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Research Note

Dynamic Green Function Solution
of Beams Under a Moving Load

with Di�erent Boundary Conditions

B. Mehri1;�, A. Davar2 and O. Rahmani2

Abstract. This paper presents the linear dynamic response of uniform beams with di�erent boundary
conditions excited by a moving load, based on the Euler-Bernouli beam theory. Using a dynamic green
function, e�ects of di�erent boundary conditions, velocity of load and other parameters are assessed and
some of the numerical results are compared with those given in the references.
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INTRODUCTION

In recent years, all branches of transport have experi-
enced great advances, characterized by the increasingly
high speed and weight of vehicles and other moving
bodies. As a result, corresponding structures have been
subjected to vibration and dynamic stress far longer
than ever before. The moving load problem has been
the subject of numerous research e�orts in the last
century. The importance of this problem is manifested
in numerous applications in the �eld of transportation.
Bridges, guideways, overhead cranes, cableways, rails,
roadways, runways, tunnels, launchers and pipelines
are examples of structural elements designed to support
moving loads.

The literature concerning the forced vibration
analysis of structures with moving bodies is sparse.
The most used method for determining these vibrations
is the expansion of applied loads and dynamic re-
sponses in terms of the eigenfunctions of the undamped
beams. This method leads to solutions presented as
in�nite series, which will be truncated after a number
of terms and approximate solutions are then obtained.
Fryba [1] used the Fourier sine (�nite) integral transfor-
mation and the Laplace-Carson integral transformation
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to determine the dynamic response of beams due to
moving loads and obtained a response in the form of
series solutions. Ting et al. [2] formulated and solved
the problem using in
uence coe�cients (static Green
function). The distributed inertial e�ects of the beam
were considered as applied external forces. Corre-
spondingly, at each position of the mass, numerical
integration had to be performed over the length of the
beam.

Hamada [3] solved the response problem of a
simply supported and damped Euler-Bernoulli uniform
beam of �nite length traversed by a constant force
moving at a uniform speed, by applying the double
Laplace transformation with respect to both time and
the length coordinate along the beam. He obtained,
in closed form, an exact solution for the dynamic
de
ection of the considered beam. Yoshimura et
al. [4] presented the analysis of dynamic de
ections
of a beam, including the e�ects of geometric non-
linearity, subjected to moving vehicle loads. With the
loads moving on the beam from one end to the other,
the dynamic de
ections of the beam and loads were
computed using the Galerkin method. Lee [5] presented
a numerical solution, based on integration programs,
using the Runge-Kutta method for integrating the
response of a clamped-clamped beam acted upon by
a moving mass.

Esmailzadeh et al. [6] have studied the forced
vibration of a Timoshenko beam with a moving mass.
Gbadeyan and Oni [7] presented a technique based on
modi�ed generalized �nite integral transforms and the
modi�ed Struble method, to analyze the dynamic re-
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sponse of �nite elastic structures (Rayleigh beams and
plates), having arbitrary end supports and under an ar-
bitrary number of moving masses. Foda and Abduljab-
bar [8] used a Green function approach to determine the
dynamic de
ection of an undamped simply supported
Euler-Bernoulli beam of �nite length, subjected to a
moving mass at constant speed. Visweswara Rao [9]
studied the dynamic response of an Euler-Bernoulli
beam under moving loads by mode superposition. The
time-dependent equations of motion in modal space
were solved by the method of multiple scales and the
instability regions of the parametric resonance were
identi�ed.

Wu et al. [10] presented a technique using com-
bined �nite element and analytical methods for deter-
mining the dynamic responses of structures to mov-
ing bodies and applied this technique to a clamped-
clamped beam subjected to a single mass moving along
the beam. Sun [11] obtained Green's function of the
beam on an elastic foundation by means of the Fourier
transform. The theory of a linear partial di�erential
equation was used to represent the displacement of
the beam in terms of the convolution of Green's
function. Next, he employed the theory of a complex
function to seek the poles of the integrand of the
generalized integral. The theorem of residue was then
utilized to represent the generalized integral using a
contour integral in the complex plane. Abu-Hilal [12]
used a Green function method for determining the
dynamic response of Euler-Bernoulli beams subjected
to distributed and concentrated loads. He used this
method to solve single and multi-span beams, single
and multi-loaded beams and statically determinate and
indeterminate beams.

