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An Optimal Radial Basis Function (RBF) Neural
Network for Hyper-Surface Reconstruction

A. Shahsavand1

Abstract. Data acquisition of chemical engineering processes is expensive and the collected data are
always contaminated with inevitable measurement errors. E�cient algorithms are required to �lter out
the noise and capture the true underlying trend hidden in the training data sets. Regularization networks,
which are the exact solution of multivariate linear regularization problems, provide an appropriate means
to perform such a demanding task. These networks can be represented as a single hidden layer neural
network with one neuron for each distinct exemplar. E�cient training of a regularization network requires
the calculation of linear synaptic weights, selection of isotropic spread (�) and computation of an optimum
level of regularization (��). The latter parameters (� and ��) are highly correlated with each other. A
novel method is presented in this article for the development of a convenient procedure for de-correlating
the above parameters and selecting the optimal values of �� and ��. The plot of �� versus � suggests
a threshold �� that can be regarded as the optimal isotropic spread for which the regularization network
provides appropriate model for the training data set. It is also shown that the e�ective degrees of freedom
of a regularization network is a function of both regularization levels and isotropic spread. A readily
calculable measure of the approximate degrees of freedom of a regularization network is also introduced,
which may be used to de-couple �� and �.

Keywords: Neural network; Regularization network; Function approximation; Optimum spread; Degrees
of freedom.

INTRODUCTION

Despite the tremendous increase in application of
neural networks in many �elds, such as electrical,
electronics, civil, and control engineering, they were
practically unknown to many chemical engineers until
the 1990's. Serious e�orts to apply neural networks to
the simulation and optimization of chemical, biochem-
ical and mineral processes have only begun since the
late 1980's [1-3].

Arti�cial neural networks are usually classi�ed
as recurrent and feed-forward. The former networks
are mostly used for the empirical modeling of control
problems and the latter are well suited for classi�cation
or function approximations. The close relationship
between the function approximation problem and feed-
forward arti�cial neural networks was explored ear-
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lier [4]. Within this framework, neural networks may be
viewed as approximation techniques for reconstructing
input-output mappings in high-dimensional spaces [5].
In neural network parlance, training (learning) is equiv-
alent to �nding a hyper-surface in a multidimensional
space that provides the best �t for the training data
and generalization is equivalent to the use of this hyper-
surface to interpolate within the domain of data where
there are no examples [6].

Kernel based neural networks such as Radial
Basis Function Networks (RBFNs) have been shown
to possess good approximation capabilities. Poggio
and Girosi [7,8] reported that among all feed-forward
networks, RBFN enjoy the best approximation prop-
erty [6]. Hunt et al. [9] presented further theoretical
support for RBF networks.

The training of RBF networks with speci�ed
non-linearities (centers and spreads) reduces to an
over-determined set of linear equations, which can be
solved by a variety of highly stable techniques such
as SVD (Singular Value Decomposition) or Kalman
�ltering [10]. These networks have a close connection
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with the well studied subject of multivariate function
approximation and enjoy a �rm theoretical foundation.

Due to the complexity of chemical engineering
processes, the acquired data are always contaminated
with heavy measurement errors. As a result, the
employment of advanced noise �ltering techniques is
crucial to avoid over-�tting (or �tting the noise) phe-
nomena [11]. RBF networks that have originated from
a multivariate regularization theory can distinguish
and �lter-out the noise. These networks are ideal
for capturing the true underlying trend from a set of
heavily contaminated chemical engineering data.

It was shown [7,8] that the solution of the multi-
variate regularization problem can be represented as a
single hidden layer network, known as the regulariza-
tion network. Regularization networks are traditionally
constructed using isotropic Gaussian basis functions.
An illustrative example is employed to investigate
the e�ect of the regularization level and the value
of the isotropic spread, �, on the performance of a
regularization network. A convenient procedure is
introduced for selecting the appropriate value of the
isotropic spread, �. To the best of our knowledge, this
approach has not been addressed previously and makes
a signi�cant improvement in the performance of the
regularization networks.

