
Transaction E: Industrial Engineering
Vol. 16, No. 1, pp. 36{54
c Sharif University of Technology, June 2009

Robot Movements in a Cyclic Multiple-Part Type
Three-Machine Flexible Robotic Cell Problem

I.N. Kamal Abadi1;� and S. Gholami2

Abstract. This paper recognizes thirty-six, potentially optimal robot movement policies, to schedule
the movements of a robot in a three-machine exible cell. The robotic cell produces multi-type parts,
in which the robot is used as a material handling system. In this manufacturing cell, the machines
have operational exibility and can be set up for di�erent operations; all parts have three operations.
Finding the robot movement policy and sequence of parts to minimize the cycle time (i.e., maximize the
throughput) is the aim of this work. It was proved that cycle time calculation, in twelve out of thirty-six
policies, are unary NP-complete, and a polynomial time algorithm is introduced that can solve the twenty-
four left policies. This paper develops the cycle times of all these thirty six robot movements policies,
considering waiting times in a exible three-machine robotic cell with multi-type parts, and introduces
a parts sequence under a special condition, in which one of the policies minimizes the cycle time (i.e.,
maximize throughput). This kind of exibility di�ers from other research into robotic cells, wherein a
machine can process di�erent operations. Moreover, we consider cells with multiple part types, which is
more realistic than other developed models. Finally, a new mathematical model, based on Petri-nets, was
provided for one of the robot movement policies. Furthermore, this mathematical model is also developed
for the multi-type part problem.

Keywords: Production scheduling; Cyclic blocking open shop; Flexible robotic cell.

INTRODUCTION

In modern technology, the level of automation in
manufacturing industries has increased dramatically.
Some examples of these automation progresses are in
cellular manufacturing and robotic cells. A growing
body of evidence suggests that, in a wide variety
of industrial settings, material handling within a cell
can be accomplished very e�ciently by employing
industrial robots (see [1]). Among the interrelated
issues to be considered in using robotic cells are their
designs, the scheduling of robot movements and the
sequencing of parts to be produced. If, in a robotic cell,
CNC machines are used, it is possible to set up di�erent
operations on machines. This important property of

1. Department of Industrial Engineering, University of Kurdis-
tan, Sanandaj, Iran.

2. Department of Industrial Engineering, Tarbiat Modares Uni-
versity, Tehran, P.O. Box 14115-143, Iran.

*. Corresponding author. E-mail: nakhai isa@yahoo.com

Received 19 May 2007; received in revised form 16 October 2007;
accepted 17 February 2008

CNC machines is considered, and the 1-unit cycles of
robot movement policies are de�ned. In most previous
studies, ow-shop robotic cells are considered [2]. In
this paper, a robotic cell with operational exibility
that produces multiple-type parts, is considered and,
also, the results of the successful studies of Hall et
al. [3,4] and Sriskandarajah et al. [5]. Hall [3] analyzed
the complexity of a scheduling problem and showed
that two policies out of six possible policies are NP-
Complete. In this study, these results are used to show
the NP-Completeness of the scheduling problems of
twelve out of thirty six possible policies. For calculating
the cycle time and waiting times for a given sequence of
jobs under these two NP-Complete policies, algorithms
are introduced [4]. We introduce a mathematical
model, based on Petri-nets, to �nd the best sequence
of jobs and calculate the cycle time and waiting times
for policies, wherein their scheduling problems are
NP-Complete. Some instance problems are solved
by this mathematical model and the results are il-
lustrated. Sriskandarajah et al. [5] have introduced
a classi�cation scheme for the complexity of robotic

Robot Movements in a Three-Machine Flexible Cell 37

cell scheduling problems. Finally, according to this
classi�cation scheme, some algorithms are proposed
to solve this problem. This paper is organized as
follows.

In the next section, the literature of the robotic
cell scheduling problem is briey reviewed. In the third
section, the initial notions and required notations are
introduced. Following that, the problem and calcula-
tion of cycle times for possible policies are described. In
the �fth section, the problem is analyzed by Petri-nets
and a mathematical model and its calculation results
are shown. Finally, the proposed algorithms for solving
the problem are described.

LITERATURE REVIEW

The robotic cell problem, wherein a robot is used as
a material handling system, has received considerable
attention, such as in [6,7] and some other works which
were pursued. Sethi et al. [6] suggested the following
conjecture.

Sethi's Conjecture

In bu�erless single-gripper robotic cells producing a
single part-type and having identical robot travel times
between adjacent machines and identical load/unload
times, a 1-unit cycle provides the minimum per unit
cycle time in the class of all solutions, cyclic or
otherwise.

Sethi et al. [6] proved this conjecture for two-
machine robotic cell problems. It is proved that a
1-unit cycle solution is optimal over the class of all
solutions, cyclic or otherwise. For a three-machine
case, Crama and van de Klundert [8] and Brauner
and Finke [9] showed that the best 1-unit cycle is
the optimal solution for the class of all cyclic solu-
tions.

Hall et al. [3,4] considered three-machine robotic
cells, which produce multiple-type parts. They an-
alyzed the complexity of this problem and proved
that two out of six possible policies are unary NP-
complete and that the other four policies are solvable
in polynomial time.

Crama et al. [2] studied ow-shop scheduling
problems, the models for such problems and their com-
plexity. Dawande et al. [10] provided a classi�cation
scheme for a robotic cells scheduling problem.

Some other special cases have been studied. Gul-
tekin et al. [11] studied the robotic cell scheduling prob-
lem with tooling constraints for a two-machine robotic
cell, where some operations can only be processed on
the �rst machine, some others can only be processed
on the second machine and the remaining operations
can be processed on both machines.

Gultekin et al. [12] considered a exible manu-

facturing robotic cell with identical parts, wherein the
machines are able to do di�erent operations and the op-
erations assignment to the machines can vary through
di�erent cycles. The aim is �nding the operations
assignment for three machines in di�erent cycles and
they proposed a lower bound for 1 and 2 unit cycles.
Geismar et al. [13] found that, in a two-machine exible
robotic cell, no increase in throughput can be achieved
by operational exibility and, in three-machine and
four-machine exible robotic cells, at most, a 14 2

7%
increase can be achieved by operational exibility.
They assume that identical parts are produced in the
exible robotic cell.

