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Research Note

A Branch and Bound Algorithm for the
Weighted Earliness-Tardiness Project Scheduling
Problem with Generalized Precedence Relations

B. Afshar Nadja�1;� and S. Shadrokh1

Abstract. In this paper, an exact solution procedure is presented for the Weighted Earliness-Tardiness
Project Scheduling Problem (WETPSP) with Generalized Precedence Relations (WETPSP-GPR), taking
into account the time value of money (WETPSPDC-GPR) and a �xed deadline for the project. The
WETPSP-GPR extends the WETPSP to arbitrary minimal and maximal time-lags between the starting
and completion times of activities. We present a new depth-�rst Branch and Bound (B&B) algorithm for
an extended form of the problem, in which the time value of money is taken into account by discounting
cash ows, and minimum, as well as maximum, time-lags between di�erent activities may be given. The
algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree.
Finally, some test problems are solved and computational results are reported.

Keywords: Project scheduling; Branch and bound; Net present value; Generalized recedence relations.

INTRODUCTION

Since the introduction of cash ows in project schedul-
ing by Russell [1], the maximization of the Net Present
Value (NPV) has gained increasing attention through-
out the literature. This has led to a large number
of algorithms, including those presented by Baroum
and Patterson [2,3], Elmaghraby and Herroelen [4],
Etgar and Shtub [5,6], Herroelen and Gallens [7], Icmeli
and Erenguc [8,9], Ozdamar et al. [10], Padman et
al. [11,12], Pinder and Maruchech [13], Russell [14],
Shtub and Etgar [15], Smith-Daniels et al. [16], Ulusoy
and Ozdamar [17] and Vanhoucke et al. [18,19].

This paper addresses the Weighted Earliness-
Tardiness Project Scheduling Problem (WETPSP) for
the extended form in which the time value of money is
taken into account by continuous discounting of the
cash ow, and the minimum, as well as maximum,
time-lags between di�erent activities may be given.
The literature on solution methods for the WETPSP
is scant. Vanhoucke et al. [20,21] have developed an
exact recursive search algorithm for the basic form.
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Vanhoucke et al. [22] have exploited the logic of the
recursive procedure for solving the WETPSP in their
branch and bound procedure for maximizing the net
present value of a project, in which progress payments
occur. Kazaz and Sepil [23] solve the problem using
Benders decomposition, while Sepil and Ortac [24]
developed heuristics for the problem under renewable
resource constraints. The paper is organized as follows.
First, the concept of GPRs is presented and the
terminology used is clari�ed. Then, the temporal
analysis of activity networks with GPRs is introduced
and WETPSP is described. Following that, a branch
and bound procedure and a numerical example and
computational results are represented, respectively.
Finally, the paper is concluded.

GENERALIZED PRECEDENCE
RELATIONS

In practice, it is often necessary to specify other than
the �nish-start precedence relations with zero time-
lag used in PERT and CPM. In accordance with
Elmaghraby and Kabmurowski [25], we denote them
as Generalized Precedence Relations (GPRs). We
distinguish between four types of GPRs: Start-Start
(SS), Start-Finish (SF), Finish-Start (FS) and Finish-
Finish (FF). GPRs represent a minimal or maximal
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time-lag between a pair of activities. Let one use Si
to denote the start time and fi to denote the �nish
time of activity i, (1 � i � n). Then, the minimal and
maximal time-lags between the two activities, i and j,
have the following form:

Si + SSmin
ij � Sj � Si + SSmax

ij ;

Si + SFmin
ij � fj � Si + SFmax

ij ;

fi + FSmin
ij � Sj � fi + FSmax

ij ;

fi + FFmin
ij � fj � fi + FFmax

ij :

The GPRs specifying a maximal time-lag can be repre-
sented by a minimal time-lag in the opposite direction.
The GPRs can be represented in standardized form by
transforming them to, for instance, minimal start-start
precedence relations.

TEMPORAL ANALYSIS

Consequently, assume a project represented in AON
format by a directed graph G = fN;Ag, where the set
of nodes, N , represents activities and the set of arcs, A,
represents Generalized Precedence Relations (GPRs).
The non-preemptable activities are numbered from the
dummy start activity, 1, to the dummy end activity, n,
and are topologically ordered. Let di denote the �xed
duration of activity i, (1 � i � n).