STRICT INTERPOLATION PROBLEM

We start by considering the strict interpolation prob-
lem and the remarkable theorem due to Michelli [12],
which pinpoints the importance of radial basis func-
tions in multivariate function approximation and neu-
ral networks. The strict interpolation problem may
be stated as: \Given a set of N input s (xi 2<P ; i = 1; � � � ; N), and the corresponding outputs, (yi,
i = 1:; � � � ; N), �nd a continuous multivariate function
F (x) which maps the inputs to the output and satis�es
the following N interpolating conditions":

F (xi) = yi; i = 1; � � � ; N: (1)

Let us expand F (x) as a linear summation of N radial
basis functions, each centered at a distinct data point:

F (x) =
NX
j=1

wj�j
�k x� xj k� : (2)

Here �j(r) represents a radial function whose argument
is a measure of the (Euclidean) distance from the
known centre located at xj , r = k x � xj k and the
wj 's are the weighting coe�cients. Equations 1 and 2
can be combined and stated in the compact form:

F = �w; (3)

where F = [F (x1); F (x2); � � � ; F (xN )]T , w =
[w1; � � � ; wN ]T and � is the N�N interpolation matrix
with elements,

�ij = �
�xi � xj� : (4)

The theorem originally proved by Michelli [12]
for multiquadrics basis functions states that: \if
x1; x2; � � � ; xN are N distinct points in <P , the in-
terpolation matrix, �, is non-singular". All that is
required is for the input vectors to be distinct and the
elements of the interpolation matrix to be based on
radial functions centered on the known distinct data
points. In exact or in�nite precision arithmetic, the
system in Equation 3 can always be solved to obtain
the unique optimal weights:

w� = ��1y: (5)

The continuous function in Equation 2 with the optimal
weights will satisfy the N interpolating conditions
(Equation 1) exactly. It should be pointed out here
that in practice we always deal with �nite rather than
in�nite precision arithmetic and as a result, the inter-
polation matrix, �, may turn out to be numerically
singular. This does not violate Michelli's theorem; it
only tells us that we must use higher precision for our
calculations. The strict interpolation problem always
has a solution in terms of radial basis functions centered
at the data points, irrespective of the size of the data
set N or the dimensions of the input vector, x.

A large class of RBFs are covered by the Michelli
theorem [6,13,14]. The functions shown in Table 1
are of particular interest in the study of multivariate
regularization and its implementation as RBF net-
works. Michelli has proved that for localized basis
functions such as Gaussian and Inverse Multiquadric,
the interpolation matrix, �, is positive de�nite. The
Multiquadric and Thin Plate Spline functions are
global and for these basis functions, the interpolation

Table 1. Various radial basis functions.

Radial Basis Functions Formula
Gaussian �(x; t; �) = exp(� kx�tk2�2 )

Multiquadrics �(x; t; �) = [kx� tk2 + �2]
1
2

Inverse multiquadrics �(x; t; �) = 1

[kx�tk2+�2]
1
2

Thin plate splines �(x; t; �) =
h kx�tk

�

i2n
ln
� kx�tk

�

�
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matrix is inde�nite with N � 1 negative and one
positive eigenvalues [6]. In principle, global radial basis
functions construct a smoother �t and local RBFs can
extract more specialized features due to their locality.

REGULARIZATION NETWORK WITH
ISOTROPIC SPREADS

In a di�erent approach, Poggio and Girosi [7,8] illus-
trated that the solution of a multivariate regularization
problem can be represented as:

(G+ �IN )w� = y; (6)

where G is the N �N symmetric Green's matrix with
elements Gij = G(xi; xj) and � is the regularization
parameter. In practice, we may always choose �
su�ciently large to ensure that the matrix (G + �IN )
is positive de�nite and, hence, invertible. Equation 6
can be symbolized as the network shown in Figure 1.
The network consists of a single hidden layer with
N neurons and the activation function of the jth
hidden neuron is a Green function, G(x; xj), centered
at a particular data point, xj . The inuence of
the regularization parameter, �, is embedded in the
unknown synaptic weights, w0js.

