A Simple Access to the Synthesis of 5,6-Dihydro-4H-1,3-Oxazines Under Solvent-Free Conditions and Microwave Irradiation

M.R. Tanti¹, M. Mamaghani¹*, N.O. Mahmoodi¹ and A. Loghmanifar¹

Abstract. 2-Arylsubstituted 5,6-dihydro-4H-1,3-oxazines were conveniently synthesized by the condensation of 3-aminopropanol and desired carboxylic acids under solvent-free and microwave conditions, in short reaction times, and moderate to good yields. Also a comparison was made between this method and the classical protocols using acid halides and nitrile substrates.

Keywords: Oxazine; N-acylaminoalcohol; Aminoalcohol; Solvent-free; Microwave.

INTRODUCTION

The synthetic utility of dihydro-1,3-oxazines as a useful intermediate for the synthesis of ketones [1], unusual aldehydes such as trans β-imoglidene acetdehyde [2-5], carboxylic acids, stereoselective synthesis of trans olefins, complex heterocyclic systems and biologically active compounds has been well documented [6-8]. Recently, a 1,3-oxazine ring system was employed in the design of a molecular switch based on the photoinduced opening and thermal closing of the oxazine ring [9].

Several synthetic approaches to 1,3-oxazine derivatives have been reported in the literature. Some highly prevailing examples of these methods are: Using azido-1-propanol [10]; Ritter reaction, consisting of reacting a diazide with a nitrile under strongly acidic conditions [11]; synthesis, utilizing nitriles and aminocarboxylates in the presence of a mild Lewis acid (Cu(OAc)₂, ZnCl₂) as a catalyst [12]; the [4+2] cycloaddition of an N-acylimine and an alkene [13]; using N-acyl-4-acyloxycarbonyl-lactams under basic conditions [14]; intramolecular hydrosilylation of trichlorosilanes in the presence of Au(I) complex [15]; cycloaddition reactions, using 2-azadiones with electron-rich and electron deficient alkynes [16]; the kinetic resolution of racemic Betti base based on an enantioselective N,O-deketalization [17]; and the intramolecular cyclization of N-thiocetyl 1,3-amino alcohols with Bu₄NF and EtI [18]. Other methods such as utilizing the reaction of α-iodophenols or α-iodoanilines with heterocumulenes and carbon monoxide in the presence of palladium catalyst in classical organic solvents have also been employed for the synthesis of 1,3-oxazine derivatives [19]. However, most of these reactions require harsh reaction conditions, expensive starting materials or reagents and longer reaction times. Therefore, the objective of this study is to find a simple method for the synthesis of 1,3-oxazine derivatives.

RESULTS AND DISCUSSION

Our ongoing efforts to develop a new methodology for the synthesis of useful heterocyclic products [20] have prompted us to study the synthesis of 2-arylsubstituted 5,6-dihydro-1,3-oxazines through utilizing a new approach. Accordingly, a range of aromatic carboxylic acids was reacted with 3-aminopropanol under microwave irradiation (800 W) and solvent-free conditions (Scheme 1). This reaction proceeded elegantly to produce the desired dihydro-1,3-oxazine (3a-h) in a short reaction time (3-4 mins) and with moderate to good yields. The result of this study has been summarized in Table 1.

In the second approach, 3-aminopropanol was converted to its corresponding amides (2) by reacting with acid halides in dry dioxane in the presence of NEt₃ under an argon atmosphere at 0°C (Scheme 1). This reaction furnished the desired amides in 85-95% yields.
Cyclization of \(N \)-acylaminoalcohol (2a-h) in dry \(\text{CH}_2\text{Cl}_2 \) with \(p \)-TSCI and 4-DMAP under a reflux condition gave 5,6-dihydro-1,3-oxazine (3a-h) in 67-77% yields (Table 2).

For further comparison of the first procedure (MW condition) with the literature method [12], dihydro-1,3-oxazine 3a was prepared by the reaction of thiophene-2-carbonitrile and 3-amino-1-propanol in the presence of ZnCl\(_2\) (Scheme 1). This reaction afforded the desired product in lower yield (65%) with much longer reaction time (48 h).

