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Reduction of Thermodynamic Losses
in a Supersonic Nucleating Steam

Nozzle by Spraying Water Droplets

M.R. Mahpeykar1;�, E. Lakzian1 and E. Amirirad1

Abstract. During the course of expansion of steam in turbines, the vapour �rst supercools and then
nucleates to become a two-phase mixture. Formation of the liquid phase causes thermodynamic and
aerodynamic losses in steam turbines. In this study, the treatment is a one-dimensional, non-equilibrium
ow in a steady Laval nozzle. In this paper, the changes in the rate of nucleation, entropy, pressure and
other parameters of the two-phase ow, subjected to spraying the liquid droplets close to the nozzle's throat,
are investigated. By injecting the water droplets into a supersonic condensing ow, the thermodynamic
loss is considerably decreased.

Keywords: Two-phase ow; Convergent-divergent nozzle; Nucleation.

INTRODUCTION

The uid temperature in LP turbines decreases due to
the steam expansion. Therefore, the superheat vapour
crosses the saturation line and enters the two-phase
region. Due to the high velocity of the steam ow, it is
still single-phase, which is called supercooled vapour.
This situation continues to the Wilson point, where
the supercooled steam cannot continue and the uid
starts nucleating. The subcooled vapour loses its latent
heat and liquid droplets with small diameter forms.
The nucleation model presented in this research is a
homogenous one. In this kind of nucleation, condensa-
tion occurs without any impurity or surfaces [1,2]. In
the supersonic region, if the ow is heated, its velocity
decreases and its pressure increases. Therefore, we
have condensation shock (or pressure rise) [3] which
increases the ow entropy. It is found that this shock
disappears by spraying water droplets close to the
nozzle's throat. In this case, vapour condensation
occurs mainly on the surface of the sprayed droplets,
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the subsequent nucleation is negligible and the formed
droplets begin to grow.

The presence of a liquid phase within the turbine
causes the following losses [3-8]:

A) Thermodynamic losses: Losses that are caused
by internal heat transfer within the uid. When
the ow is su�ciently supercooled, the condensing
molecules give up latent heat to the droplets but
the bulk of this energy has to be returned to
the vapour. Therefore, the temperature di�erence
between the phases causes an irreversible process.

B) Aerodynamic losses: Losses that occur due to
aerodynamic shock and its e�ects on the boundary
layers.

C) Mechanical losses or erosion: Droplet impingement
on the blades, which damages the steam turbine
blades.

NON-EQUILIBRIUM CONDENSATION
MODEL

Nucleation is investigated in thermodynamic and ki-
netic aspects and various models are presented in
the �eld of nucleation, such as those reported in the
literature [1,2,9-11].
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Droplet Formation

The change of Gibbs free energy for a mass, mr,
from a supercooled vapour at constant pressure and
temperature that forms a liquid droplet at the same
pressure and temperature can be calculated in four
stages, in the absence of magnetic and electrical �elds:

�G = �G1 + �G2 + �G3 + �G4;8>>><>>>:
�G1 (isothermal expansion term)
�G2 �= 0 (vapour phase change)
�G3 �= 0 (isothermal compression term)
�G4 (formation of droplet from bulk phase)

�G=�G1+�G4 =�mrRTGln
�

P
Ps(TG)

�
+4�r2�r:

(1)

Based on the thermodynamic equilibrium, there is a
minimum radius, r� (the critical radius), that must
be attained in order to form a stable nucleus from
supersaturated vapour. For this condition, the Gibb's
free energy of formation of a critical cluster is denoted
as �G�. By di�erentiating Equation 1, with respect
to r, the critical radius, (r�), and �G� are obtained as
follows:

�G� =
16��3

r
�LRTG ln[p=ps(TG)]

; (2a)

r� =
2�r

�LRTG ln[p=ps(TG)]
: (2b)

Droplets with a radius smaller than r� have a tendency
to evaporate by losing their molecules and by decreas-
ing their Gibbs free energy. If the radius is greater than
r�, the droplet will grow in the vapour phase.