A path [is; ik; il; � � � ; it] is called a cycle if s = t.
`Path' refers to a directed path, and `cycle' refers to a
directed cycle. The length of a path (cycle) is de�ned as
the sum of the lags associated with the arcs belonging
to that path (cycle). To ensure that the dummy start
and �nish activities correspond to the beginning and
the completion of the project, we assume that there
exists at least one path with non-negative length from
node 1 to every other node and at least one path from
every node i to node n, which is equal to or larger
than di. If there are no such paths, we can insert arcs
(1; i) or (i; n) with weight zero or di, respectively. A
schedule, S = (s1; s2; � � � ; sn), is called time-feasible, if
the activity starting times satisfy all GPRs, i.e. if they
satisfy the following conditions:

Si � 0; 8i 2 N; (1)

Si + lij � Sj ; 8(i; j) 2 A; (2)

where Equation 1 ensures that no activity starts
before the current time (time zero), and Equation 2
denots the GPRs in standardized form. The minimum
starting times, (s1; s2; � � � ; sn), satisfying both Equa-
tions 1 and 2, form the early start time, EST=(EST1,
EST2; � � � ,ESTn), associated with the temporal con-
straints. The calculation of an EST can be related

to the test for existence of a time-feasible schedule.
The earliest start of an activity, i, can be calculated
by �nding the longest path from node 1 to node i.
We also know that there exists a time-feasible schedule
for G, if G has no cycle of positive length [26]. Such
cycles would unable one to compute activity starting
times that satisfy Equations 1 and 2. Therefore, if we
calculate matrixD = [dij ], where dij denote the longest
path from node i to node j, a positive path length from
any node i to itself indicates the existence of a cycle of
positive length and, consequently, the non-existence of
a time-feasible schedule.

The calculation of D can be done by using
standard graph algorithms for the longest paths in the
networks, for instance by the Floyd-Warshall (see [27]).
Let d(k)

ij represent the length of a longest path from
node i to node j, subject to the condition that this
path uses only the nodes 1; 2; � � � ; k � 1 as internal
nodes. Clearly, d(n+1)

ij represents the actual longest
path distance from node i to node j. If one starts with
matrix D(1) = [d(1)

ij ], with:

d(1)
ij =

8><>:0 if i = j
lij 8(i; j) 2 A
�1 otherwise

we can compute D = D(n+1), according to the up-
dating formula, d(v)

ij = maxfd(v�1)
ij , d(v�1)

iv + d(v�1)
vj g

(i; j; l = 1; 2; � � � ; n). If dii = 0 for all i = 1; 2; � � � ; n,
there exists a time-feasible schedule. The EST is
given by the numbers in the upper row of D : EST
= (d11; d12; � � � ; d1n). Computing D takes O(n3) time.

A latest allowable start schedule (LST) can be
computed, based on the network with all arcs reversed
and with the condition that ESTn =LSTn. Note that,
for calculating the LST, the maximal time-lags between
activities have to be taken into account.

PROBLEM DESCRIPTION

The deterministic Weighted Earliness-Tardiness
Project Scheduling Problem (WETPSP) involves the
scheduling of project activities, in order to minimize
the weighted earliness-tardiness costs of the project in
the absence of resource constraints.

Basic form of the WETPSP

In the basic form of the problem, we suppose that all
precedence relations are �nish-start with a time-lag of
zero, and the time value of money is not taken into
account. If we let hi denote the deterministic due date
of activity i, (1 � i � n), the earliness of activity i can
be computed as:

Ei = max (0; hi � fi):
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The tardiness of activity i can be computed as:

Ti = max (0; fi � hi):
If we let ei and ti denote the per unit earliness and
tardiness cost of activity i, respectively, the total
earliness-tardiness cost of activity i equals:

eiEi + tiTi:

It is assumed that h1 = 0, hn = 1, e1 = t1 = 1 and
en = tn = 0. Problem cpmjearly/tardy can then be
formulated as follows [21]:

min
nX
i=2

(eiEi + tiTi); (3)

s.t :

fi � fj � dj ; 8(i; j) 2 A; (4)

