the tests.
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Table B1. The list of sample sequences used in experimental tests, categorized in three sections.

# Name of Sequences Generator

E(0)� E(6) The 1st to 7th subsequences of the binary expansion of e.

�(0)� �(6) The 1st to 7th subsequences of the binary expansion of �.

I ln 2(0)� ln 2(6) The 1st to 7th subsequences of the binary expansion of ln 2.p
2(0)�p2(6) The 1st to 7th subsequences of the binary expansion of

p
2.p

3(0)�p3(6) The 1st to 7th subsequences of the binary expansion of
p

3.p
5(0)�p5(6) The 1st to 7th subsequences of the binary expansion of

p
5.

SHA2(0)�SHA2(4) The 1st to 5th subsequences of result of Secure Hash Algorithm-2 (SHA2) on a

II bitmap image.

MD5(0)�MD5(4) The 1st to 5th subsequences of result of MD5 Hash Algorithm on a bitmap

image.

LHBMP(0)�LHBMP(2) The 1st to 3rd subsequences of a graphical image in bitmap (BMP) format.

III LHJPG(0)�LHJPG(2) The 1st to 3rd subsequences of the graphical image in JPEG format.

LHZIP(0)�LHZIP(2) The 1st to 3rd subsequences of the graphical image, compressed with WinZip.

Table B2. The list of sample sequences used in the
experimental comparison, categorized in three sections.

# Sample Size Origin

I 10000 JPEG images

II 700 GIF images

III 4500 GZip compressed data

Sample Sequences for Computing the Mean
and the Standard Deviation of the PNB Test
Distribution
As the P -value is the main tool for a statistical test to
decide on the null hypothesis, we should compute the
P -value for the statistic for standardization of the PNB
test. Since the length of the prediction block is set to
1, according to Equation 5, the Y statistic has normal
distribution. According to [2], the P -value for normal
distribution can be computed as follows:

P�value = 1=2 erfc
�
Y � �p

2�2

�
:

For each n (the length of the underlying sequence), the
values of � and � would need to be calculated. Since
no known theory is available to determine the exact
values of � and �, according to [9,10], these values were
computed under the assumption of randomness, using
the output sequences of the double AES encryption of
the SHA-512 hash function.

A sample of 10000 sequences has been generated
to estimate these values for the length of 217. For
generating each sequence, SHA-512 is re-fed using a

seed generated by Linux Kernel RNG. Using SHA-512,
an input sequence of length 217 and two 128-bit keys
are generated. Then, the sequence is encrypted twice,
using AES-128, by employing one of the random keys
each time. As a result of this process, our estimates
are:

� = 105; �2 = 154:04:

APPENDIX C

Power Comparison Results

The NIST and the PNB tests are executed to eval-
uate nonrandom sequences listed in Table B2. The
power of each test resulted from each category is
listed in Tables C1 to C3 and ranked decreasingly.
The power is the proportion of sequences whose non-
radnomness could be detected by the corresponding
test.

We did not include the \Random Excursion
Tests", as they do not output single P -value.

APPENDIX D

Selected Histograms

Figure D1 represents the histogram resulted from
executing the Algorithm on some sequences chosen
from our sample in Table B1. For all sequences besides
E(0), Algorithm 4 has been carried out using 10 as the
depth of the start layer; for sequence E(0), The Next
Bit histograms are shown, using 8 to 15 as the depth
of the start layer.
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Table C1. The power of tests in �nding nonrandomness in JPEG sequences.

Rank Test Power
1 PNB 1
1 Approximate entropy 1
1 Serial 1
4 Overlapping template matching 0.9997
5 Lempel-Ziv compression 0.9621
6 Cumulative sums 0.9498
7 Frequency mono-bit 0.9369
8 Longest run of 1's 0.9209
9 Non-overlapping template matching 0.8696
10 Runs 0.8176
11 Frequency within a block 0.7442
12 Maurer's universal statistical 0.6659
13 Binary matrix rank 0.033
14 Discrete Fourier transform 0.0307
15 Linear complexity 0.023

Table C2. The power of tests in �nding nonrandomness in GIF sequences.

Rank Test Power
1 PNB 1
1 Approximate entropy 1
1 Frequency within a block 1
1 Longest run of 1's 1
1 Serial 1
1 Maurer's universal statistical 1
7 Cumulative sums 0.9986
8 Overlapping template matching 0.9918
9 Frequency mono-bit 0.9823
10 Non-overlapping template matching 0.981
11 Lempel-Ziv compression 0.9756
12 Runs 0.9512
13 Discrete Fourier transform 0.6219
14 Binary matrix rank 0.1382
15 Linear complexity 0.1192

Table C3. The power of tests in �nding nonrandomness in GZip Compressed sequences.

Rank Test Power
1 PNB 0.9904
2 Approximate entropy 0.9842
3 Serial 0.9786
4 Overlapping template matching 0.96
5 Maurer's universal statistical 0.9483
6 Frequency within a block 0.93
7 Non-overlapping template matching 0.9151
8 Cumulative sums 0.8015
9 Lempel-Ziv compression 0.77
10 Frequency mono-bit 0.7375
11 Longest run of 1's 0.7362
12 Runs 0.5802
13 Discrete Fourier transform 0.0331
14 Linear complexity 0.0246
15 Binary matrix rank 0.0237



Evaluating Pseudorandom Sequences 33

Figure D1. Results of executing histogram test (Algorithm 4) on sample sequences. Each Histogram shows the number of
occurrences of local nonrandomness w.r.t. the length of prediction block for di�erent sequences of our sample.