INITIAL NOTIONS AND REQUIRED
NOTATIONS

The robotic cell problem is a special case of the cyclic
blocking ow-shop, where the jobs might block either
the machine or the robot at the processing time. A
cyclic schedule is one in which the same sequence of
states is repeated over and over again. A cycle in such
a schedule begins at any state and ends when that
state is encountered next. In previous studies, authors
assumed that the discipline for the movements of parts
is an ordinary ow-shop discipline, i.e., a part meets
machines M1, M2 and M3 consequently. As Blazewicz
et al. [7] showed, under a ow-shop discipline, there
are six di�erent potentially optimal policies for a robot
to move the parts between these three machines. In
this research, the robotic movement policies will be
examined with more exibility. We assume that the
machines can be con�gured for di�erent operations
and the operations can be done in di�erent sequences.
Usually, this kind of sequencing, wherein each job
needs to be processed exactly once on each of the
machines, but in which the order of processing is
immaterial, is called an open-shop discipline. In this
study, the focus is on organizing the possible policies for
robot movements in a three-machine robotic cell under
the open-shop processing environment. The following
notation is used to describe the robotic cell problem in:

m: The number of machines;
I=O: The automated input-output

system for the cell;
PT1, PT2; � � � , PTk: The part-types to be

produced;
r1; r2; � � � ; rk: The minimal ratios of parts

to be produced;
MPS: A minimal part set

consisting of ri parts of
type PTi, l = 1; 2; � � � ; k;

n=r1+r2+� � �+rk: The total number of parts
to be produced in the MPS;

38 I.N. Kamal Abadi and S. Gholami

ai; bi; ci; � � � : The processing times of part
i on 1st, 2nd, and 3rd � � �
stages;

�: Time taken by robot when,
traveling between two
consecutive machines. I=O
is assumed as machine M0;

": Time taken by the robot to
pick up a part from I=O, drop a
part at I=O, load a part onto
machine Mi, or unload a
part from machine Mi;

wij : The time that the robot waits at
machine Mj to unload part
Pi, where the machine is still
processing the part;

(�1; �2; � � � ; �m): The current state of the system,
where �i = �(or
) means that
machine Mi is free
(or occupied by a part);

SkI : The movement policy of category
k where the operations
sequence is O1, O2 and O3;

ŜkI : The movement policy of
category k where the
operations sequence is reverse
to policy SkI ;

SkII : The movement policy of
category k where the
operations sequence is O2, O1
and O3;

ŜII : The movement policy of
category k where the
operations sequence is reverse
to policy SkII ;

SkIII : The movement policy of
category k where the
operations sequence is O1,
O3 and O2;

ŜkIII : The movement policy of
category k where the operations
sequence is reverse to policy
SkIII ;

T ki : The steady state cycle time for
the repetitive manufacturing of
an MPS corresponding to
movement policy Ski .

In this study, the standard classi�cation scheme
for scheduling problems, 1j 2j 3, is used, where 1
indicates the scheduling environment, 2 describes
the job characteristics and 3 de�nes the objec-
tive function [10]. For example, FRC3jk � 2,
S1jCt denotes the minimization of cycle time for a
multi-type part problem in a three ow-shop robotic
cell, restricted to robot move cycle S1. Moreover,

ORCm denotes the m machines open-shop robotic
cell.

THREE MACHINE FLEXIBLE ROBOTIC
CELL ORC3jk � 2, S1jCt
In order to explain the problem, consider a machining
cell, where three-machine tools are located. A robot
is used to feed these three machines, namely, M1,
M2 and M3, in the cell, where parts are brought to
and removed from the robotic cell by an Automated
Storage & Retrieval System (AS/RS). The pallets and
feeders of the AS/RS system allow hundreds of parts
to be loaded into the cell without human intervention
(see Figure 1) and the machines can be con�gured to
perform any operation. The aim of this paper is to �nd
a schedule for the robot movement and the sequence of
parts to maximize throughput (i.e., to minimize cycle
time).

In each cycle, n parts (the total number of parts
in the MPS) are produced, in which r1 are the parts
of part type 1 and r2 are the parts of part type 2.
In an m-machine exible cell, all parts in a MPS
visit each machine in the same order. However, the
operations can be performed in any order and each
machine can be con�gured to perform any opera-
tion.

Sethi et al. [6] showed that there are exactly m!
potentially optimal 1-unit cycles in a m-machine ow-
shop robotic cell (note that a 1-unit cycle returns to
the same state after the production of a single unit).
They also showed that any potentially optimal 1-unit
robot move cycle in a m-machine robotic cell can be
described by exactly m+ 1, following basic activities:

M�i : Load a part on Mi; i = 1; 2; � � �m;
M+
m : Unload a �nished part from Mm:

Note that, in a 1-unit cycle, every basic activity must
be carried out exactly once. Moreover, since, in an
optimal cycle we require that the robot move path

Figure 1. Robotic work cell layout with three machines.

Robot Movements in a Three-Machine Flexible Cell 39

be as short as possible, any two consecutive activities
uniquely determine the robot moves between them.
Therefore, a cycle can be uniquely described by a
permutation of the above m + 1 activities. The
following are the available robot move cycles for a
m = 3 ow-shop robotic cell, as described by Sethi
et al. [6]:

S1 : fM+
3 ;M

�
1 ;M

�
2 ;M

�
3 ;M

+
3 g;

S2 : fM+
3 ;M

�
1 ;M

�
3 ;M

�
2 ;M

+
3 g;

S3 : fM+
3 ;M

�
3 ;M

�
1 ;M

�
2 ;M

+
3 g;

S4 : fM+
3 ;M

�
2 ;M

�
3 ;M

�
1 ;M

+
3 g;

S5 : fM+
3 ;M

�
2 ;M

�
1 ;M

�
3 ;M

+
3 g;

S6 : fM+
3 ;M

�
3 ;M

�
2 ;M

�
1 ;M

+
3 g:

In ow-shop robotic cells, the computational results
obtained by Hall et al. [3] suggest that, besides their
practical advantages, 1-unit robot move cycles rou-
tinely provide schedules with cycle times that are very
close to the lower bounds available for all possible robot
move cycles.

Lemma 1

For the exible robotic cell there are (m!)2 potentially
optimal 1-unit cycles.