Using the dynamic Green function yields exact
solutions in closed forms and the de
ection expression
for the beam to be written in a simple form; the
computation, therefore, becoming more e�cient. This
is particularly essential for calculating dynamic stresses
and determining the dynamic response of beams other
than simply supported ones. Also, by use of the
Green function method, the boundary conditions are
embedded in the Green functions of the corresponding
beams. Furthermore, by using this method, it is
not necessary to solve the free vibration problem in
order to obtain the eigenvalues and the corresponding
eigenfunctions, which are required while using series
solutions.

An exact and direct modeling technique is pre-
sented in this paper for modeling beam structures with
various boundary conditions, subjected to a constant
load moving at constant speed. This technique is
based on the dynamic Green function. In order to
demonstrate the procedure and to show the simplicity
and e�ciency of the method presented, quantitative
examples are given. In addition, the in
uence of vari-

ation of the system speed parameters on the dynamic
response is studied.

GREEN FUNCTION SOLUTION

The governing equation of a 
exible beam subject to
a concentrated force (shown in Figure 1) can be given
by:

EI
@4y(x; t)
@x4 + �

@2y(x; t)
@t2

= F (x; t); (1)

where y(x; t) represents the de
ection of the beam, x
represents the traveling direction of the moving load
and t represents time. Also, EI is the rigidity of
the beam, E is Young's modulus of elasticity, l is the
cross sectional moment of inertia of the beam and �
is the mass per unit length of the beam. The beam
length is l, traveling load velocity is v. The boundary
conditions and the initial conditions for the general
beam (Figure 1) are:

@3y(x; t)
@x3 = kly(x; t);

@2y(x; t)
@x2 = kt

@y(x; t)
@x

; for x = 0 and l;

y(x; t) =
@y(x; t)
@t

= 0; (2)

where kl and kt are linear and twisting spring con-
stants, preventing vertical motion and, in the x � y
plane, rotation of the beam ends, respectively. F (x; t)
is the external load and, for a moving concentrated load
case, can be given by:

F (x; t) = P�(x� u); (3)

where P is the amplitude of the applied load and � is
the Dirac-delta function, which is de�ned by:Z 1
�1

�(x� x0)f(x)dx = f(x0): (4)

Using the dynamic Green function, the solution of
Equation 1 can be written as:

y(x; t) = G(x; u)P; (5)

Figure 1. Moving mass on a beam with general boundary
condition.
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where G(x; u) is the solution of the di�erential equa-
tion:

d4y(x)
dx4 �  4y(x) = �(x� u); (6)

in which  is the frequency parameter (separation
constant) and is given by:

 4 = !2 �m=EI; (7)

where ! is the circular frequency that expresses the
motion of the mass and is equal to ��=l.

The solution of Equation 6 is assumed in the
following form [13]:

G(x; u) =

8>>>>>>>><>>>>>>>>:

C1 cos( x) + C2 sin( x)
+ C3 cosh( x) + C4 sinh( x);
0 � x � u

C5 cos( x) + C6 sin( x)
+ C7 cosh( x) + C8 sinh( x);
x � u � l

(8)

The constants C1; � � � ; C8 are evaluated such that
the Green function, G(x; u), satis�es the following
conditions [14]:

(a) Two boundary conditions at each end of the beam,
depending on the type of end support:

G00(0; u) = ktG0(0; u);

G00(l; u) = ktG0(l; u);

G000(0; u) = klG(0; u);

G000(l; u) = klG(l; u); (9)

where the prime indicates a derivative with respect
to x;

(b) Continuity conditions of displacement, slope and
moment at x = u:

G(u+; u) = G(u�; u);

G0(u+; u) = G0(u�; u);

G00(u+; u) = G00(u�; u): (10)

(c) Shear force discontinuity of magnitude one at x =
u:

EI[G000(u+; u)�G000(u�; u)] = 1: (11)

The Green function obtained by the above mentioned
procedure has a general form. By leading linear and
twisting spring constants (kl and kt) to extreme values
(in�nity and/or zero), one can obtain the appropriate
Green function for the desired combinations of end
boundary conditions. Denoting simply supported,
clamped and free end boundary conditions by SS, C
and F, a notation such as C-SS is employed to show
the boundary conditions on the two ends of a clamped-
simply supported beam.

