
Transaction B: Mechanical Engineering
Vol. 16, No. 3, pp. 240{247
c
 Sharif University of Technology, June 2009

Simulation of Random Irregular
Sea Waves for Numerical and

Physical Models Using Digital Filters

M.J. Ketabdari1;� and A. Ranginkaman1

Abstract. Wind waves, which are one of the most important phenomena in the marine environment,
are generally progressive in nature and can move far distances out of their area of formation. Thus,
an understanding of wave hydrodynamics and their e�ects is important for engineers in the design and
construction of marine structures and coastal management. Signi�cant insights may be gained from
numerical and laboratory studies. Often the waves simulated in numerical and physical models do not
have the full characteristics of real sea waves. It is then necessary to present a reliable method of wave
simulation for numerical and laboratory wave 
umes. In this paper, the results of numerically simulated
water waves, using digital �lters, are presented. A model has been developed to simulate a water wave
pro�le from di�erent target spectra using WNDF methods. The results showed that the WNDF method
involves good stochastic wave characteristics if a suitable spectrum is used as target. The results have
implications for the numerical or laboratory estimation of wave forces on model o�shore or coastal
structures.
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INTRODUCTION

To design coastal and o�shore structures, it is required
to evaluate the e�ect of sea waves on the structures. To
accomplish this, mathematical and physical models are
needed. Therefore, the problem has di�erent features.
On the one hand, the structure should be modeled
properly, on the other hand, the exciting force should
be simulated. In some model tests, monochromatic
waves are used. However, waves in fully developed
seas are usually random and irregular and can be
expressed by their energy spectrum over a range of
frequencies. Hence, ideal sine waves with a single
frequency cannot express all features of real sea waves.
This may mislead the results. Therefore, methods of
generating irregular waves have been developed during
the past few decades.
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IRREGULAR WAVE SIMULATION

The technology of wave generation for numerical and
physical models has developed rapidly during the past
two decades. It has bene�ted mainly from advances in
control system theory and computer hardware. Real
wind waves in the �eld are highly irregular and seldom
exhibit a sinusoidal nature. In the past decades,
attempts have been made to generate laboratory waves
which closely approximate natural wave trains. Al-
though real sea waves are 3D, coastal engineers usually
reproduce these natural waves as a 2D process, due to
the fact that 2D irregular waves are more amenable
to theoretical treatment. Nevertheless, they o�er some
understanding of the complexities of 3D real sea states.
The techniques for synthesizing irregular waves for
marine engineering model studies can be categorized
as follows:

1. Superposition of a �nite number of sine waves;
2. Prototype measurement of wind wave time series;
3. Deterministic irregular wave trains (DSA method);
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4. Non-deterministic irregular wave trains (NSA
method);

5. Filtering white noise using proper digital �lters
(WNDF method).

Methods 1 to 4 have been already used for
irregular wave generation and di�erent researchers
have referred to these methods and their advantages
and disadvantages [1-5]. The last method, which is
wave simulation via the �ltering of white noise, has
been rarely used in marine engineering due to its
complexity. Therefore, in this paper, irregular random
wave synthesis by this method is examined.

DIGITAL FILTERING

Design Theory

Digital �lter is a Single Input-Single Output (SISO)
system [6], which is Linear Time Invariant (LTI) and
can be shown as in Figure 1.