Proof
From Sethi et al. [6] we have m! potential optimal 1-
unit cycles in a m machine ow-shop. For every poten-
tially optimal cycle sequence of a ow-shop robotic cell,
we have a m machine arranged as M1;M2; � � � ;Mm.
To produce a exible robotic cell, we can rearrange the
operations of every ow-shop robotic cell bym! possible
arrangements. Thus, we have (m!)2 potentially optimal
1-unit cycles in exible robotic cells and this completes
the proof.

The category number is described as the super-
script on the policy notations, i.e., Sk represents policy
S under category k. Similar notations are also used for
cycle times, T .

Category 1

Under this category, six possible move cycles for an
open-shop problem are de�ned. The move cycle, S1

I , is
similar to S1 in the three-machine ow-shop problem
described by Sethi et al. [6], and the problem of �nding
the best part sequence to be processed using the robot
move cycle, S1, is solved trivially [3].

Lemma 2

The cycle time of one unit, for the policies under
Category 1, are given by:

T 1
I;�(i) = T̂ 1

I;�(i) = T 1
II;�(�) = T̂ 1

II;�(�) = T 1
III;�(�)

= T̂ 1
III;�(�) = a�(i) + b�(i) + c�(i) + 8"+ 4�:

Proof
Refer to the Appendix, Table A1.

Category 2

Under this category, six possible move cycles for a ex-
ible robotic cell problem are de�ned. The move cycle,
S2
I , is similar to S2 in the three-machine ow-shop

problem described by Sethi et al. [6] and the problem
of �nding the best part sequence to be processed, using
the robot move cycle, S2, is NP-Complete [4].

Lemma 3

The cycle times of one unit for the policies under
Category 2 are given by:

T 2
I;�(i)�(i+1) = 8"+ 8� + maxf0; c�(i) � 4�

� 2"; a�(i+1) � 4� � 2"; a�(i)

+ b�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g;
T̂ 2
I;�(i)�(i+1) = 8"+ 8� + maxf0; a�(i) � 4�

� 2"; c�(i+1) � 4� � 2"; c�(i)

+ b�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g;
T 2
II;�(i)�(i+1) = 8"+ 8� + maxf0; c�(i) � 4�

� 2"; b�(i+1) � 4� � 2"; a�(i)

+ b�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g;
T̂ 2
II;�(i)�(i+1) = 8"+ 8� + maxf0; b�(i) � 4�

� 2"; c�(i+1) � 4� � 2"; a�(i)

40 I.N. Kamal Abadi and S. Gholami

+ c�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g;

T 2
III;�(i)�(i+1) = 8"+ 8� + maxf0; b�(i) � 4�

� 2"; a�(i+1) � 4� � 2"; a�(i)

+ c�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g;

T̂ 2
III;�(i)�(i+1) = 8"+ 8� + maxf0; a�(i) � 4�

� 2"; b�(i+1) � 4� � 2"; b�(i)

+c�(i);
a�(i+1) + b�(i+1) + c�(i+1)

2

� 6� � 4"g:
Proof
Refer to the Appendix, Table A2.

Category 3

Under this category, six possible move cycles for a
exible robotic cell problem are de�ned. The move
cycle, s3

I , is similar to S3 in the three-machine ow-shop
problem described by Sethi et al. [6] and the problem
of �nding the best part sequence to be processed using
the robot move cycle, S3, can be solved optimally in
O(n log n) time [3].

Lemma 4

The cycle times of one unit for the policies under
Category 3 are given by:

T 3
I;�(i)�(i+1) = 8� + 8"+ maxfa�(i+1); c�(i) � 4�

� 4"; a�(i+1) + b�(i+1) � 4� � 2"g;

T̂ 3
I;�(i)�(i+1) = 8� + 8"+ maxfc�(i+1); a�(i) � 4�

� 4"; c�(i+1) + b�(i+1) � 4� � 2"g;

T 3
II;�(i)�(i+1) = 8� + 8"+ maxfb�(i+1); c�(i) � 4�

� 4"; a�(i+1) + b�(i+1) � 4� � 2"g;

T̂ 3
II;�(i)�(i+1) = 8� + 8"+ maxfc�(i+1); b�(i) � 4�

� 4"; a�(i+1) + c�(i+1) � 4� � 2"g;
T 3
III;�(i)�(i+1) = 8� + 8"+ maxfa�(i+1); b�(i) � 4�

� 4"; a�(i+1) + c�(i+1) � 4� � 2"g;
T̂ 3
III;�(i)�(i+1) = 8� + 8"+ maxfb�(i+1); c�(i) � 4�

� 4"; b�(i+1) + c�(i+1) � 4� � 2"g:
Proof
Refer to the Appendix, Table A3.

Category 4

Under this category, six possible move cycles for an
open-shop problem are de�ned. The move cycle, S4

I , is
similar to S4 in the three-machine ow-shop problem
described by [6] and the problem of �nding the best
part sequence to be processed, using the robot move
cycle S4, can be solved optimally in On log(n) time [3].

Lemma 5

The cycle times of one unit for the policies under
Category 4 are given by:

T 4
I;�(i)�(i+1) = 8� + 8"+ maxfb�(i+1); b�(i+1) + c�(i)

� 4� � 2"; a�(i+1) + b�(i+1) � 4� � 2"g;
T̂ 4
I;�(i)�(i+1) = 8� + 8"+ maxfb�(i+1); b�(i+1) + a�(i)

� 4� � 2"; b�(i+1) + c�(i+1) � 4� � 2"g;
T 4
II;�(i)�(i+1) =8�+8"+maxfa�(i+1); a�(i+1)+c�(i)

� 4� � 2"; a�(i+1) + b�(i+1) � 4� � 2"g;
T̂ 4
II;�(i)�(i+1) =8�+8"+maxfa�(i+1); a�(i+1)+b�(i)

� 4� � 2"; a�(i+1) + c�(i+1) � 4� � 2"g;
T 4
III;�(i)�(i+1) =8�+8"+maxfc�(i+1); b�(i+1)+c�(i)

�4��2"; a�(i+1)+c�(i+1) � 4� � 2"g;
T̂ 4
III;�(i)�(i+1) =8�+8"+maxfc�(i+1); c�(i+1)+a�(i)

�4� � 2"; b�(i+1) + c�(i+1) � 4� � 2"g:
Proof
Refer to the Appendix, Table A4.