Nucleation Rate Equation

Even within the body of a superheated vapour, molecu-
lar clusters are continually formed and disrupted by the
statistical uctuations. The statistically steady state
population, ng, of clusters containing g molecules is
given by Boltzmann's relation:

ng = n1 exp
�

�G
KTG

�
; (3)

where ng and n1 are the numbers per unit volume
of g-mers and monomers, respectively. �G is the
free energy required to form a g-mers and K is the
Boltzmann constant. If the rate of condensation and
evaporation from a cluster are denoted by C and
E, respectively, then the equilibrium equation can be
written as:

ngCg = ng+1Eg+1: (4)

In a supersaturated vapour, the processes of cluster
formation and disruption are similar, but if the clusters
exceed the critical size, they encounter a favorable �G
gradient and tend to grow.

The steady state described by Equation 4 is
no longer applicable because the rates at which the
clusters grow and decay are no longer balanced. To
signify the di�erence, the symbol fg is used to denote
the concentration of g-mers under these conditions.
The net rate per unit volume, Jg, at which g-mers grow
to (g + 1)-mers, is termed the nucleation current and
can be expressed as:

Jg = Cgfg � Eg+1fg+1: (5)

As given in Appendix C, for the constant nucleation
current, it may be as follows:

Jg

g�Z
g=1

dg
Cgng

=
g�Z

g=1

�d
�
fg
ng

�
= 1; (6)

where Cg is proportional to r2 and it is a slowly varying
function. ng may be written in terms of ng� , using
Equation 3, and �(G�G�) may be expanded using the
Taylor series about (g�g�). With some assumptions as
explained in Appendix C, Equation 6 may be written
as:

Jst =
Cg�ng exp(��G�=KTG)

(2�KGT=�)1=2 ; (7)

where:

� = �
�
@2�G
@g2

�
G=G�

:

The above reasoning, in general, is true at low and high
pressures. The only terms which can be a�ected by the
virial coe�cient in further developing the analysis are
� and Cg� .

� is obtained by double di�erentiation of Equa-
tion 1. To avoid the introduction of the virial coe�-
cient, � can be written in terms of density as follows:

� =
2
9

�
36�
�2
L

� 1
3 Jst

(g�)2 : (8)

Cg� is evaluated from the kinetic theory in terms of
density:

Cg� = q
4�r�2
m

�
r
RTG
2�

; (9)

where m is the mass of one molecule and q is the
condensation coe�cient de�ned as the fraction of
molecules that collide with the surface and condense.
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Combining Equations 7 to 9, the nucleation rate
equation is given as:

Jst=q
r

2�r
m3�

�2
G
�2
L

exp
�
� 16��3

�LRTG ln [p=ps(TG)]
=KTG

�
;
(10)

where:

m =
4
3
�r3�Lg:

In the present investigation, the nucleation theory
adopted is the classical result, subject to the re�ne-
ments by Courtney and Kantrowitz [3] as follows:

JKa =

 
1 +

qc�G
�r

�
RTG
2�

�0:5� L2

RT 2
G
� L

2TG

�!�1

�
r

2N3

�
qP 2p�r
�L (RTG)2 exp264 �16�N�3

r

3�2
L(RTG)3

n
ln
�

P
Ps(TG)

�o2

375 :
(11)

Droplet Growth Equations

Once droplets forme, they increase in size as vapour
molecules condense on their surfaces. Released en-
ergy in condensation leads to a rise in the droplet
temperatures, and thus the droplets become hotter
than the surrounding vapour during the condensation.
The growth is then governed mainly by the mass ow
towards a droplet and energy ux away from it. In a
pure vapour, however, due to the release of a very high
latent heat in the rapid condensation zone, the droplet
growth is dominated by the thermal transfer rate. The
energy conservation law can be formulated as:

d
dt

�
4
3
�r3�LL

�
= �4�r2(TL � TG); (12)

where � is the coe�cient of heat transfer from a droplet
with radius r to the surrounding vapour. Therefore, the
droplet growth rate can be calculated if both � and Tl
are known:

dr
dt

=
1
�LL

�(TL � TG): (13)