Ei � hi � fi; 8i 2 N; (5)

Ti � fi � hi; 8i 2 N; (6)

f1 = 0; (7)

fi � 0; Ei � 0; Ti � 0; 8i 2 N: (8)

The objective in Equation 3 is to minimize the weighted
earliness-tardiness cost of the project. The constraint
set given in Equation 4 imposes the �nish-start prece-
dence relations among activities. Equations 5 and 6
compute the earliness and tardiness of each activity.
Equation 7 forces the dummy start activity to end
at time zero. Equation 8 ensures that the activity
�nish times and the earliness and tardiness of activities
assume nonnegative integer values.

Extended form of WETPSP (WETPSP-GPR)

When dealing with the NPV criterion, the time value
of money is taken into account by discounting the
cash ows. The value of an amount of money is a
function of the time of receipt or disbursement of cash.
In order to calculate the value of NPV, a discount
rate, �, has to be chosen, which represents the return,
following investment in the project, rather than, e.g.,
in securities. Then, the continuous discounted factor,
e��T , denoted the present value of a dollar to be paid
at the end of period T using a discount rate, �. Figure 1
shows that the NPV of the early/tardy penalty costs
associated with an activity changes, with respect to the
activity completion times.

The objective of WETPSPDC is to �nd a schedule
such that the NPV of the project is minimized. The
way of calculating the value of NPV depends on the

Figure 1. Early-tardy cost curve showing the e�ect of
discount rate on NPV.

payment model considered. It is supposed that the
cost, due to the earliness or tardiness of each activity,
will impose on the progress model.

The objective of the WETPSPDC-GPR is to
schedule a number of activities, in order to minimize
the Net Present Value (NPV) of the project, subject
to generalized precedence relations and a �xed dead-
line.

The following notations are for weighted earliness-
tardiness project scheduling with discounted cash ow
and generalized precedence relations (WETPSPDC):

n number of activities,
di duration of activity i,
hi due date of activity i,
si start time of activity i (integer

decision variable),
ESTi earliest start time of activity i,
LSTi latest start time of activity i,
ei per unit earliness cost of activity i,
ti per unit tardiness cost of activity i,
� discount rate,
�n deadline of the project,
SM state matrix representing the

precedence relations conict
between activities,

CA set of conicted activities in
schedule,

Z objective function,
Z� optimal objective function,
Sa+lab�Sb denotes that activity b may start

when its predecessor, a, has
already started for a lab
time units. (Standard form of GPRs),

a � b denotes that activity a is the
predecessor of activity b.

Using the above notation, the resource-
unconstrained project scheduling problem with GPRs
under the minimum discounted early-tardy penalty
cost objective can be mathematically formulated as
follows:

minZ =
nX
i=2

 
ei

hi�1X
k=Si+di

e��k + ti
Si+diX
k=hi+1

e��k
!
;

(9)
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s.t:

Si + lij � Sj ; 8(i; j) 2 A; (10)

Sn � �n; (11)

S1 = 0; (12)

Si 2 N; 8i 2 N: (13)

The objective in Equation 9 minimizes the NPV of the
project. Constraints 10 represent the GPRs. In order
to restrict the project duration, we add a negotiated
project deadline, �n, for dummy end activity n, given
in Equation 11. Equation 12 forces the dummy start
activity to start (�nish) at time zero. Constraints 13
ensure that all activity start times assume nonnegative
integer values.

BRANCH AND BOUND ALGORITHM

In this section, we give a description of the branch and
bound procedure.