Robot Movements in a Three-Machine Flexible Cell 41

Category 5

Under this category, six possible move cycles for an
open-shop problem are de�ned. The move cycle, S5

I , is
similar to S5 in the three-machine ow-shop problem
described by Sethi et al. [6] and the problem of �nding
the best part sequence to be processed, using the robot
move cycle S5, can be solved optimally in On log(n)
time [3].

Lemma 6

The cycle times of one unit for the policies under
Category 5 are given by:

T 5
I;�(i)(i+1) = 8� + 8"+ maxfc�(i); b�(i) + c�(i) � 4�

� 2"; a�(i+1) � 4� � 4"g;

T̂ 5
I;�(i)(i+1) = 8� + 8"+ maxfa�(i); a�(i) + b�(i) � 4�

� 2"; c�(i+1) � 4� � 4"g;

T 5
II;�(i)(i+1) = 8� + 8"+ maxfc�(i); a�(i) + c�(i) � 4�

� 2"; b�(i+1) � 4� � 4"g;

T̂ 5
II;�(i)(i+1) = 8� + 8"+ maxfb�(i); a�(i) + b�(i) � 4�

� 2"; c�(i+1) � 4� � 4"g;

T 5
III;�(i)(i+1) = 8� + 8"+ maxfb�(i); b�(i) + c�(i)� 4�

� 2"; a�(i+1) � 4� � 4"g;

T̂ 5
III;�(i)(i+1) = 8� + 8"+ maxfa�(i); a�(i) + c�(i)�4�

� 2"; b�(i+1) � 4� � 4"g:
Proof
Refer to the Appendix, Table A5.

Category 6

Under this category, six possible move cycles for an
open-shop problem are de�ned. The move cycle, S6

I , is
similar to S6 in the three-machine ow-shop problem
described by Sethi et al. [6] and the problem of �nding
the best part sequence to be processed, using the robot
move cycle S6, is NP-complete [4].

Lemma 7

The cycle times of one unit for the policies under
Category 6 are given by:

T 6
I;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; a�(i+2) � 8�

� 4"; b�(i+1) � 8� � 4"; c�(i) � 8� � 4"g;
T̂ 6
I;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; c�(i+2) � 8�

� 4"; b�(i+1) � 8� � 4"; a�(i) � 8� � 4"g;
T 6
II;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; b�(i+2) � 8�

� 4"; a�(i+1) � 8� � 4"; c�(i) � 8� � 4"g;
T̂ 6
II;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; c�(i+2) � 8�

� 4"; a�(i+1) � 8� � 4"; b�(i) � 8� � 4"g;
T 6
III;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; a�(i+2)�8�

� 4"; c�(i+1) � 8� � 4"; b�(i) � 8� � 4"g;
T̂ 6
III;�(i)�(i+1)�(i+2) = 12� + 8"+ maxf0; b�(i+2)�8�

� 4"; c�(i+1) � 8� � 4"; a�(i) � 8� � 4"g:
Proof
Refer to the Appendix, Table A6.

The computational results of Lemmas 2-7 are
shown in Table A7. For the experiments, we considered
that the values of " and � are equal to 1; the processing
times for all parts on all machines are uniformly
generated in the range [10,100] and the parts are
identical.

Theorem 1

If in a three-machine robotic cell with identical parts
the processing times on all three machines are larger
than, or equal to, 8� + 4", and the operations are
arranged in such a way that the longest operation
is assigned to machine M1, the shortest operation
is assigned to machine M3 and the last operation is
assigned to machine M2, the policies under Category 6
will have the minimum cycle time.

Proof

First, consider the following notations:

p1 = maxfa; b; cg; P 3 = minfa; b; cg;
P 2 = fa; b; cg � P 1 � P 3:

42 I.N. Kamal Abadi and S. Gholami

According to Lemmas 2 to 7, the cycle time of di�erent
policies in this case will be as follows:

T 1 = P 1 + P 2 + P 3 + 4� + 8";

T 2 =maxfP 1+P 2+8�+8";
P 1+P 2+P 3

2
+2�+4"g;

T 3 = P 1 + P 2 + 4� + 6";

T 4 = maxfP 1 + P 2 + 4� + 6"; P 2 + P 3 + 4� + 4"g;
T 5 = maxfP 2 + P 3 + 4� + 6"; P 1 + 4� + 4"g;
T 6 = P 1 + 4� + 4":

By comparing T 1 � T 6, we can simply conclude that
policies under Category 6 have a minimum cycle time
and the proof will be complete.

From here, we will consider policy S6
I .

DEVELOPING THE MATHEMATICAL
MODELS

In this section, we develop a systematic method to
produce the necessary mathematical programming for-
mulation for robotic cells. Therefore, �rst, we model a
single-part type problem using Petri-nets and, then, we
adapt the mathematical programming approach to the
problem. Second, we extend the model to a multiple-
part type problem.

Single-Part Type Problem ORC3jk = 1, S6
I jCt

Without loss of generality in the modeling approach,
the movements of the robot arm will be restricted to

policy S6
I , as shown in Figure 2. The robot arm, at

steady state, is located at machine M2, therefore, by
coming back to this node, we have a complete cycle for
the robot arm. This policy is described in Figure 2. For
further formulation of the problem, we need to de�ne
the Petri-nets and their related characteristics.

A Petri-net is a quadruple, PN(P; T;A;W),
where P = fp1; p2; � � � ; png is a �nite set of places,
T = ft1; t2; � � � ; tmg is a �nite set of transitions,
A � (P � T) [(T � P) is a �nite set of arcs and
W : A ! f1; 2; 3; � � � g is a weight function. Every
place has an initial marking, M0 : P ! f0; 1; 2; � � � g.
If we assign time to the transitions, we call it a timed
Petri-net.

The behavior of many systems can be described
by system states and their changes, in order to simulate
the dynamic behavior of the system. The marking
in a Petri-net is changed, according to the following
transition (�ring) rule:

1. A transition is said to be enabled, if each input
place, p of t, is marked at least with w(p; t) tokens,
where w(p; t) is the weight of the arc from p to t;

2. An enabled transition may or may not be �red
(depending on whether or not the event takes
place);

3. The �ring of an enabled transition, t, removes
w(p; t) tokens from each input place, p of t, and
adds w(t; p) tokens to each output place, p of t,
where w(t; p) is the weight of the arc from t to p.