Poggio and Girrosi [7,8] also pointed out that for a
special choice of stabilizing operator, Green's function
reduces to a multidimensional factorizable isotropic
Gaussian basis function, which is both translationally
and rotationally invariant, having an in�nite number
of continuous derivatives [6].

G(x; xj) = exp

"
�
x� xj2

2�2
j

#
=

pY
k=1

exp

"
� (xk � xj;k)2

2�2
j

#
: (7)

The �j appearing in Equation 7 denotes the isotropic
spread of the jth Green function, which is assumed
identical for all input dimensions. The performance of

Figure 1. The regularization network.

the regularization network strongly depends on both
the appropriate choice of the isotropic spread and the
proper level of regularization [15]. The leave-one-
out cross validation criterion [16] is used for e�cient
computation of the optimum regularization parameter,
��, for a given �.

CV (�) =
1
N

NX
k=1

"
eTk (IN �H(�))y
eTk (IN �H(�))ek

#2

; (8)

where N is the number of both the training exemplars
and neurons of the regularization network, ek is the
kth unit vector of size N , IN is the N �N unit matrix
and H(�) is the smoother matrix originally de�ned by
Hastie and Tibshirani [17]. (If we focus on the �t at the
observed data points x1; x2; � � � ; xN a linear smoother
can be written as f = Sy where S = fSi;jg is an N�N
smoother matrix [17].)

It is already known that, by de�nition, the regu-
larization network is a linear smoother as developed by
Poggio & Girrosi [7,8]. The generalization performance
of such a network can be simply computed from f =
Gw�. Replacing w� from Equation 6 results in:

f = G(G+ �I)�1y: (9)

Therefore, by de�nition of the smoother matrix, H(�)
for the regularization network can be computed from:

H(�) = S = G(G+ �I)�1: (10)

The e�ective number of parameters or degrees of
freedom (df) of a linear smoother is de�ned as the trace
of the smoother matrix that is equal to the sum of
its eigenvalues, df = tr(H(�)) (or sum of its diagonal
elements). Evidently, the number of degrees of freedom
is a function of the span and the predictor values in the
data set; it is not a function of the response (y) [17].

The evaluation of H(�) and hence CV (�), at
each trial value of �, requires the inversion of the
N � N matrix (G + �I) and may prove too time-
consuming. This can be avoided by resorting to the
similarity transformation technique [4]. The basic idea
was initially presented by Golub et al. [18] for ridge
regression.

Equations 7 to 9 show that CV (�) is a complex
function of both � and �. Therefore, the optimal value
of the regularization parameter, �� (which minimizes
CV (�)), is highly correlated with the value of the
isotropic spread, �. In other words, the appropri-
ate value of �� greatly depends on � for a speci�c
data set with a �xed level of noise. The strong
correlation between these two parameters (�� and �)
is extremely complicated and may not be described
directly in analytical form. A simple indirect procedure
is proposed in this article for the decoupling of such
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powerful dependency and for �nding the optimum
value of spread and the corresponding optimal level
of regularization for the given noisy data set. The
motivation behind such a decoupling procedure is to
train the best optimal network for reconstructing the
true hyper-surface embedded in the bunch of a noisy
data set. It is clearly shown that such an optimum
trained network can successfully �lter out the noise and
provide the �nest generalization performance.

An illustrative example presented in the next
section demonstrates the strong correlation between
�� and �. A signi�cant contribution of this article
is the development of a convenient procedure for de-
correlating these parameters and selecting the optimal
values of �� and �� for the speci�ed data set.