The Knudsen number, Kn, plays a key role in the
coe�cient of heat transfer, due to the wide range of
droplet radii. The Knudsen number is the ratio of the
mean free path, l, of vapour molecules to the droplet
diameter:

Kn � l
2r
: (14)

For the heat transfer coe�cient, an empirical relation
was presented in 1964 by Gyarmathy [2]:

�emperical =
�

r(1 + 3:18 Kn)
: (15)

He also suggested the following equation for liquid
temperature [3]:

TL = TG +
�
1� r�

r

�
[Ts(p)� TG]: (16)

Bakhtar and Zidi presented a semi-empirical relation
for droplet growth as explained in reference [3]:

dr
dt

=
Kn

Kn + 0:375 qcSc
qc
�L

�
R
2�

�1=2

� [�G
p
TG � �s(TL; r)pTL]: (17)

Main Flow Equations

By considering the steady one-dimensional ow over
an incremental distance, dx, along the channel, the
fundamental equation of ow can be written as:

d�G
�G

+
dA
A

+
du
u

+
dWL

W �WL
= 0; (18)

where W is the overall mass ow rate.

State Equations

P
�GRTG

=1+B1�G+B2�2
G+B3�3

G+B4�4
G+B5�5

G;
(19)

where B parameters are virial coe�cients; these are
functions of temperature as given in Appendix A.

dP
P
�Xd�G

�G
� Y dTG

TG
= 0; (20)

where:

X =
�G
P

�
@P
@�G

�
TG

=
1 + 2B1�2

G + 3B2�2
G + 4B3�3

G + 5B4�4
G + 6B5�5

G
1 +B1�1

G +B2�2
G +B3�3

G +B4�4
G +B5�5

G
;

Y =
TG
P

�
@P
@�G

�
�G

= 1 +
�GTG

1 +B1�1
G +B2�2

G +B3�3
G +B4�4

G +B5�5
G

�
�
dB1

dTG
+ �G

dB2

dTG
+ �2

G
dB3

dTG
+ �3

G
dB4

dTG
+ �4

G
dB5

dTG

�
:
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Mach Number

The speed of sound in a single phase gas is:

a =

s
P
�G

: (21)

Thus:

Z = Ma2 =
u2�
P
�G

� : (22)

Di�erentiating Equation 22 leads to:

dZ
Z

=
2dMa
Ma

= 2
du
u

+
d�G
�G
� dP

P
: (23)

Momentum Equation

Considering the ow as a whole, the change in momen-
tum of the system across dx can be written as:

AdP +A
f�Gu2

G
2De

dx = �d[WGuG +WLuL]: (24)

Expanding this equation, denoting dWG = �dWL and
dividing by A � P , considering (uG�uL)

AP dWL small, in
comparison with others and re-arranging results in:

dP
P

=� f�Gu2
G

2P
dx
De
� (W �WL)uG

AP
duG
uG

� WLuL
AP

duL
uL

: (25)

Energy Equation

Considering the ow of energy into and out of the
control volume and assuming the heat loss through the
sides of the duct to be small, the energy equation can
be written as:

d
�
(W �WL)

�
hG +

u2

2

�
+WL

�
hL +

u2

2

��
= 0:

(26)

Since the phase change occurs within the control
volume, the term dWL(hG � hL) will appear while
expanding this equation. It represents the heat released
to or absorbed from the ow by condensation onto or
evaporation from the droplets. Having considered the
released energy associated with the phase change, the
bulk of the vapour may then be regarded as a perfect
gas, for which the term dhG can be replaced by CpdTG.
Substituting this into Equation 26, denoting (hG�hL)
by L, considering the term u2

G�u2
L

2 small compared to

L, neglecting WLdL, dividing throughout by MCPTG
and rearranging results in:

dTG
TG

=�
�

1� WL

W

�
u2
G

CpTG
duG
uG

+
L

CpTG
dWL

W

� WL

W
u2
L

CpTG
duL
uL

: (27)

Equations 20, 23, 25 and 27 can be solved for the four
unknowns dTG

TG , dP
P , du

u and d�G
�G providing that duL

uL ,
dA
A and dWL

WL
are known as explained in [3].