In conclusion an efficient one-pot protocol for the preparation of 2-arylsulfonated 5,6-dihydro-1,3-oxazines was developed under solvent-free condition and microwave irradiation, producing 5,6-dihydro-1,3-oxazines from 3-amino-1-propanol and readily available carboxylic acids, in short reaction times (3-4 min) and with moderate to good yields (65-74%) (Table 1).

Table 1. The reaction of carboxylic acids with 3-amino-1-propanol under solvent free condition and MW irradiation.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Time (min)</th>
<th>Yield (%)(^{a,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>d</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>4</td>
<td>72 [10]</td>
</tr>
<tr>
<td>e</td>
<td>4-NO(_2)\text{C}_6\text{H}_4^-</td>
<td>3</td>
<td>68 [10]</td>
</tr>
<tr>
<td>f</td>
<td>3-NO(_2)\text{C}_6\text{H}_4^-</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>g</td>
<td>3,5-(NO(_2))_2\text{C}_6\text{H}_4^-</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>h</td>
<td>4-MeO\text{OCH}_3^-</td>
<td>4</td>
<td>66* [10]</td>
</tr>
</tbody>
</table>

\(^{a}\) All compounds have been fully characterized by \(^1\)H NMR and IR; \(^{b}\) Isolated yields; \(^{c}\) By comparison with authentic sample.

Table 2. Cyclization of \(N \)-acylaminoalcohols (2a-h) to 5,6-dihydro-1,3-oxazines (3a-h).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Time (h)</th>
<th>Yield (%)(^{a,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>24</td>
<td>77</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>22</td>
<td>77</td>
</tr>
<tr>
<td>d</td>
<td>(\text{C}_6\text{H}_5^-)</td>
<td>30</td>
<td>75 [10]</td>
</tr>
<tr>
<td>e</td>
<td>4-NO(_2)\text{C}_6\text{H}_4^-</td>
<td>24</td>
<td>72 [10]</td>
</tr>
<tr>
<td>f</td>
<td>3-NO(_2)\text{C}_6\text{H}_4^-</td>
<td>24</td>
<td>75</td>
</tr>
<tr>
<td>g</td>
<td>3,5-(NO(_2))_2\text{C}_6\text{H}_4^-</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>h</td>
<td>4-MeO\text{OCH}_3^-</td>
<td>24</td>
<td>74 [10]</td>
</tr>
</tbody>
</table>

\(^{a}\) All compounds have been fully characterized by \(^1\)H NMR and IR; \(^{b}\) Isolated yields.

EXPERIMENTAL

General

\(^1\)H NMR spectra were obtained on a Bruker DRX-500. FTIR spectra were recorded on a Shimadzu FTIR-S400S spectrometer. Chemical shifts of \(^1\)H spectra were expressed in ppm, downfield from tetramethylsilane. Microwave experiments were carried out in a Delonghi 5150. Melting points were measured on a Buchi melting point B-540 instrument and are uncorrected. All the chemicals were purchased from Merck and used without further purification.

General Procedure for the Preparation of 2-Substituted 5,6-Dihydro-1H-1,3-Oxazine (3a-h) Under Solvent-Free Conditions and Microwave Irradiation

A mixture of aromatic carboxylic acids (5 mmol) and 3-amino-1-propanol (5 mmol) was irradiated (800 W)
in a microwave oven and the progress of the reaction was monitored by TLC (petroleum ether/ethyl acetate: 3:1). After completion of the reaction (3-4 min) (Table 1), the reaction mixture was purified by a preparative thin layer chromatography (petroleum ether/ethyl acetate 3:1) to afford 3a-h in 65-74% yields (Table 1).