AN ILLUSTRATIVE EXAMPLE

To illustrate the capabilities and probable shortcom-
ings of the regularization network, a three-dimensional
(bivariate) synthetic example is presented in this sec-
tion. The main reason for the selection of a 3D
case study is its perfect visualization feature. Two-
dimensional examples are too simple to mimic the
real world and 4D+ case studies are hard to visualize.
The following function describes the true underlying
relationship between two input variables (0 � x1; x2 �
1 radians) and one response (output) variable, as shown
in Figure 2.

Z =100
�
(Sin(5:5x)Cos(3y))2 + 0:15

�
exp

"
�
�
x� 0:5

0:4

�2
#

exp

"
�
�
y � 0:5

0:3

�2
#
: (11)

Since all experimental data are inevitably associated
with some measurement errors (noise), the training

Figure 2. 3D plot of the bivariate example.

exemplars generated from the above surface are con-
taminated with the random noise of uniform distribu-
tion and known width in the following examples. The
random vectors with zero mean and identity covariance
matrices were generated using MATLAB software. To
produce such random vectors, the following procedure
may be employed: Suppose that a random vector,
X, has a covariance matrix, Q. Since this matrix
is Hermitian symmetric and positive semide�nite, by
the spectral theorem from linear algebra, we can
diagonalize or factor the matrix in the following way:

Q = E�ET ; (12)

where E is the orthogonal matrix of eigenvectors and
� is the diagonal matrix of eigenvalues.

To whiten such a random vector X with mean
� and covariance matrix Q, we may transform it to a
white vector W as follows:

W = �
�1
2 ET (X � �): (13)

It can be simply veri�ed that the expectation of such a
vector is zero (i.e. E(W ) = 0) and the expectation of
its covariance matrix is equal to the identity matrix (i.e.
E(W WT ) = I). Thus, with the above transformation,
we can whiten the random vector to have zero mean
and an identity covariance matrix [4].

As a �rst trial, four hundred training data were
sampled randomly from the input domain of 0 �
x1; x2 � 1 (see Figure 3) and the corresponding true
underlying responses were computed using Equation 8.
The normalization of input space does not create any
limitation for practical applications, but extremely
enhances the selection of isotropic spreads. The true
underlying responses were then contaminated with 10,
20 and 50 percent noise levels and the corresponding
noisy outputs are shown in Figure 4. The blue line
indicates that y = x.

Figure 3. Random input data of the bivariate example.
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Figure 4. Training data with di�erent noise levels.

Figure 5a. Generalization performance of regularization network for various noise levels in the absence of regularization
(� = 0:01).

The above noisy data sets were used for training
three separate regularization networks with di�erent
isotropic spreads, each with 100 Gaussian basis func-
tions centered at the training data points. Figures 5a
to 5c show the 3D generalization performance of these
networks on a 50�50 uniform grid for the isotropic

spreads of � = 0:01; 0:1 and 0:5 and noise levels of 10%,
20% and 50%, in the absence of regularization (� = 0).
All 2D diagrams correspond to recall performances of
regularization networks for the training data set. As
before, the blue line indicates that y = x.

The above �gure shows that regularization net-
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Figure 5b. Generalization performance of regularization network for various noise levels in the absence of regularization
(� = 0:1).

works with extremely small spreads (� = 0:01) will
�t the noise in the absence of regularization. Such
networks exactly reproduce the noisy data but per-
form inadequately between the training data points.
The reason for this is that the Green matrix of the
regularization network tends to an N � N identity
matrix for very small spreads. Such matrices are very
well behaved and invertible. Since both the Green
matrix and its inverse are identical, the network exactly
recovers the training data points. On the other hand,
the Gaussian basis functions are exceedingly narrow
and, as can be seen, the network cannot produce a
su�cient response between the training data points.
Increasing the value of the isotropic spread to 0.1
in the absence of regularization, although �tting the
noise, leads to a smoother hyper-surface with large
oscillations (see the magnitude of Y on the 3D plots of

Figure 5b). Figure 5c shows that a similar situation can
happen for the case of � = 0:5. The reason for these
large oscillations is the ill-conditioning of the Green
matrix. This phenomenon occurs because of the exces-
sive overlap between adjacent centers at relatively large
spreads. Inversion of such a nearly singular matrix
can lead to extremely oscillatory synaptic weights and
produces a fairly smooth but unreliable surface with
tremendously large responses.