The related timed Petri-net for robot movements
under policy S6

I is shown in Figure 3. All the weights
of the arcs are constant and can be ignored. The
descriptions of the transitions for this graph, with
respective execution times, would be as follows:

Figure 2. the robot movement in three-machine robotic cell under policy S6
I .

Robot Movements in a Three-Machine Flexible Cell 43

Figure 3. Petri net; presentation of policy S6
I under

Category 6.

R1 : go to M3(�);

R2 : load M3(");

R3 : go to M1(2�);

RP1 : wait at M1(wi1);

R4 : unload M1(");

R5 : go to M2(2�);

R6 : Load M2(");

R7 : go to input, pickup a new part, move it to

M1("+ 3�);

R8 : load M1(");

R9 : go to M3(2�);

RP3 : wait at M3(wi3);

R10 : unload M3(");

R11 : go to output, drop the part, go to M2("+3�);

RP2 : wait at M2(wi2);

R12 : unload M2(");

in which the execution times are as follows:

si : Starting time of operating transition Ri;

where i = 1; 2; � � � ; 12;

spj : Starting time of operating transition RPj ;

where j = 1; 2; 3;

The constraints of three machines process times are as
follows:

�: Machine M1 has processed the job and is readyto
be unloaded;

� : Machine M2 has processed the job and is ready to
be unloaded;

: Machine M3 has processed the job and is ready to
be unloaded.

De�nition

A marked graph is a Petri-net, such that every place
has only one input and only one output.

Theorem 2

For a marked graph, wherein every place has mi tokens
(see Figure 4), the following relation, SB � SA+miCt,
where SA, SB are the starting times of transitions A
and B, respectively, and \Ct is the cycle time", is true.

Proof: See [14].

For guaranteeing the liveness of the Petri-net, at the
beginning, we put one token in place p1 and one token
in place �. During the production cycle, the tokens
are moving to di�erent places and, after completion of
a cycle, the tokens are replaced at the same beginning
places; thereafter, another cycle can be repeated. Since
the Petri-net model of the problem is a marked graph,
based on Theorem 2, the following linear programming

Figure 4. The marked graph in Theorem 2.

44 I.N. Kamal Abadi and S. Gholami

can be developed.

min C6
t ;

subject to :

p1 : s1 � s12 + C6
t = "; (1)

p2 : s2 � s1 = �; (2)

P3 : s3 � s2 = "; (3)

PP1 : sp1 � s3 = 2�; (4)

p4 : s4 � sp1 � w1 = 0; (5)

P5 : s5 � s4 = "; (6)

P6 : s6 � s5 = �; (7)

p7 : s7 � s6 = "; (8)

P8 : s8 � s7 = "+ 3�; (9)

P9 : s9 � s8 = "; (10)

PP3 : sp3 � s9 = 2�; (11)

P10 : s10 � sp3 � w3 = 0; (12)

P11 : s11 � s10 = "; (13)

PP2 : sp2 � s11 = "+ 3�; (14)

P12 : s12 � sp2 � w2 = 0; (15)

� : s4 � s7 + C6
t � a+ "; (16)

� : s12 � s6 � b+ "; (17)

 : s10 � s2 � c+ "; (18)

si � 0; i = 1; 2; � � � ; 12; spj � 0; i = 1; 2; 3;

wj � 0; j = 0; 1; 2; 3:

Notice that, to avoid the deadlock in the steady state, it
is assumed that machine M1 has processed its job and
is waiting for the robot, where machines M2 and M3
are in an idle status and the robot arm is moving one
part to machine M3. The above formulation has some
signi�cant advantages over the previous model. First,
it is simply a network problem that has polynomial
time complexity and, second, it computes the starting
times for every status of robot movement, which is more
convenient than computing the waiting times of the
robot arm.

Multi-Part Type Systems, ORC3jk � 2, S6
I jCt

The single part type problem is not a very complicated
problem. In this section, a system that allows a
multiple part type will be studied. For example, at
machine M1, when we want to load a part on the
machine, we have to decide which part should be
chosen, such that the cycle time is minimized. The
same thing can also be achieved for M2 and M3. Based
on the choosing gate de�nition [15], we simply have
three choosing gates, as �, � and . Thus, we can write
the following formulations using 0-1 integer variables,
x1ij , x2ij and x3ij , as:

�1 : s4;1 � s8;n + Ct =
nX
i=1

x1in(ai + 'i) + ";

�j : s4;j+1 � s8;j =
nX
i=1

x1ij(ai + 'i) + ";

j = 2; � � � ; n;

�j : s12;j � s6;j =
nX
i=1

x2ij(bi + 'i) + ";

j = 1; � � � ; n;

j : s10;j � s2;j =
nX
i=1

x3ij(ci + 'i) + ";

j = 1; � � � ; n:
In addition, the following feasibility constraints assign
a unique positioning for every job:

nX
i=1

x1ij = 1; j = 1; � � � ; n;

nX
j=1

x1ij = 1; i = 1; � � � ; n:

To keep the sequence of the parts between the machines
in the correct order, we have to add the following
constraints:

x1i;j = x2i;j+1; i = 1; � � � ; n; j = 1; � � � ; n;
x2i;j = x3i;j+1; i = 1; � � � ; n; j = 1; � � � ; n;

where it is assumed that x1i;n+1 = x1i;1, because of
the cyclic repetition of parts.

Thus, the complete model for the three-machine
robotic cells with multiple-parts would be as follows:

Robot Movements in a Three-Machine Flexible Cell 45

min C6
t ;

subject to :

p1;1 : s2;1 � s12;n + Ct = "+ �;

j = 2; � � � ; n; (19)

p1;j : s2j � s12j = "+ �;

j = 1; � � � ; n; (20)

p3;j : s4j � s2j � w1j = "+ 2�;

j = 1; � � � ; n; (21)

p5;j : s6j � s4j = "+ �;

j = 1; � � � ; n; (22)

p7;j : s8j � s6j = 2"+ 3�;

j = 1; � � � ; n; (23)

p9;j : s10j � s8j � w3j = "+ 2�;

j = 1; � � � ; n; (24)

p11;j : s12j�s10j � w2j=2"+3�;

j = 1; � � � ; n; (25)

�1 : s4;1 � s7;1 + Ct �
nX
i=1

x1in(ai + 'ai) � "; (26)

�j : s4;j � s7;j �
nX
i=1

x1ij(ai + 'ai) � ";

j = 2; � � � ; n; (27)