General Procedure for the Preparation of N-Acylaminoclohexol (2a-h)

A solution of 3-amino-1-propanol (20 mmol) and triethylamine (39 mmol) in dioxane (30 mL) was cooled to 0°C under an atmosphere of dry Argon. A solution of acid halide (19 mmol) in dioxane (25 mL) was added and the reaction mixture was stirred at this temperature for 1.45 h. The reaction mixture was filtered and the filtrate was evaporated in a vacuum to afford the desired amides (2a-h).

General Procedure for the Preparation of 2-Substituted 5,6-Dihydro-4H-1,3-Oxazines (3a-h) Under Classical Conditions

To a magnetically stirred solution of N-acylaminoclohexol (2) (10 mmol), triethylamine (50 mmol) and 4-dimethylaminopyridine (0.5 mmol) in CH₂Cl₂ (30 mL), p-TSCI (14 mmol) was added, at room temperature. The reaction mixture was heated under reflux for the specified reaction time (Table 2). Water was added and the organic layer was separated and dried under magnesium sulfate (MgSO₄). Concentration of the organic phase under vacuum and the subsequent purification of the crude product by preparative TLC (petroleum ether/ethyl acetate 3:1) afforded the desired dihydro-1,3-oxazine 3a-h (Table 2).

2a: Brown oil, IR (CHCl₃): (νmax/cm⁻¹): 3450 (OH), 1640 (C=O), 1590 (N-H), 1H NMR (500 MHz, CDCl₃): δ: 7.87 (dd, J=1.1, 3.75 Hz, 1H, ArH), 7.62 (dd, J=1.1, 4.9 Hz, 1H, ArH), 7.15 (dd, J=3.75, 4.9 Hz, 1H, ArH), 6.56 (s, 1H, NH), 4.50 (t, J=5.95 Hz, 2H, CH₂O), 3.60 (q, J=6.55 Hz, 2H, CH₂N), 2.1 (quint., J=6.1 Hz, 2H, CH₂CH₂CH₂-CH₂), 1.6 (s, 1H, OH) ppm.

2b: Violet oil, IR (CH₂Cl₂): (νmax/cm⁻¹): 3347 (OH), 1650 (C=O), 1590 (N-H), 1H NMR (500 MHz, CDCl₃): δ: 7.49 (dd, J=0.64, 1.75 Hz, 1H), 7.16 (dd, J=0.64, 3.5 Hz, 1H), 6.75 (s, 1H, NH), 6.55 (dd, J=1.75, 3.5 Hz, 1H), 3.74 (t, J=5.7 Hz, 2H, CH₂O), 3.64 (q, J=6.35 Hz, 2H, CH₂N), 1.83 (quint., J=6.1 Hz, 2H, CH₂CH₂CH₂-CH₂), 1.69 (s, 1H, OH) ppm.

2c: Brown oil, IR (CH₂Cl₂): (νmax/cm⁻¹): 3400 (OH), 1640 (C=O), 1550 (N-H), 1H NMR (500 MHz, CDCl₃): δ: 8.5 (s, 1H, NH), 7.75 (d, J=3.3 Hz, 1H, ArH), 7.70 (d, J=4.70 Hz, 1H, ArH), 7.1 (dd, J=3.3, 4.70 Hz, 1H, ArH), 4.52 (s, 1H, OH), 3.45 (t, J=6.1 Hz, 2H, CH₂O), 3.35 (s, 2H), 3.27 (q, J=6.2 Hz, 2H, CH₂N), 1.66 (quint., J=6.5 Hz, 2H, CH₂-CH₂-CH₂) ppm.

2d: Colorless oil, IR (CH₂Cl₂): (νmax/cm⁻¹): 3400 (OH), 1640 (C=O, N-H), 1H NMR (500 MHz, CDCl₃): δ: 8.09 (dt, J=1.3, 8.4 Hz, 2H, ArH), 7.61 (t, J=7.4, 1H, ArH), 7.52 (t, J=7.5 Hz, 2H, ArH), 6.75 (s, 1H, NH), 4.53 (t, J=6.0 Hz, 2H, CH₂O), 3.63 (q, J=6.3 Hz, 2H, CH₂N), 2.14 (quint., J=6.5 Hz, 2H, CH₂-CH₂-CH₂), 1.75 (s, 2H, OH) ppm.