Initial Schedule

The process of constructing the tree starts with gener-
ating an initial and probably infeasible scheduling. In
the proposed algorithm, the initial scheduling proce-
dure sets the start time of each activity, i, at:8><>:ESTi; if hi � di � ESTi

hi � di; if ESTi < hi � di � LSTi
LSTi; if LSTi < hi � di

and calculates its cost. Let P denote the level of the
branch and bound tree. Then, in the initial schedule,
we set P = 0. Although this schedule has minimum
cost, it may be infeasible. The feasibility of a schedule
can be evaluated by the State Matrix (SM). Each
element of this matrix can be calculated as follows:

SM(i; j) =

(
sj � si � lij ; (i; j) 2 A
0; Otherwise

where lij denotes the minimal time-lag between start
times of activities i and j. In this matrix, if activity i
is the predecessor of activity j, and the time interval
between the start times of activities i and j is equal to
lij , then, one will have SM(i; j) = 0. If the time interval
between the start times of activities i and j(sj � si) is
less (greater) than lij , then one will have SM(i; j) <
0(SM(i; j) > 0). If all elements of SM are nonnegative,
then, the current schedule is time-feasible.

Branching Strategy

In this subsection, we describe how to create new
nodes of the enumeration tree and how to select a
node for further branching. Branching is based on the
evaluation of SM, which presents the feasibility of the
current schedule, in order to obtain a feasible schedule.
Nodes which represent time-infeasible project networks
and which are not fathomed by any of the node pruning
rules described below, lead to a new branching. In
each level of the B&B tree, if there is more than one
such node, the ties are broken in favor of children
who have been created with more right shift. The
branching process takes place from the selected child,
who has now become the current schedule, and its
children are generated. Among these children, the best
one is selected again. This branching process continues
until all nodes are pruned, based on pruning rules. The
only di�erence between any current schedule and its
parent is that it includes one new decision about two
activities that have a time conict, (SM(i; j) < 0).
Time conicts are resolved using the concepts of left
shift and right shift. Assume, for example, that, in a
certain node, two activities, i and j, have time conict
(SM(i; j) < 0) and activity i is the predecessor of
activity j. Suppose that the duration of the time
conict between these activities is an l time unit. We
consider, at most, (l + 1) alternatives to resolve this
time conict. We can, theoretically, enumerate an
in�nite number of situations to solve the conict, but
it is clear that any solution with more than lij lag
between these two activities would be dominated by
the minimum cost solution inside the l+ 1 alternative.
Longer lags between i and j are justi�able only when
we need to resolve other conicts, since longer lags
mean greater cost. Resolving other conicts would be
considered in other nodes of the B&B tree. Therefore,
it is enough to enumerate only l + 1 alternatives. In
the �rst node, activity j is shifted to the right l time
unit. In the second node, activity j is shifted to a right
(l � 1) time unit and activity i is shifted to the left
1 time unit. In the kth node, activity j is shifted to
the right (l � k + 1) time unit and activity i is shifted
to the left (k � 1) time unit. Finally, in the (l + 1)th
node, activity i is shifted to the left l time unit. In
the shifting process, one must be aware that, for each
activity i, the activity start time should not be later
than LSTi or earlier than ESTi.

In order to avoid creating new conicts in the
shifting process, it is necessary to devise preventive
approaches. Therefore, it is assumed that, in the right
(left) shifting of each activity i, if one is faced with
new conicts, the associated activities must be shifted
to the right (left) too. For example, this can be shown,
graphically, as given in Figure 2, in which we suppose
that a � b, b � c, b � d, lab = da, lbc = lbd = db and
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Figure 2. Shifting process.

activity b is selected for a right shift. Consequently, the
following lemma applies.

Lemma
The above shifting strategy will lead to the complete
enumeration of the search tree.

Proof
See the Appendix.

Pruning Rules

If it can be established that further branching from a
node cannot lead to an optimal solution, then, the node
can be pruned away. In this subsection, we present two
rules for pruning the enumeration tree.

Incumbent Rule
The �rst pruning rule, the incumbent rule, is based
on the incumbent solution, which is the best solution,
up to a certain point, in the solution process. In this
case, it prunes away any schedule that could potentially
lead to an equal or worse solution, compared to an
incumbent solution. In order to apply this pruning rule,
a procedure has been used to create a Lower Bound
(LB) for the problem. The corresponding bounding
procedure is based on a concept known as a conict
set. To describe the conict set, which calculates the
lower bound associated with the schedule scheme, we
introduce some notations.