For example, the Green function for a clamped-
simply supported boundary condition (C-SS) is given
by:

G(x; u)=
1

2EI 3�

8>>>>>>>>>><>>>>>>>>>>:

C1 cos( x) + C2 sin( x)
+C3 cosh( x)+C4 sinh( x);
0 � x � u

C5 cos( x) + C6 sin( x)
+C7 cosh( x)+C8 sinh( x);
x � u � l

(12)

where:

C1 = a1 sinh( L)� a2 sin( L);

C2 = a2 cos( L)� a1 cosh( L);

C3 = a2 sin( L)� a1 sinh( L);

C4 = a1 cosh( L)� a2 cos( L);

C5 = � sin( L)�(a3 sinh( L) + a4 cosh( L));

C6 = cos( L)�(a3 sinh( L) + a4 cosh( L));

C7 = sinh( L)�(a3 sin( L) + a4 cos( L));

C8 = � cosh( L)�(a3 sin( L) + a4 cos( L)); (13)

and:

a1 = sin[ (u� L)];

a2 = sinh[ (u� L)];

a3 = cos( u)� cosh( u);

a4 = sinh( u)� sin( u);

� = sin( L) cosh( L)� cos( L) sinh( L): (14)
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NUMERICAL RESULTS

Before discussing the numerical results, the formulation
developed herein is validated against available ana-
lytical solutions for a beam with di�erent boundary
conditions and acted upon by a moving load. First,
a comparison of the present results with the exam-
ple of a clamped-clamped beam, with the following
(Equation 15) system parameters reported by Lee [5],
is demonstrated in Figure 2.

l = 6 �m;

� = 0:6 �m=s;

EI= �m = 275:4408 �m4=s2;

P= �ml = 0:2: (15)

The vertical axis in Figure 2 shows the dimensionless
de
ections (introduced by Equation 16) of the point
under the moving load, and the horizontal axis depicts
the position of the load along the beam. Results
reported by Lee [5] are computed by an assumed mode
method and are compared with the present result of
the Green function approach. As can be observed in
Figure 2, there is an excellent agreement between the
two results. The dimensionless de
ection �y in these
�gures is introduced by:

�y = y=yst; (16)

where yst is the static transverse de
ection at the beam
mid span when a concentrated load with amplitude P is
applied statically at the beam's mid span. For example,
for the clamped-clamped B.C. we have:

yst =
Pl3

192EI
: (17)

Figure 2. Dimensionless de
ections under the moving
load for a clamped-clamped beam.

In the second example, results obtained by the present
method are compared with those obtained in [8].
In Figure 3, the de
ection of a beam with simply
supported boundary conditions for the speed param-
eter � = 0:25 (de�ned by Foda and Abduljabbar [8]) is
illustrated. The dimensionless speed parameter in [8]
is de�ned as:

� = �=�cr; (18)

where the critical speed is:

�cr =
2l
T

=
�
l

r
EI
�m
; (19)

where EI is the bending rigidity, �m is the mass per unit
length of the beam and T is the period that is related to
the lowest mode of beam vibrations. In Figure 3, there
is close agreement between the present result and that
obtained by Foda [8].

The speed parameter, as mentioned in Equa-
tion 18, is the ratio of the speed of the load to the
critical speed. In this article, the speed parameter is
introduced in the following form:

�i =
�
!il

; i = 1; 2; 3; (20)

where � is the speed of load in �m/s and !i is the ith
natural frequency of beam in rad/s.

In Figure 4, the de
ection for a simply supported
beam under constant force, which passes the beam
span from left to right in a constant velocity by speed
parameters equal to 0.1, 1.0 and 2.5, is presented. It
is observed that the response of the beam is harmonic
and is symmetric about the mid span of the beam. In
this example and in those remaining, EI= �m is equal to
2.1368 �m4=s2.

Figure 3. Dimensionless de
ection for a simply
supported beam.
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Figure 4. The de
ection under the moving load for a
simply supported beam with speed parameter, �1 = 0.1,
1.0 and 2.5.

In the remaining �gures, the e�ect of varying the
dimensionless speed parameters (�i) on the maximum
de
ection of beams under di�erent boundary condi-
tions is demonstrated.

The accuracy of Figures 5 to 11 and the values
related to the vertical and horizontal axes depends
directly on the velocity step sizes in the MATLAB
computer code. Of course, as the velocity step
size decreases, the peak values (maximum de
ections)
approach in�nity and the critical speed parameters
converge to more accurate values. Here, we have set
200 steps for the S.P. values in Figures 5 to 8 and, in
order to obtain graphically more clear results, 400 steps
were set for the S.P. values in Figures 9 to 11.