Considering X1(t) and X2(t) as two arbitrary
inputs and a, b as two arbitrary real constants, this
system is called linear if:

L(aX1(t) + bX2(t)) = aL(X1(t)) + bL(x2(t)): (1)

The system is called time invariant, if:

L(X(t� t0)) = Y (t� t0); (2)

in which t0 is an arbitrary time shifting. A stochastic
process is a rule that represents a function f(t; �) from t
and �. For a stochastic process, �rst order distribution
and �rst order density are de�ned as the following [7]:

F (x; t) = pfx(t) � xg; (3)

f(x; t) =
@F (x; t)
@x

; (4)

in which pfxg is the probability function. The average
of a stochastic process for a stochastic variable, x(t), is
called the Expected value as follows:

E(x(t)) =
Z 1
�1

xf(x; t)dx: (5)

The autocorrelation function is de�ned as:

Rx(t1; t2) =
Z 1
�1

Z 1
�1

x1x2f(x1; x2; t1; t2)dx1dx2

= Efx1(t)x2(t)g; (6)

Figure 1. A linear single input-output system.

where f is the stochastic variable, x(t1) = x1 and
x(t2) = x2.

A stochastic process, x(t), is called Strict-Sense
Stationary (SSS) if it is statistically independent of the
distance from the origin. In other words, x(t) is statis-
tically equal to x(t+ c), where c is an arbitrary value.
Also, a stochastic process, x(t), is called Wide-Sense
Stationary (WSS) when the expected value (average)
is constant: Efx(t)g = � and its autocorrelation relates
only with a di�erence between t1 and t2(� = t1 � t2)
and is independent of t1 and t2 values:

Efx(t+ �)x�(t)g = R(�): (7)

White noise is a noise with a power spectrum that is
independent of frequency and its value at any frequency
is:

Sw(f) = q =
N0

2
: (8)

This noise is called white noise because the density
spectrum of this process is widely distributed in the
frequency domain as white light. The autocorrelation
function is the inverse Fourier transform of the power
spectrum density. Therefore, the autocorrelation func-
tion of white noise can be represented as follows (see
Figures 2a and 2b):

Rw(�) = q�(�) =
N0

2
�(�): (9)

Linear Time Invariant System with Stochastic
Process Input

For a linear system, L, with input x(t) and output
y(t), if x(t) is a stochastic process, then the output,
y(t), is also a stochastic process. To �nd the relation

Figure 2. a) White noise spectrum and b) Its
autocorrelation function [8].
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between the output autocorrelation function and the
input autocorrelation function, at �rst we know that:

EfL[x(t)]g = L[Efx(t)g]: (10)

Since system L and function E are both linear, we have:

Rxy(t1; t2) = L2[Rxx(t1; t2)]; (11)

where Rxy is cross correlation of x and y and L2 means
that the system acts on t1 as a variable and t2 as
a parameter. By this relation, we can develop the
relation between input and output spectrums. For x(t)
as a WSS process, the power spectrum density is the
Fourier transform of its autocorrelation function:

S(!) =
Z 1
�1

Rxx(�)e�j!�d�: (12)

Since R(��) = R�(�) and S(!) is a real function of
variable !, by using the inverse Fourier transform, we
have:

Rxx(�) =
1

2�

Z 1
�1

S(!)ej!zd!: (13)

It means that Rxx(z) can be obtained from the spec-
trum, S(!) [9]. We can �nd in�nite processes that
have the same spectrum, S(!). Hereby, two methods
are explained to gain these processes.

a) Method 1

Consider a random process as follows (see [10]):

x(t) = aej(!t�'); (14)

in which a is a real constant, ! is a stochastic
variable with density of f!(!) and ' is an independent
stochastic variable with uniform density on (0, 2�). It
can be proved that this process is a WSS process with
zero mean and the following autocorrelation function:

Rx(�) = a2Efej!�g = a2
Z +1

�1
f!(!)ej!�d!: (15)

Therefore, its spectrum can be found as:

Sx(!) = FfRx(�)g;
and:

Rx(�) =
1

2�

Z +1

�1
Sx(!)ej!�d!;

leading to:

Sx(!) = 2�a2f!(!): (16)

This relates the power spectrum density function of x,
with the probability density function of !. Substituting
� = 0 in Equation 16 yields:

Rx(0) = a2
Z +1

�1
f!(!)d! = a2

=
1

2�

Z +1

�1
S!(!)d!: (17)

Thus, to �nd the stochastic process of its spectrum, we
suppose that the probability density function is:

f! =
S(!)
2�a2 ; (18)

so that a2 = Rx(0) and R(0) is the signal's power of
process. In this way, the process of Equation 15 would
have the spectrum of S(!).

b) Method 2

The linear time invariant system with impulse response
h(t) is shown in Figure 3.