A subset, X, of activities compose a conict set if
a) activity i is the predecessor of activity j and these
activities have time conict (SM(i; j) < 0), b) activity
i is the predecessor of some activities, k1; k2; k3; � � � ; kr,
and their GPRs are ignored, or c) activity j is the
successor of some activities, k1; k2; k3; � � � ; kr, and their
GPRs are ignored. These three types of conict set are
given in Figure 3, graphically.

In order to calculate a lower bound for each time-
infeasible schedule, we follow a two-stage procedure.
In the �rst stage, for a time-infeasible schedule, we
identify the maximum length conict sets, so that they
do not have a common activity. On the other hand,
each activity, i, may be a member of one conict set.
At this stage, other generalized precedence constraints,
which have not been considered in any of the conict
sets, are relaxed. At the second stage, LB is calculated,
based on the following propositions.

Figure 3. Types of conict set.

Proposition 1
Associated with each Type I conict set, where a
generalized precedence relation between activities i and
j is ignored, let C(i; j) be the minimum cost incurred
for resolving the time-conict between activities i and
j. If we suppose that the relative time conict is a l(i; j)
time unit, then, C(i; j) can be computed as follows:

C(i; j)=
l(i;j)
min
�=0

8<:ei si+di�1X
k=si+di��

e��k+tj
sj+dj+[l(i;j)��]X
k=sj+dj+1

e��k
9=; :

Let ��(�) be the minimum cost incurred for resolving the
�th conict set in the current schedule. Thus, regarding
a Type I conict set, it may be described as:

��(�) = C(i; j):

Proposition 2
Associated with each Type II conict set, where
activity i is the predecessor of some activities,
k1; k2; k3; � � � ; kr, and their generalized precedence re-
lations are ignored, one can compute ��(�) as follows:

��(�) = rmax
j=1
fC(i; kj)g:

Proposition 3
Associated with each Type III conict set, in
which activity j is the successor of some activities,
k1; k2; k3; � � � ; kr, and their generalized precedence re-
lations are ignored, one may derive:

��(�) = rmax
i=1
fC(ki; j)g:

Proposition 4
Associated with each schedule, a Lower Bound (LB)
may be written as follows:

Lower Bound =
X
�

��(�) + Z: (14)

Dominance Rule
The second pruning rule, the dominance rule, is based
on the fact that some nodes may repeat. Each node
in the search tree represents the initial scheduling
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extended with a set of activity shifts to resolve time
conicts. Therefore, it is possible that a certain node
represents a project network which has been examined
earlier at another node in the search tree. One way
of checking whether two nodes represent the same
project network is to check the State Matrix (SM).
Identical sets of activity shifts lead to identical project
networks. This rule applies when a node is compared
to a previously examined node in another path of
the search tree. This can be enforced by saving the
information required during backtracking.

Algorithm

Having discussed all the necessary concepts of the
algorithm, we present it with the pseudo-code below:

Initialization: Set P = 0, Z� = 1, optimal schedule=
�;

Step 1 Generate the initial schedule, set it as the
current schedule;

Step 2 Create CA and SM and calculate Z and LB,
for the current schedule;

Step 3 If CA is empty and if Z < Z�, go to Step 11;
Step 4 Find the �rst negative element in SM, called

SM(i; j), representing the �rst time conict,
between activities i and j;

Step 5 Expand the current schedule (generate all
schedules directly reachable from the current
schedule, by all possible shifting activities, i
and j. For resulting schedules, set P = P +1,
create their CA and SM and calculate their Z
and LB);

Step 6 Find the schedule at level P , which is not
fathomed. (Ties are broken in favor of chil-
dren who have been created with more right
shifting.) Set it as the current schedule and
go to Step 8;

Step 7 If no result is found in Step 6, set P = P � 1.
If P = 0, go to Step 13, else, go to Step 6;

Step 8 If any result is found in Step 6, try the
incumbent rule (determine the conict type
and apply the appropriate lower bound for the
node, according to Equation 14);

Step 9 If the result of the incumbent rule is negative,
try the dominance rule;

Step 10 If the result of any of the above two rules is
positive, fathom the current node and go to
Step 6, else, go to Step 3;

Step 11 Set the current schedule as the optimal sched-
ule and set Z� = Z;

Step 12 If P = 0, go to Step 13, else, go to Step 6;

Step 13 If Z� = 1, print `no possible solution', else,
print the optimal schedule;

Step 14 End.