�j : s12;j � s6;j �
nX
i=1

x2ij(bi + 'bi) � ";

j = 1; � � � ; n; (28)

j : s10;j � s2;j �
nX
i=1

x3ij(ci + 'ci) � ";

j = 1; � � � ; n; (29)

x1i;j�1 = x2i;j ; i; j = 1; � � � ; n; (30)

x2i;j�1 = x3i;j ; i; j = 1; � � � ; n; (31)

nX
i=1

x1ij = 1; j = 1; � � � ; n; (32)

nX
j=1

x1ij = 1; i = 1; � � � ; n; (33)

si;j � 0; i = 1; � � � ; 12; j = 1; 2; � � � ; n;
wkj � 0; k = 0; 1; 2; 3; j = 1; � � � ; n;
x1; x2; x3 2 f0; 1g:

This mathematical model can be developed for other
policies under Category 6. These models are coded
into lingo 8 and run on the Core (TM) 2 Due T7100
processor at 1.8 GHz and Windows vista, using 2 GB
of RAM. For the experiments, we consider the values
of " and � as being equal to 1; the processing times for
all parts on all machines are uniformly generated in the
range [10, 100].

The problem instances are randomly generated as
Table A8.

SOLUTION ALGORITHMS

In a single-part type problem, the parts, which are
produced in a cell, are identical. Thus, it is necessary
to consider only robot movements to produce the
best solution for the problem. In a multiple-part
type robotic cell, the formation of MPS is de�ned,
according to the market demand of di�erent products.
Therefore, two decisions need to be made: (a) Choosing
a robot move sequence and (b) Determining a part
sequence. In practice, the MPS can be larger than
50 parts, thus, the sequence of parts in a robotic cell
is very important. According to the Sriskandarajah
classi�cation scheme [5], for the complexity of this
robotic cell scheduling problem, scheduling problems
of policies under Category 1 are sequence indepen-
dent and are trivially solvable (they are U -class [5]).
Scheduling problems of policies under Categories 3, 4
and 5 can be modeled as the special case of a travelling
salesman problem, which is solvable in polynomial time
by the Glimor and Gomary algorithm [16] (they are
V 1-class [5]). Scheduling problems of policies under
Categories 2 and 6 are NP-Complete (they are W-
class [5]). The mathematical model introduced in
Section 5 can be used for medium size problems, but,
further research is needed to introduce heuristics or
meta-heuristics in the solving of large size problems.
Baghchi [17] proposed an algorithm to solve m-machine
cells. By using this algorithm, the sequence of parts in
a MPS and robot movement policy that minimizes the
1-unit cycle time, is obtained. This algorithm is as
follows:

Step 1 Let Tu denotes the minimum cycle time of a
part sequence for the policies in the U -class;

46 I.N. Kamal Abadi and S. Gholami

Step 2 Use the algorithm of Gilmore and Gomory
to solve the part sequencing problem for all
policies in a V 1-class. Let Tv1 denote the
minimum cycle time in the V 1-class;

Step 3 Use a mathematical model (for small size prob-
lems) or a heuristic (for large size problems)
to solve the part sequencing problems for all
policies in a W -class. Let Tw denote the
minimum cycle time among W -cycles;

Step 4 Find Th = minfTu; Tv1; Tv2; Twg and its asso-
ciated policy and part sequence. Terminate.

CONCLUSION

In this paper, we consider a manufacturing cell, in
which a robot loads/ unloads machines and moves
parts between machines. In this robotic cell, machines
are exible and are able to do all operations that
are necessary for producing all parts. The robotic
cell may produce di�erent part types and each part
consists of three operations. In this paper, we recognize
thirty six potential optimal 1-unit cycles by consider-
ing operational exibility and the policies that have
been introduced by Sethi et al. [6]. Twelve policies,
which are under categories S2 and S6, are Unary NP-
complete. We introduce formulas for calculating the
cycle time of thirty six policies when the sequences of
parts are given. The formulas achieved by considering
the waiting times of a robot for unloading a completed
part from machines M1, M2, and M3, and under the
condition that one of the categories (i.e. S6) had the
minimum cycle time, were identi�ed.

In this paper, a mathematical model using Petri-
nets was proposed, to �nd the parts sequence and robot
movements that minimize the cycle time (i.e. maximize
throughput). This model has signi�cant advantages
over previous model formulations. Based on the single
model formulation, a general mathematical model was
developed for a multi-part type problem. Finally, an
algorithm is introduced to solve this problem. In
further works to appear soon, we implemented other
issues, such as a no-wait robot environment.

REFERENCES

1. Asfahl, C.R., Robots and Manufacturing Automation,
2nd Ed., New York, John Wiley and Sons (1992).

2. Crama, Y. et al. \Cyclic scheduling in robotic ow
shops", Annals of Operations Research, 96, pp. 97-124
(2000).

3. Hall, N.G., Kamoun, H. and Sriskandarajah, C.
\Scheduling in robotic cells: Classi�cation, two and
three machine cells", Operations Research, 45(2), pp.
421-439 (1997).

4. Hall, N.G., Kamoun, H. and Sriskandarajah, C.
\Scheduling in robotic cells: complexity and steady

state analysis", European Journal of Operational Re-
search, 109, pp. 43-65 (1998).

5. Sriskandarajah, C. et al. \Scheduling large robotic cells
without bu�ers", Annals of Operations Research, 76,
pp. 287-321 (1998).

6. Sethi, S.P. et al. \Sequencing of parts and robot moves
in a robotic cell", International Journal of Flexible
Manufacturing Systems, 4, pp. 331-358 (1992).

7. Blazewicz, J., Sethi, S.P. and Sriskandarajah, C.
\Scheduling of robot moves and parts in a robotic cell",
in Third ORSA/TIMS Conference on Flexible Man-
ufacturing Systems: Operations Research Models and
Applications, Amsterdam, The Netherlands, Elsevier
Science Publishers (1989).

8. Crama, Y. and Klundert, V.D. \Cyclic scheduling in
3-machine robotic ow shops", Journal of Scheduling,
2, pp. 35-54 (1999).

9. Brauner, N. and Finke, G. \On a conjecture about
robotic cells: New simpli�ed proof for the three-
machine case", INFOR, 37(1), pp. 20-36 (1999).