In this system if x(t) is a WSS process, then
the relation between output and input autocorrelation
would be as follows [11]:

Rxy(t) = h�(�t)�Rxx(t); (19)

Ryy(t) = h(t)�Rxy(t): (20)

Leading to:

Ryy(t) = Rxx(t)�h(t)�h�(t): (21)

Taking the Fourier transform from both sides of the
above equation, we have:

Syy(f) = Sxx(f)H(f)H�(f) = Sxx(f) jH(f)j2 : (22)

If the input of the system is white noise with q = 1,
then:

Rxx(�) = q�(�) = �(�);

Sxx(f) = 1;

Syy(f) = Sxx(f) jH(f)j2 ) jH(f)j =
q
Syy(f): (23)

Figure 3. A linear time invariant system with impulse
response, h(t).
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So to achieve a process with a certain spectrum, a
system with the following transfer function can be
de�ned:

jH(f)j = pS(f); � H(f) = 0: (24)

If the input of such a system is white noise, then the
output of the system will have the spectrum, S(f):

Syy(f)= jH(f)j2 Sxx(f)=(
p
S(f))2�1=S(f): (25)

SIMULATION RESULTS

As mentioned in the previous section, if the transfer
function of a �lter is the root of the spectrum and
the input to this �lter is white noise, then, the output
of the �lter would be a random irregular wave that
has the same spectrum. So, a �lter with a white
noise input can be designed, leading to an output
which is the desirable simulated wave (random irregular
wave). Therefore, based on the above mentioned
algorithm, software was developed to generate random
irregular waves by white noise �ltering. Using three
classic target spectra: Pierson Moskowitz, JONSWAP
and Bretschneider Spectrum, sample irregular random
waves were generated. Figures 4 to 6 show the time
histories of the generated wave using di�erent target
spectra. It can be seen that the results of the simulation
are di�erent wave time histories, as a random process
is used. However, the time histories alone cannot give
us further information about these waves. Figures 7
to 9 compare these wave energy spectra with target
ones. This can be considered as a criterion for the
accuracy of the method. It is clear from these �gures
that the output spectrum 
uctuates around target one
in all the three classic spectra. Figures 10 to 12 present
the autocorrelation of generated waves using di�erent
target spectra. This can be used as a criterion for
evaluating the randomness of the signals. Figures 13
to 15 compare the ideal and output probability density
function for the three spectra. It can be seen that the
values of �2 for the Pierson-Moskowitz, JONSWAP and
Bretschneider target spectra are 0.613, 0.577 and 0.689,
respectively.

APPLICATION OF WNDF METHOD IN
MARINE ENGINEERING

The behavior of numerical and experimental models
of coastal and o�shore structures is often examined
against random irregular waves. The time histories of
the irregular waves generated by the WNDF method
can be used as an input to these models. Figure 16
schematically shows the experimental apparatus for
wave generation and recording in the laboratory 
ume.
The wave tank had a depth of 600 mm, width of

Figure 4. Time histories of generated wave using
Pierson-Moskowitz spectrum.

Figure 5. Time histories of generated wave using
JONSWAP spectrum.

Figure 6. Time histories of generated wave using
Bretschneider spectrum.
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Figure 7. Comparison of spectrum of generated wave and
target spectrum (Pierson-Moskowitz).

Figure 8. Comparison of spectrum of generated wave and
target spectrum (JONSWAP).

Figure 9. Comparison of spectrum of generated wave and
target spectrum (Bretschneider spectrum).

Figure 10. Autocorrelation of generated wave using
Pierson-Moskowitz spectrum.