SPRAYING WATER DROPLETS INTO THE
SUPERSONIC TWO-PHASE FLOW

In order to calculate the ow variables in the , the ow
in the converging part is studied in the dry-form and
the Mach number is assumed to be one at the physical
throat.

In the divergent part, the ow crosses the satu-
ration line, and so the two-phase ow equations are
used. Therefore, all the �gures of the variables related
to the wet ow such as the nucleation and droplet
diameters are prominent only after the throat, but the
other variables are plotted for the whole nozzle axial
length in dry and wet ows.

The rate of spraying or injecting the liquid
droplets just after the throat (or before nucleating
the vapour phase) is calculated by giving the wetness
fraction and droplet diameter.

Assuming that the mass of vapour phase is de-
creased by the same amount as the mass of sprayed
droplets, the number of droplets can be varied by
changing the wetness fraction for a given diame-
ter.

Calculating the Interaction Between the
Sprayed and New Droplets

There are two kinds (groups) of droplet inside each
element of �x. Group (a) includes the droplets
formed and grown within the element in the case of
a considerable rate of nucleation (Figure 1). Group
(b) includes the droplets formed in the upstream of
the element entrance, which grow within the element
of �x. In the element of �x, the time of �t is divided
by n to give a suitable time scale (�t):

�t =
�x
u
; �t =

�t
n
: (28)

Depending on the formation time of new droplets, they
grow with r� size and the mass of the liquid phase
related to the droplets of Group (a) at the time of
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Figure 1. Growth of new droplets within the element.

nucleation is calculated as:

WL(a) = Jst�t(AU)
4
3
�

�
�
�L
r�3
2

+ �L1r3
1 + �L2r3

2 + � � �+ �Ln
r3
n
2

�
: (29)

Taking the number of droplets in Group (b) as Ni,
if ri is the mean input radius and re is the mean
output radius of the element, the net mass of the grown
droplets within the element of �x is equal to:

Wl(b) = Ni
4
3
�(�ler

3
e � �lir3

i ): (30)

It should be noted that, in this research, the droplets of
Group (b) are initially sprayed and then new droplets
are produced in the nucleation zone.

The total mass of the injected and formed droplets
in the element of �x is:

WL =
4
3
�Nir3

i �Li +WL(a) +WL(b);

N = Ni + Jst�t(A�x): (31)

In order to decrease the calculation complexity, the
mean diameter and temperature of the droplets at the
end of the element of �x are used as inputs for the
next element.

Using the method of a mean square root, the
droplet radius at the end of the element is determined
as:

S = 4�Nir2
e + J�t(A�x)4�

�
r�2
2

+ r2
1 + � � �+ r2

n
2

�
;

r =
�

S
4�N

�
: (32)

Calculations continue for other elements using this
method.

Results and Discussion

In this study, the diameter of the sprayed droplets is
assumed to be 1 �m, the initial pressure P = 198576 Pa
and initial temperature T = 405:6 K. In a certain
radius, the higher rate of spraying droplets gives more
droplets and, therefore, greater surfaces are provided
for the condensation of vapour. Since Gibbs free energy
of condensation on the surface is less than that of
the nucleation, it is expected that the nucleation will
decrease. From Figure 2, it is concluded that:

Jwetness=:01 < Jw=:0001 < Jw=0: (33)

As discussed in gas dynamics, the pressure locally
increases because of heat transfer to the supersonic
ow. Since the nucleation is reduced at higher rates
of injection, less latent heat is given to the vapour
ow and, therefore, the losses are decreased due to
a reduction in the condensation shock strength (see
Figure 3). For this condition, based on Rayleigh ow,
the Mach reduction is smaller. In Figure 4, these
results are compared.

Machwetness=:01 > Machw=:0001 > Mw=0: (34)

In steam turbines, the purpose is to transform the
ow enthalpy to kinetic energy. Fortunately, spraying
droplets into a wet steam ow prevent the decrease
of uid velocity or kinetic energy. Another result of
injecting water droplets is that, although a liquid phase
is added to the ow, the wetness fraction relative to
the non-sprayed cases at the end of nozzle is decreased
by 1% as shown in Figure 5. The main reason for
this reduction in the wetness fraction is the decrease
of nucleation rate.