10. Dawande, M, et al. \Sequencing and Scheduling in
Robotic Cells: Recent Developments", Journal of
Scheduling, 8, pp. 387-426 (2005).

11. Gultekin, H., Akturk, M.S. and Karasan, O.E. \Cyclic
scheduling of a 2-machine robotic cell with tooling con-
straints", European Journal of Operational Research,
174, pp. 777-796 (2006).

12. Gultekin, H., Akturk, M.S. and Karasan, O.E.
\Scheduling in a three-machine robotic exible manu-
facturing cell", Computers & Operations Research, 34,
pp. 2463-2477 (2007).

13. Geismar, H.N., Dawande, M. and Sriskandarajah, C.
\Approximation algorithms for k-unit cyclic solutions
in robotic cells", European Journal of Operational
Research, 162, pp. 291-309 (2005).

14. Maggot, J. \Performance evaluation of concurrent
systems using Petri-nets", Inform. Processing Lett.,
18(1), pp. 7-13 (1984).

15. Abadi, I.N.K. \A new formulation for scheduling prob-
lems through Petri-nets", in the Iranian Mathematical
Conference, Tabriz, Iran (1996).

16. Gilmore, P. and Gomory, R. \Sequencing a one-state
variable machine: A solvable case of the traveling
salesman problem", Operations Research, 12, pp. 675-
679 (1964).

17. Bagchi, T.P., Gupta, J.N.D. and Sriskandarajah,
C., \A review of TSP based approaches for ow
shop scheduling", European Journal of Operational
Research, 169, pp. 816-854 (2006).

APPENDIX

The waiting times relating to Lemmas 2 to 7 are
calculated, based on the Petri-nets of each policy, and
cycle times are calculated in the following tables.

Robot Movements in a Three-Machine Flexible Cell 47

Table A1. Robot movements of Category 1.

Category 1

S1 : fM+
3 ;M

�
1 ;M

�
2 ;M

�
3 ;M

+
3 g

The Initial State:

E0 = (�1; �2; �3)

Policy S1
I Cycle Time:

Robot Movement:

Pickup a new part pi from I=O("), move it to M1(�), load pi

onto M1("), wait at M1(wi1), unload pi from M1("), move it to

M2(�), load pi onto M2("), wait at M2(wi2), unload pi from

M2("), move it to M3(�), load pi onto M3("), wait at M3(wi3), T 1
I;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

unload pi from M3("), move it to I=O(�), drop the part pi at wi1 = a�(i) wi2 = b�(i) wi3 = c�(i)

I=O("), then start a new cycle by picking up the new part pi+1

In this policy machine M1 is assigned to the �rst operation,

machine M2 is assigned to the second operation, and machine

M3 is assigned to the third operation.

Policy Ŝ1
I Cycle Time:

Robot Movement:

Robot movement in Ŝ1
I is similar to S1

I but in this policy machine T̂ 1
I;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

M1 is assigned to the third operation, machine M2 is assigned to the wi1 = c�(i) wi2 = b�(i) wi3 = a�(i)

second operation, and machine M3 assigned to the �rst operation.

Policy S1
II Cycle Time:

Robot Movement:

Robot movement in S1
II is similar to S1

I but in this policy machine T 1
II;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

M1 is assigned to the second operation, machine M2 is assigned to the wi1 = b�(i) wi2 = a�(i) wi3 = c�(i)

�rst, and machine M3 is assigned to the third operation.

Policy Ŝ1
II Cycle Time:

Robot Movement:

Robot movement in Ŝ1
II is similar to S1

II but in this policy machine T̂ 1
II;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

M1 is assigned to the third operation, machine M2 is assigned to the wi1 = c�(i) wi2 = a�(i) wi3 = b�(i)

�rst operation, and machine M3 is assigned to the second operation.

Policy S1
III Cycle Time:

Robot Movement:

Robot movement in S1
III is similar to S1

I but in this policy machine T 1
III;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

M1 is assigned to the �rst operation, machine M2 is assigned to the wi1 = a�(i) wi2 = c�(i) wi3 = b�(i)

third operation, and machine M3 is assigned to the second operation.

Policy Ŝ1
III Cycle Time:

Robot Movement:

Robot movement in Ŝ1
III is similar to S1

III but machine M1 T̂ 1
III;�(i) = wi1 + wi2 + wi3 + 8"+ 4�

is assigned to the second operation, machine M2 is assigned to the wi1 = b�(i) wi2 = c�(i) wi3 = a�(i)

third operation, and machine M3 is assigned to the �rst operation.

48 I.N. Kamal Abadi and S. Gholami

Table A2. Robot movements of Category 2.

Category 2

S2 : fM+
3 ;M

�
1 ;M

�
3 ;M

�
2 ;M

+
3 g

The Initial State:

E0 = (�1;M2; �3)

Policy S2
I Cycle Time:

Robot Movement:

Pickup part pi+1 from I=(")O, move it to M1(�), load pi+1 on

M1("), go to M2(�), if necessary wait at M2(wi2), unload pi from T 2
I;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

M2("), move it to M3(�), load pi onto M3("), go to M1(2�), if wi2 = maxf0; b�(i) � wi�1
3 � 4� � 4"g

necessary wait at M1(wi+1
1), unload pi+1 from M1("), move it wi+1

1 = maxf0; a�(i+1) � wi2 � 4� � 2"g
to M2(�), load pi+1 onto M2("), go to M3(�), if necessary wait wi3 = maxf0; c�(i) � wi+1

1 � 4� � 2"g
at M3(wi3), unload pi from M3("), move it to I=O(�), drop pi

at I=O("), start a new cycle by picking up part pi+2

Policy Ŝ2
I Cycle Time:

Robot Movement: T̂ 2
I;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

Robot movement in Ŝ2
I is similar to S2

I but in this policy machine wi2 = maxf0; b�(i) � wi�1
3 � 4� � 4"g

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
1 = maxf0; c�(i+1) � wi2 � 4� � 2"g

second operation, and machine M3 assigned to the �rst operation. wi3 = maxf0; a�(i) � wi+1
1 � 4� � 2"g

Policy S2
II Cycle Time:

Robot Movement: T 2
II;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

Robot movement in S2
II is similar to S2

I but in this policy machine wi2 = maxf0; a�(i) � wi�1
3 � 4� � 4"g

M1 is assigned to the second operation, machine M2 is assigned to wi+1
1 = maxf0; b�(i+1) � wi2 � 4� � 2"g

the �rst, and machine M3 is assigned to the third operation. wi3 = maxf0; c�(i) � wi+1
1 � 4� � 2"g