A NUMERICAL EXAMPLE

In this section, we determine an optimal schedule for a
numerical example by means of the B&B procedure
presented. Consider the example activity network
given in Figure 4. The numbers above the nodes
(activities) denote the activity duration, di. The label
associated with the arcs indicates the GPRs. The
activity network in a standard form is given in Figure 5.
Table 1 shows the due date and the unit penalty
cost of the activities. For ease of representation, we
assume that the unit earliness costs are equal to the
unit tardiness costs. The project deadline, �n, amounts
to 25 and the monthly discount rate, �, equals 0.01
(1%).

At the initial level, P = 0, of the tree, we
determine the initial scheduling by setting the start
times of each activity, i, at:8><>:ESTi; if hi � di � ESTi

hi � di; if ESTi < hi � di � LSTi
LSTi; if LSTi < hi � di

Figure 4. An activity network with GPRs.

Figure 5. A standardized project network.
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Table 1. Project's data for numerical example.

Activity
1 2 3 4 5 6 7 8

hi 0 13 9 15 23 17 24 25

ei = ti 1 4 7 9 2 4 5 1

An extended Gantt chart, associated with the root
of the search tree, node 1, is displayed in Figure 6.
Such a Gantt chart shows that this schedule is not
feasible and there are two conict sets. The State
Matrix (SM) for initial scheduling is given in Figure 7.
This matrix has some negative elements, which is
another representation of infeasibility. Then, the set of
conicted activities are CA= f2, 3, 4, 6 and 7g. At the
root of the enumeration tree, the algorithm computes
the objective function (Z) and Lower Bound (LB) as
3.477 and 14.222, respectively. Table 2 shows a detailed
computation of the lower bound in node 1.

The �rst negative element in SM corresponds to

Figure 6. Extended Gantt chart for initial scheduling.

Figure 7. SM for initial scheduling.

activities 2 and 3, which conict with the 2 time unit.
Consequently, the algorithm continues with Step 5.
The level of the B&B tree is increased, i.e. P = 1
and three descendant nodes will be generated. In
node 2, activity 2 is shifted to a right two time unit.
In node 3, activity 2 is shifted to a right one time
unit, and activity 3 is shifted to a left one time unit.
Finally, in node 4, activity 3 is shifted to a left two time
unit. We create a new node of the enumeration tree
for each alternative of this decision and select the best
alternative (node 2) for further branching. The State
Matrix (SM) and set of Conicted Activities (CA) are
updated for each node and a lower bound on the NPV
is computed. The resulting tree is given in Figure 8.

We have coded the B&B procedure in the MAT-
LAB version 6.5 under windows XP. The complete
B&B tree for the example is given in Figure 9.

In node 4, a �rst feasible schedule is found with a
NPV of 19.14, corresponding with feasible start times
(0, 11, 6, 11, 14, 14, 18 and 25). A search of all trees
shows that this schedule is optimal, too. Other feasible
schedules are found in nodes 5, 6, 7 and 8. Also, nodes
7 and 8 can be fathomed, because of the two pruning
rules described previously.

COMPUTATIONAL RESULTS

In order to validate the proposed B&B method for
the WETPSPDC-GPR, a problem set, consisting of
120 problem instances, was generated. This problem
set was consisted equally of 40 instances with 10, 30
and 50 activities. The problem set was extended with
unit earliness-tardiness penalty costs for each activity,
which were randomly generated between 1 and 10. The
due dates were generated in the same way as described
by Vanhoucke et al. [21]. First, a maximum due
date was obtained for each project by multiplying the

Figure 8. Branching process in initial schedule.

Table 2. Detailed computation of lower bound in node 1.

Conict Set
No (� )

Type Members C(i; j) ��(�) Lower Bound (LB)

1 II 3 and 2 6.851 6.851
3 and 6 3.341 6.851+3.894+3.477=14.222

2 I 4 and 7 3.894 3.894
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Figure 9. Branch and bound tree.

critical path length by 1.5. Subsequently, we generate
random numbers between 1 and the maximum due
date. The numbers are sorted and assigned to the
activities in increasing order. Activity durations are
randomly selected between 1 and 10. The maximum
number of predecessors and successors are supposed
as 3.