Figure 11. Autocorrelation of generated wave using
JONSWAP spectrum.

Figure 12. Autocorrelation of generated wave using
Bretschneider spectrum.
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Figure 13. Pdf of generated wave using
Pierson-Moskowitz spectrum.

Figure 14. Pdf of generated wave using JONSWAP
spectrum.

Figure 15. Pdf of generated wave using Bretschneider
spectrum.

300 mm and length of 10 m. This 
ume also had a
long sloping beach with a slope of approximately 8%
to simulate coastal conditions.

An irregular wave was generated using JON-
SWAP as the target spectrum (see Figure 17). This
wave was fed to the 
ap type wave paddle of the above
mentioned wave 
ume using a DTA converter. The

Figure 16. Schematic of experimental set-up for wave
generation.

Figure 17. Target spectrum and relevant simulated wave
by WNDF method as input to wave paddle.



246 M.J. Ketabdari and A. Ranginkaman

scale of the wave could be adjusted by an ampli�er.
Figure 18a shows the recorded wave at wave probe no 1.
It can be seen that the generated wave is not in phase
with the input one. It is because the wave probe has a
distance from the wave paddle. The calculated power
spectrum of this wave can be seen in Figure 18b. It
is clear that the output spectrum is di�erent from the
target one. This is because of the nonlinear interaction
of the rigid paddle and water as it moves forward
and backward. Figure 19 shows another input signal
simulated by another method and recorded by wave
probe no. 2. It is evident that in this case the wave is
distorted by the shallow water bed e�ect.

However it is possible to solve this problem using
a transfer function. Figure 20 shows the diagram
box of the relevant procedure. It should be noted
that the transfer function depends on the geometry
of the wave 
ume and the wave generating hardware
system. Nonetheless, �nding it is not the aim of
this piece of work at this stage. Nevertheless, it is
possible to overcome these discrepancies between input
and output data, �nding a proper transfer function.

Figure 18. Recorded wave in the wave 
ume by probe
no. 1 and its calculated spectrum.

Figure 19. Simulated and generated wave in the wave

ume recorded by probe no. 2.

Figure 20. Diagram box of 
ume wave generation using
transfer function.

Consequently, having a qualitative irregular signal such
as that obtained by the WNDF method, is vital
for getting reliable results from physical coastal and
o�shore models.

CONCLUSIONS

The WNDF method, which is a frequency domain
procedure, was employed to simulate random irregular
waves for numerical and laboratory models of a marine
environment. Three well-known spectral wave ener-
gies, known as the Pierson-Moskowitz, JONSWAP and
Bretschneider spectra, were used as the target. Choos-
ing the square root of the spectrum as the transfer
function of a �lter and the input to this �lter as a white
noise, a random irregular wave was generated. The
time histories of generated waves using di�erent spectra
show that apparently random irregular waves are ob-
tained as output. The spectrum of the generated wave
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shows that it 
uctuates around the target spectrum.
This result is in fact desirable as realistic sea waves
demonstrate a non-smooth spectrum. In addition,
the spectrum shows that generated waves associated
with wave energy in a range of frequencies have the
character of irregular sea waves. To be certain about
the randomness of waves, the autocorrelation function
was used. The results showed that the generated
waves are reasonably random. The comparison of the
power spectrum density function of output waves with
ideal ones also shows an acceptable deviation. One of
the most important advantages of this method is the
possibility of placing additional constraints on speci�c
wave characteristics such as the number of waves in a
wave time series, frequency band, time domain, wave
amplitude, wave energy, wave nonlinearity and other
favorable characteristics. It is also possible to make the
required �lters using electronic hardware. Therefore,
the WNDF method can be used as a powerful tool for
one-sided random irregular wave generation. The re-
sults are also promising for generating multi-directional
irregular waves for 3D models by expanding this model
and using directional wave spectra as input.
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