2e: Yellow solid, mp 118-119°C, IR (KBr): (νmax/cm⁻¹): 3450 (OH), 1640 (C=O, N-H), 1630, 1350 (NO₂), 1H NMR (500 MHz, CDCl₃): δ: 8.28 (d, J=8.70 Hz, 2H, ArH), 8.02 (d, J=8.70 Hz, 2H, ArH), 6.80 (s, 1H, NH), 4.59 (t, J=6.0 Hz, 2H, CH₂O), 3.67 (q, J=6.30, 2H, CH₂N), 2.19 (quint., J=6.35 Hz, 2H, CH₂-CH₂-CH₂), 1.75 (s, 1H, OH) ppm.

2f: Yellow solid, mp 114.5-116°C, IR (KBr): (νmax/cm⁻¹): 3300 (OH), 1640 (C=O), 1600 (N-H), 1520, 1340 (NO₂), 1H NMR (500 MHz, CDCl₃): δ: 8.65 (s, 1H, ArH), 8.22 (dd, J=1.0, 7.95 Hz, 1H, ArH), 8.16 (d, J=7.75 Hz, 1H, ArH), 7.53 (t, J=7.95 Hz, 1H, ArH), 6.80 (s, 1H, NH), 3.98 (t, J=5.7 Hz, 2H, CH₂O), 3.48 (q, J=6.25, 2H, CH₂N), 1.71 (quint., J=5.85 Hz, 2H, CH₂-CH₂-CH₂), 1.14 (s, 1H, OH) ppm.

2g: Yellow solid, mp 130-141°C, IR (KBr): (νmax/cm⁻¹): 3400 (OH), 1640 (C=O, N-H), 1540, 1340 (NO₂), 1H NMR (500 MHz, CDCl₃): δ: 9.46 (s, 1H, ArH), 9.25 (d, J=1.55 Hz, 2H, ArH), 6.9 (s, 1H, NH), 4.61 (t, J=6.0 Hz, 2H, CH₂O), 3.69 (q, J=6.30 Hz, 2H, CH₂N), 2.20 (quint., J=6.35 Hz, 2H, CH₂-CH₂-CH₂), 1.76 (s, 1H, OH) ppm.

2h: Colorless oil, IR (CDCl₃): (νmax/cm⁻¹): 3400 (OH), 1640 (C=O, N-H), 1250 (OMe), 1H NMR (500 MHz, CDCl₃): δ: 7.73 (d, J=8.80 Hz, 2H, ArH), 6.91 (d, J=8.80 Hz, 2H, ArH), 6.45 (s, 1H, NH), 3.85 (s, 3H, OCH₃), 3.70 (t, J=5.25 Hz, 2H, CH₂O), 3.62 (q, J=6.0, 2H, CH₂N), 3.10 (s, 1H, OH), 1.79 (quint., J=6.0 Hz, 2H, CH₂-CH₂-CH₂) ppm.

3a: Brown oil, IR (CHCl₃): (νmax/cm⁻¹): 1600 (C=N), 1520, 1460 (C=C), 1075 (C-O), 1H NMR (500 MHz, CDCl₃): δ: 7.5 (dd, J=1.1, 3.70 Hz, 1H, ArH), 7.36 (dd, J=1.1, 5.0 Hz, 1H, ArH), 7.0 (dd, J=3.70, 5.0 Hz, 1H, ArH), 4.38 (t, J=5.5, 2H, CH₂O), 3.61 (t, J=5.85 Hz, 2H, CH₂N), 2.0 (quint., J=5.77 Hz, 2H, CH₂-CH₂-CH₂) ppm.
Red oil, IR (CHCl₃): (νₑₓₘₓ/cm⁻¹): 1600 (C≡N), 1520, 1470 (C≡C), 1200 (C-O). ¹H NMR (500 MHz, CDCl₃): δ; 7.40 (dd, J = 0.60, 1.80 Hz, 1H), 7.10 (dd, J = 0.60, 3.50 Hz, 1H), 6.52 (dd, J = 1.8, 3.50 Hz, 1H), 4.30 (t, J = 5.5 Hz, 2H, CH₂O), 3.74 (t, J = 5.53 Hz, 2H, CH₂N), 1.80 (quint., J = 5.7 Hz, 2H, CH₂=CH₂-CH₂-CH₂) ppm.