Employing the regularization technique can alle-
viate the ill-conditioning problem of the Green matrix,
due to the overlap of large spreads, but will not cure
the inadequacy of the model (network) for very small
spreads. This issue is clearly demonstrated by using
the same data set for training the previous networks
with an optimum level of regularization (��). The
three-dimensional plots of Figures 6a to 6c illustrate
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Figure 5c. Generalization performance of regularization network for various noise levels in the absence of regularization
(� = 0:5).

the generalization performances of these networks on
a 50 � 50 uniform grid for � = 0:01; 0:1 and 0.5.
The Leave-One-Out (LOO) Cross Validation (CV)
criterion was used to compute the optimum level of
regularization. As mentioned earlier, the 2D plots
show the recall performances of the regularization
networks.

The above �gure clearly shows that the inade-
quacy of the model (due to small isotropic spreads)
cannot be alleviated by the optimum level of regular-
ization. As shown in Figure 7, the Cross Validation
(CV) criterion does not possess any minima for various
noise levels with � = 0:01. On the other hand, when
the isotropic spread is large enough to provide an
appropriate model for the data set, the Green matrix
may become ill-conditioned and the CV criterion shows
a clear minimum. The optimum level of regularization

eliminates the ill-conditioning problem and leads to
a reasonable generalization performance, as shown in
Figures 6b and 6c.

It is interesting to note that a regularization
network with a proper choice of spread and an optimum
level of regularization can �lter out the noise (instead
of following it) and capture the true response from the
highly noisy data sets (see 2D plots of Figure 6c for 50%
noise). It is also clearly visible that, with a reasonable
value of isotropic spread, the regularization network
is able to reconstruct the general features of the true
underlying surface hidden in a set of noisy data. It
should also be noted that the predicted surface is still
oscillatory and cannot provide the exact true responses.
Therefore, a mechanism should be devised to �nd the
optimal value of isotropic spread (��) for a given data
set.
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Figure 6a. Generalization performance of regularization network for various noise levels at the optimum level of
regularization (� = 0:01).

Closer examination of Figures 6a to 6c reveals
that the optimum level of regularization, (��), is
strongly correlated with the value of the isotropic
spread. A plot of �� versus � for various noise levels
on Figure 8 shows a clear maximum; the corresponding
value of the isotropic spread can be regarded as the
optimum value of spread (��) for the regularization
network under consideration. On the other hand,
the cross validation criterion decreases monotonically
and does not provide any maximum or minimum, as
shown in Figure 8. Evidently, such criterion cannot
be used to select the optimum value for the isotropic
spread. Figure 9 illustrates the generalization per-
formance of the regularization networks at optimum
values of isotropic spread and the corresponding op-
timum level of regularization for various noise lev-
els.

As can be seen in Figure 8, the optimum value
of the spread is independent of noise level, but further
investigation shows that it is strongly dependent on the
number of training data points.

It is also interesting to note that the trained
network with an optimal isotropic spread at an opti-
mum level of regularization does not follow the noise,
but tries to capture the true underlying trend hidden
in the remarkably noisy training sets (see Figure 9).
The above discussion proves that regularization is
essential to prevent spurious oscillation caused by over-
�tting of the noisy data. More signi�cantly, using
an appropriate value of � and an optimal level of
regularization determined by the CV criterion recovers
the true underlying surface remarkably well from the
above set of limited and noisy data.