From Figures 5 to 8, it can be observed that
for C-C, SS-SS, C-F and C-SS boundary conditions,
there exist 4, 3, 2 and 3 critical speed parameters,
respectively.

Figure 5. Maximum de
ection along the
clamped-clamped beam versus speed parameter, �1.

Figure 6. Maximum de
ection along the simply
supported beam versus speed parameter, �1.

Figure 7. Maximum de
ection along the clamped-free
beam versus speed parameter, �1.

Figure 8. Maximum de
ection along the clamped-simply
supported beam versus speed parameter, �1.
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The critical values of speed parameter �1, in
which the peak values of maximum de
ection occur, are
obtained from Figures 5 to 8 and presented in Table 1.
From these �gures, one can see that the �rst critical
de
ection under all boundary conditions falls within
the speed parameter range (0.33-0.36). Furthermore,
in some cases the �rst peak and in others the second
ones are critical values.

In Figures 9 to 11, the maximum de
ection versus
speed parameters, �1, �2 and �3 for beams with
di�erent boundary conditions are de
ected, respec-
tively. The value of these natural frequencies for each
boundary condition is presented in Table 2.

In Figure 9, variation of the maximum de
ection
versus speed parameter, �1 (related to �rst natural
frequency !1 ), of the beam is shown. As mentioned
before, it can be seen more clearly from Figure 9 that
critical speed parameters for all boundary conditions
fall within the range 0.33 to 0.36. In addition, out of
this range, the de
ection of a clamped-free (C-F) beam
is maximum and that of the C-C is minimum among
the four corresponding B.C.'s.

The critical speed parameters (�i) where the
maximum de
ection peak values occur in Figures 10
and 11, are presented in Table 3.

From Figures 9 to 11, one can see that the maxi-
mum de
ections related to �1, �2 and �3, depicted one,
two and three peak values, respectively, and the last
peak value in each of these �gures for all the boundary
conditions occurs in the range 0.33 to 0.36. This new
observation implies a suitable point for the designers of
beam-like structures under moving constant loads, i.e.
they should avoid the speed parameters considered to
be �i near the critical values (0.33 to 0.36) in order to
prevent resonance.

Table 1. Critical speed parameter, �1, values for di�erent
boundary conditions.

Boundary
Conditions

Critical Values of
Speed Parameter, �1

1st 2nd 3rd 4th

C-C 0.3285 0.9065 1.7762 2.9361

SS-SS 0.3387 1.3535 3.0456 -

C-F 0.3616 2.2664 - -

C-SS 0.3527 1.1421 2.3822 -

Table 2. Natural frequencies of bending vibrations of
beams with di�erent boundary conditions.

Natural Frequency C-C SS-SS C-F C-SS

!1 (Hz) 14 6 2 9

!2 (Hz) 39 25 14 32

!3 (Hz) 78 57 39 67

Figure 9. Maximum de
ection along the beam versus
speed parameter, �1 .

Figure 10. Maximum de
ection along the beam versus
speed parameter, �2.

Figure 11. Maximum de
ection along the beam versus
speed parameter, �3.
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Table 3. Critical speed parameter, �2 and �3, values for di�erent boundary conditions.

B.C. Speed Parameters Critical Valuse of Speed Parameters
(�i) 1st 2nd 3rd

C-C �2 0.1184 0.3247 -
�3 0.0586 0.1630 0.3183

SS-SS �2 0.0815 0.3247 -
�3 0.0357 0.1426 0.3209

C-F �2 0.0522 0.3234 -
�3 0.0191 0.1159 0.3259

C-SS �2 0.0993 0.3209 -
�3 0.0471 0.1528 0.3196

CONCLUSION

An exact and direct modeling technique is presented in
this paper for modeling beam structures with various
boundary conditions, subjected to a load moving at a
constant speed. In order to validate the e�ciency of
the method presented, quantitative examples are given
and results are compared with those available in the
literature. In addition, the in
uence of a variation in
the speed parameters of the system on the dynamic
response of the beam was studied and the results
were given in graphical and tabular form. Maximum
de
ections versus speed parameter �i of beams with
various boundary conditions are determined. It was
observed that the maximum de
ections related to �1,
�2 and �3, depicted one, two and three peak values,
respectively, and the last peak value in each of these
�gures, for all boundary conditions, occurs in the range
0.33 to 0.36. This new observation implies a suitable
point for the designers of beam-like structures under
moving constant loads, i.e. they should avoid the speed
parameters considered to be �i near the critical values
(0.33 to 0.36) in order to prevent resonance.
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