Dark brown oil, IR (CHCl₃): (νₑₓₘₓ/cm⁻¹): 1650 (C≡N), 1573, 1473 (C≡C), 1218 (C-O). ¹H NMR (500 MHz, CDCl₃): δ; 7.49 (dd, J = 1.0, 3.70 Hz, 1H, ArH), 7.36 (dd, J = 1.0, 5.0 Hz, 1H, ArH), 7.04 (dd, J = 3.70, 5.0 Hz, 1H, ArH), 4.37 (t, J = 5.4 Hz, 2H, CH₂O), 3.67 (s, 2H), 3.6 (t, J = 5.8 Hz, 2H, CH₂N), 2.01 (quint., J = 5.7 Hz, 2H, CH₂=CH₂-CH₂) ppm.

Colorless oil, IR (neat): (νₑₓₘₓ/cm⁻¹): 1645 (C≡N), 1580, 1475 (C≡C), 1020 (C-O). ¹H NMR (500 MHz, CDCl₃): 7.84 (dd, J = 1.1, 8.1 Hz, 2H, ArH), 7.54 (t, J = 7.50 Hz, 1H, ArH), 7.45 (t, J = 7.5, 2H, ArH), 3.85 (t, J = 5.6, 2H, CH₂O), 3.25 (t, J = 6.13, 2H, CH₂N), 1.82 (quint., J = 5.7 Hz, 2H, CH₂-CH₂-CH₂) ppm.

Yellow oil, IR (neat): (νₑₓₘₓ/cm⁻¹): 1604 (C≡N), 1519, 1350 (NO₂), 1118 (C-O). ¹H NMR (500 MHz, CDCl₃): δ; 7.97 (d, J = 8.10 Hz, 2H, ArH), 7.36 (d, J = 8.10 Hz, 2H, ArH), 3.79 (t, J = 5.60 Hz, 2H, CH₂O), 3.15 (t, J = 6.20 Hz, 2H, CH₂N), 1.75 (quint., J = 5.90 Hz, 2H, CH₂=CH₂-CH₂-CH₂) ppm.

Yellow oil, IR (neat): (νₑₓₘₓ/cm⁻¹): 1650 (C≡N), 1520, 1350 (NO₂), 1060 (C-O). ¹H NMR (500 MHz, CDCl₃): 8.97 (s, 1H, ArH), 8.5 (d, J = 8.15 Hz, 1H, ArH), 8.45 (d, J = 7.8 Hz, 1H, ArH), 7.74 (t, J = 8.0 Hz, 1H, ArH), 3.83 (t, J = 5.65 Hz, 2H, CH₂O), 3.43 (t, J = 6.65 Hz, 2H, CH₂N), 1.89 (quint., J = 5.7 Hz, 2H, CH₂-CH₂-CH₂-CH₂) ppm.

Yellow oil, IR (CH₂Cl₂): (νₑₓₘₓ/cm⁻¹): 1640 (C≡N), 1530, 1350 (NO₂), 1085 (C-O). ¹H NMR (500 MHz, CDCl₃): 9.2 (s, 1H, ArH), 9.01 (d, J = 1.6 Hz, 2H, ArH), 3.94 (t, J = 5.2 Hz, 2H, CH₂O), 3.15 (t, J = 6.0 Hz, 2H, CH₂N), 1.96 (quint., J = 5.5 Hz, 2H, CH₂=CH₂-CH₂-CH₂) ppm.

ACKNOWLEDGMENT

We would like to express our gratefulness to the Research Council of the University of Guilan for partial support of this work.

REFERENCES