The plot of �� versus � on Figure 8 provides
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Figure 6b. Generalization performance of regularization network for various noise levels at the optimum level of
regularization (� = 0:1).

two local maxima for relatively low noise levels. Fig-
ure 10 shows the generalization performance of the
regularization networks with isotropic spreads of 0.03
(corresponding to �rst local maxima) for 10 and 20
percent noise levels. Evidently, the �rst maxima
cannot de-correlate the isotropic spread and level of
regularization.

We close this discussion of regularization networks
by giving a justi�cation for the existence of a threshold
value for the isotropic spread, �, based on an approx-
imate measure of the degrees of freedom that can be
sustained by the data. For a model with M parameters
representing given N observations, the e�ective degrees
of freedom are equal to N �M . Using the de�nition of
the smoother matrix as [17]:

H(�) = G(G+ �I)�1: (14)

For model comparisons, the approximate degrees of
freedom, which give an indication of the amount of
�tting that H does, are de�ned as the tr(H) (sum
of the eigenvalues of matrix H). Figure 11 illustrates
the variations of the optimal levels of regularization,
��, and the corresponding approximate degrees of
freedom df(��)= tr (H(��)), with the isotropic spread
of the Gaussian basis functions used in a regularization
network.

It is clear that threshold � occurs near the point
where the approximate degrees of freedom have a
minimum. Using threshold �, therefore, enables us to
select the approximate degrees of freedom required to
�t the underlying surface. Smaller � introduces larger
degrees of freedom leading to spurious oscillations,
while larger � limits the degrees of freedom and leads
to over-smoothing.
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Figure 6c. Generalization performance of regularization network for various noise levels at the optimum level of
regularization (� = 0:5).

CONCLUSION

Chemical engineering data are expensive to collect and
are always contaminated with some level of noise. E�-
cient algorithms are required to �lter out the noise and
capture the true underlying trend from the noisy data
sets. Regularization networks are inherently equipped
with proper means to perform such a demanding task.
This paper was aimed exclusively at an important
class of feed-forward neural networks with a single
hidden layer (Regularization Networks), which have
a solid mathematical foundation. In the majority of
reported applications, the regularization network has
been employed with Gaussian radial basis functions
with a constant isotropic spread.

It is shown that the optimal value of regular-
ization parameter, ��, is highly correlated with the

isotropic spread, �, an obvious point that has received
surprisingly little attention to date. An illustrative
example was used to clearly demonstrate the strong
correlation between �� and �. A signi�cant contribu-
tion of the present article is the development of a con-
venient procedure for de-correlating these parameters
and selecting the optimal values of �� and ��.

It is also clearly demonstrated that the e�ective
degrees of freedom, df(�; �), of a regularization net-
work is a function of both the regularization level,
�, and the isotropic spread, �. A readily calculable
measure of the approximate degrees of freedom of a
regularization network was introduced, which may be
used to de-couple �� and �. The plot of df(��; �)
against � provides a curve which exhibits a minimum.
This minimum is an approximate measure of the
degrees of freedom which can be reasonably sustained
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Figure 7. CV criterion vs. level of regularization for various noise levels and spreads.

Figure 8. Optimum level of regularization and the corresponding cross validation criterion vs. isotropic spreads for
various noise levels.

by the noisy data set and which can be used to provide
the best value for the isotropic spread, ��. The use
of the e�ective degrees of freedom for this purpose
leads to a signi�cant improvement in the performance
of the regularization network and, to our knowledge,

has not been previously reported. Applications of
the above algorithm on several case studies in the
�elds of characterization and optimization of porous
materials and in the modeling of membrane processes
are presented elsewhere [19,20].
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Figure 9. Generalization performance of regularization network at optimum value of isotropic spread and optimal
regularization level.

Figure 10. Generalization performance of regularization network with spreads corresponding to the �rst local maxima at
�� for relatively low noise levels.
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Figure 11. Variations of the degrees of freedom and optimum regularization level with optimum isotropic spread of the
Gaussian basis functions regularization network.
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