As expected, the more droplets are sprayed, the
less is the heat given to the supersonic ow and,

Figure 2. E�ect of spraying on nucleation (radius is
constant).
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Figure 3. E�ect of spraying on pressure changes (radius
is constant).

Figure 4. E�ect of spraying on Mach number (radius is
constant).

Figure 5. E�ect of spraying on wetness (radius is
constant).

therefore, the increased temperature is smaller for both
droplets and vapour as shown in Figure 6.

It is observed that spraying droplets reduces the
degree of supercooling or supersaturating ratio such
that entropy, in the case of injecting droplets, is much
lower than that of the case without spray as seen in
Figure 7.

The wasted energy or thermodynamic loss is
calculated using the values of entropy and temperature
in each step as shown in Figure 8.

It should be mentioned that all of these solutions
are performed for a constant inlet wetness fraction, but
the radii of the sprayed droplets are changed. In this
case, for the same wetness, as the radius is smaller, the
numbers of droplets are increased and, therefore, larger
surfaces are provided for the vapour to condense. As a
result, the rate of nucleation decreases considerably as
shown in Figure 9.

Figure 6. E�ect of spraying on vapour temperature
changes (radius is constant).

Figure 7. E�ect of spraying on entropy change (radius is
constant).
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Figure 8. E�ect of spraying on thermodynamic losses
(radius is constant).

Figure 9. E�ect of spraying droplets on nucleation
(wetness is constant).

Comparisons with Experimental Results

In the experiment carried out by Pouring [12], steam
with a few degrees of superheat was supplied by the
central power station. The supply lines were purged
and heated for several hours before conducting exper-
iments to ensure equilibrium conditions. Dry steam,
which was produced on passage through the electric,
is superheated. The degree of superheat could be
controlled precisely after particles were sprayed into the
nozzle. In Figures 10a and 10b, the calculated pressure
distributions are compared to those of the experiment
reported by Pouring. As observed in both �gures,
the trend of pressure reduction in the critical zone or
the rapid condensation region is similar to theory and
experiments.

CONCLUSION

The results obtained in this study show that spraying

Figure 10a. Experimental results presented by
Pouring [12].

Figure 10b. Comparison of pressure distribution in the
case with and without spraying droplets.

droplets into the two-phase ow can:

1. Remove the condensation shock and its e�ects
(there is no decrease in velocity or increase in
pressure;

2. Decrease the thermodynamic losses due to less
entropy generation;

3. Reduce the wetness fraction at the outlet.

Therefore, by spraying the droplets in steam
turbines, the thermodynamic losses of a two-phase ow
can be considerably reduced.

NOMENCLATURE

A area
Cp speci�c heat at constant pressure
De equivalent diameter
f friction factor
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�G change in Gibbs free energy
J rate of formation of critical droplets

per unit volume and time
Kn Knudsen number
L latent heat
Ma mach number
mr mass of droplet
P vapour pressure
Ps(TG) saturation pressure at TG
Q condensation coe�cient
R gas constant for water vapour
r radius of droplet
S supersaturation ratio [P=Ps(TG)]
T temperature
Ts(P ) saturation temperature at P
�T degree of supercooling [Ts(P )� TG]
T time
U velocity
v speci�c volume
W total mass ow rate
X distance along duct axis
X;Y functions of temperature and density

in equation of state
�r coe�cient of heat transfer
 isentropic component
�G kinematic viscosity of vapour
� dryness fraction
� density of mixture
� coe�cient of thermal conductivity
� surface tension
�s(TL; r) density corresponding to saturation

pressure at temperature TL over a
surface of curvature r

Sc Schmidt number

Subscripts

G vapour phase
L liquid phase
0 stagnation condition
r radius of a droplet
s saturation

Superscripts

� critical droplet
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APPENDIX A

The Virial Coe�cients of Vukalovich State
Equation

B1 = � e
GT
� �1 + b; B2 = �b�1 + 4�2

1�2;

B3 = 32b�2
1�2; B4 = 0; B5 = �4n�2

1�2;
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where:

�1 =
CG
TW1

; �2 = 1� K
TW2

;

and:

e = 63:2; b = 0:00085; C = 0:3900� 106;

G = 47:053; K = 22:7; n = 0:355� 10�7;

m1 = 1:968; m2 = 2:957;

W1 = (3 + 2m1)=2; W2 = (3m2 � 4m1)=2:

APPENDIX B

The Thermodynamic Properties

h = pv �RT 2
�

1
v
dB1

dT
+

1
2v2

dB2

dT
+

1
3v3

dB3

dT

+
1

4v2
dB4

dT
+

1
5v5

dB5

dT

�
+ 1:111177T

+ 3:55878� 10�4T�2 � 6991:96
T

+ 2070:54;

s = R+ 0:30773 + 1:111177 lnT + 7:11756

� 10�4T � 3495:98
T 2 ;

Cv =
@
@T

(h� pv)v;

Cp = Cv �
T
�
@p
@T

�2

v�
@p
@v

�
T

;

R = 0:46151 kJ/kg.k :

APPENDIX C

Derivation of the Nucleation Rate Equation

ng: Number of cluster containing g molecules per
unit volume in equilibrium vapour.

fg: Number of cluster containing g molecules per
unit volume in supercooled vapour.

Cg: Rate of condensation
�
g

Cg�! g + 1
�

.

Eg: Rate of evaporation
�
g

Eg�! g � 1
�

.

In the equilibrium condition, rate of condensation must
be equivalent to rate of evaporation, so the number of

clusters containing g molecules must be constant.

g
Cg�! g + 1

g
Eg+1 � g + 1

)
) ngCg = ng+1Eg+1: (C1)

In the supercooled vapour, there is a non-equilibrium
condition so:

Growth rate of cluster containing g molecules =
(Rate of condensation cluster containing g molecules)
� (Rate of evaporation cluster containing g + 1
molecules):

g
Cg�! g + 1

g
Eg+1 � g + 1

)
) Jg = fgCg � fg+1Eg+1: (C2)

Then, the growth rate of cluster containing g � 1
molecules is:

g � 1
Cg�1�! g

g � 1
Eg � g

)
) Jg�1 = fg�1Cg�1 � fgEg: (C3)

Therefore, the total growth rate of cluster containing g
molecules is as follows:

g � 1
Cg�1�!

g + 1
Eg+1�! g

Cg�! g + 1
Eg�! g � 1

(C4)

Use Equation C4 to obtain:

@fg
@t

=

inputz }| {
(fg�1Cg�1 + fg+1Eg+1) �

outputz }| {
(fgCg + fgEg);

@fg
@t

=

Jg�1z }| {
(fg�1Cg�1 � fgEg) �

Jgz }| {
(fgCg � fg+1Eg+1);

@fg
@t

= Jg�1 � Jg = �Jg � Jg�1

�g
= �@Jg

@g
;

�g = 1: (C5)

Divide Equation C2 by ngCg to give:

Jg
ngCg

=
fgCg
ngCg

� fg+1Eg+1

ngCg
: (C6)

Substitute ng+1Eg+1 from Equation C1 into Equa-
tion C6:

Jg
ngCg

=
fgCg
ngCg

� fg+1Eg+1

ng+1Eg+1
=
fg
ng
� fg+1

ng+1

= � @
@g

�
fg
ng

�
: (C7)
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Use Equations C5 and C7 to get:
@fg
@t

= �@Jg
@g

= � @
@g

�
�ngCg @@g

�
fg
ng

��
=

@
@g

�
ngCg

@
@g

�
fg
ng

��
) @fg

@t

=
@
@g

�
ngCg

@
@g

�
fg
ng

��
: (C8)

To obtain an expression for Jst, Equation C8 is written

for a series of cluster sizes in the range of 1 < g < g+,
where g+ is much larger than g�.

The assumptions for obtaining Equation 7 are as
follows:

a) Cg is taken out of the integral and is given a mean
value, say as Cg� , then the integral is carried out;

b) With very little loss of accuracy, the limits of
integral is changed from �1 to +1.