We have coded the B&B procedure in the MAT-
LAB version 6.5. The problem set has been solved
under windows XP on a personal computer with a
Pentium IV, 1.7 GHz processor. Table 3 represents the
average CPU-time, in seconds, for a di�erent number
of activities.

SUMMARY AND CONCLUSIONS

This paper reports on an exact B&B procedure for
an extended form of the problem, cpmjearly/tardy,
i.e., an unconstrained project scheduling problem with
continuous discounted negative cash ow, subject to
Generalized Precedence Relations (GPRs). Negative
cash ows occur when an activity is completed prior to,
or later than, it's due date. The objective is to schedule
the activities, in order to minimize the NPV, subject
to the GPRs, with a �xed deadline on the project.

Table 3. The average CPU-time needed to solve the
WETPSPDC-GPR.

Number of
Activities

Number of
Problems

Average
CPU-Time

10 40 0.191

30 40 0.928

50 40 1.877

Branching is done by a right and left shifting process
on two activities which have a time conict, so that
the predecessor activity has the smallest number. Two
rules are used for node fathoming; incumbent rule and
dominance rule. First, the pruning procedure computes
the lower bound by making a disjunctive subset of
activities, so called a conict set. Second, the pruning
procedure, fathomed previously, examined the node in
another path of the search tree. Finally, the new B&B
procedure is used for solving a numerical example.
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APPENDIX

Proof of Lemma

Lemma
The shifting strategy, which consists of shifting all in
movement path activities, will lead to the complete
enumeration of the search tree.

Proof
At any level P of the B&B tree, to resolve the time
conict of activities X and Y with length k, the ith
branch is created by shifting activity X, i periods to
the left and activity Y , k � i periods to the right, as
shown in Figure A1.

Let activities a, b and c exist, such that a � b,
b � c and lab = da, lbc = db. Also, suppose that
the length of the time conict between activities a
and b is k1, and is k2 for activities b and c. Let
ta and t0a, denote the start time of activity a in the



64 B. Afshar Nadja� and S. Shadrokh

Figure A1. Branching strategy.

Figure A2. Current and �nal schedule.

current infeasible schedule and any feasible schedule,
respectively, as shown in Figure A2.

It is obvious that, in the best case, at the �rst
branch of level P , we have t0a = ta, t0b = tb + k1 and
t0c = tc + k1 + k2. Also, in the worst cast, at the last
branch of level P 0, we have t0a = ta � (k1 + k2), t0b =
tb � k2 and t0c = tc. Thus, we should show that the
start time of activity a, t0a, could get any value from
the interval [ta � (k1 + k2); ta], i.e., it must be shown

that our branching strategy would count all points of
this interval. Although, at these levels of the B&B tree,
we consider only this interval for t0a, which results in
the time feasibility of activities a, b and c, nevertheless,
there is an opportunity for t0a, to get values beyond this
interval at the next levels of the B&B tree. It is clear
that:

[ta � (k1 + k2); ta] = [ta � (k1 + k2); ta � k1]

[ (ta � k1; ta];

� = [ta � (k1 + k2); ta � k1] \ (ta � k1; ta]:

Suppose that the time conict of activities a and b is
resolved at level P of the B&B tree and the time conict
of activities b and c is resolved at level P 0. Let t0a 2
(ta � k1; ta]. The activity, a, starts at t0a in the (ta �
t0a)th branch at level P and, according to our branching
strategy, the time conict of b and c is also resolved
automatically.

Let t0a 2 [ta � (k1 + k2); ta � k1]. At branch k1
of level P , the time conict of activities a and b is
resolved by shifting a, k1 periods to the left, therefore,
the time conict of activities b and c is not resolved.
The (ta � k1 � t0a)th branch of level P 0 would result in
starting activity a at period t0a and resolving the time
conict of activities b and c. Consequently, repeating
this branching strategy throughout the search tree
leads to the enumeration of all possible solutions.