Policy Ŝ2
II Cycle Time:

Robot Movement: T̂ 2
II;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

Robot movement in Ŝ2
II is similar to S2

II but in this policy machine wi2 = maxf0; a�(i) � wi�1
3 � 4� � 4"g

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
1 = maxf0; c�(i+1) � wi2 � 4� � 2"g

�rst operation, and machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � wi+1
1 � 4� � 2"g

Policy S2
III Cycle Time:

Robot Movement: T 2
III;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

Robot movement in S2
III is similar to S2

I but in this policy machine wi2 = maxf0; c�(i) � wi�1
3 � 4� � 4"g

M1 is assigned to the �rst operation, machine M2 is assigned to the wi+1
1 = maxf0; a�(i+1) � wi2 � 4� � 2"g

third and, machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � wi+1
1 � 4� � 2"g

Policy Ŝ2
III Cycle Time:

Robot Movement: T̂ 2
III;�(i)�(i+1) = 8"+ 8� + wi2 + wi+1

1 + wi3

Robot movement in Ŝ2
III is similar to S2

III but machine M1 is assigned wi2 = maxf0; a�(i) � wi�1
3 � 4� � 4"g

to the second operation, machine M2 is assigned to the third operation, wi+1
1 = maxf0; c�(i+1) � wi2 � 4� � 2"g

and machine M3 is assigned to the �rst operation. wi3 = maxf0; b�(i) � wi+1
1 � 4� � 2"g

Robot Movements in a Three-Machine Flexible Cell 49

Table A3. Robot movements of Category 3.

Category 3

S3 : fM+
3 ;M

�
3 ;M

�
1 ;M

�
2 ;M

+
3 g

The Initial State:

E0 = (�1; �2;M3)

Policy S3
I Cycle Time:

Robot Movement:

Pickup part Pi+1 from I=O(") move it to M1(�) load Pi+1 onto

M1(") wait at M1(W i+1
1), unload Pi+1 from M1(") move it to T 3

I;�(i)�(i+1) = 8� + 8"+ wi+1
1 + wi+1

2 + wi3

M2(�) load Pi+1 onto M2(") go to M3(�) if necessary wait at wi+1
1 = a�(i+1)

M3(W i
3), unload Pi from M3("), move it to I=O(�), drop Pi at wi+1

2 = maxf0; b�(i+1) � wi3 � 4� � 2"g
I=O(") go to M2(2�), if necessary wait at M2(W i+1

2), unload wi3 = maxf0; c�(i) � a�(i+1) � 4� � 4"g
Pi+1 from M2(") move it to M3(�), load Pi+1 onto M3(") go to

I=O(�)then start a new cycle by picking up the part Pi+2.

Policy Ŝ3
I Cycle Time:

Robot Movement: T̂ 3
I;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ3
I is similar to S3

I but in this policy machine wi+1
1 = c�(i+1)

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
2 = maxf0; b�(i+1) � wi3 � 4� � 2"g

second operation, and machine M3 assigned to the �rst operation. wi3 = maxf0; a�(i) � c�(i+1) � 4� � 4"g
Policy S3

II Cycle Time:

Robot Movement: T 3
II;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in S3
II is similar to S3

I but in this policy machine wi+1
1 = b�(i+1)

M1 is assigned to the second operation, machine M2 is assigned to wi+1
2 = maxf0; a�(i+1) � wi3 � 4� � 2"g

the �rst, and machine M3 is assigned to the third operation. wi3 = maxf0; c�(i) � b�(i+1) � 4� � 4"g
Policy Ŝ3

II Cycle Time:

Robot Movement: T̂ 3
II;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ3
II is similar to S3

II but in this policy machine wi+1
1 = c�(i+1)

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
2 = maxf0; a�(i+1) � wi3 � 4� � 2"g

�rst operation, and machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � c�(i+1) � 4� � 4"g
Policy S3

III Cycle Time:

Robot Movement: T 3
III;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in S3
III is similar to S3

I but in this policy machine wi+1
1 = a�(i+1)

M1 is assigned to the �rst operation, machine M2 is assigned to the wi+1
2 = maxf0; c�(i+1) � wi3 � 4� � 2"g

third and, machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � a�(i+1) � 4� � 4"g
Policy Ŝ3

III Cycle Time:

Robot Movement: T̂ 3
III;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ3
III is similar to S3

III but machine M1 is assigned wi+1
1 = b�(i+1)

to the second operation, machine M2 is assigned to the third operation, wi+1
2 = maxf0; c�(i+1) � wi3 � 4� � 2"g

and machine M3 is assigned to the �rst operation. wi3 = maxf0; c�(i) � b�(i+1) � 4� � 4"g

50 I.N. Kamal Abadi and S. Gholami

Table A4. Robot movements of Category 4.

Category 4

S4 : fM+
3 ;M

�
2 ;M

�
3 ;M

�
1 ;M

+
3 g

The Initial State:

E0 = (�1; �2;M3)

Policy S4
I Cycle Time:

Robot Movement:

Pickup part Pi+1 from I=O("), move it to M1(�), load Pi+1 onto

M1("), go to M3(2�), if necessary wait at M3(wi3), unload Pi T 4
I;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

from M3("), move it to I=O(�), drop Pi at I=O("), go to M1(�), wi+1
1 = maxf0; a�(i+1) � wi3 � 4� � 2"g

if necessary wait at M1(wi+1
1), unload Pi+1 from M1("), move it wi+1

2 = b�(i+1)

to M2(�), load Pi+1 onto M2("), wait at M2(wi+1
2), unload Pi+1 wi3 = maxf0; c�(i) � 4� � 2"g

from M2("), move it to M3(�), load Pi+1 onto M3("), go to

I=O(�), then start a new cycle by picking up the part Pi+2.

Policy Ŝ4
I Cycle Time:

Robot Movement: T̂ 4
I;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ4
I is similar to S4

I but in this policy machine wi+1
1 = maxf0; c�(i+1) � wi3 � 4� � 2"g

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
2 = b�(i+1)

second operation, and machine M3 assigned to the �rst operation. wi3 = maxf0; a�(i) � 4� � 2"g
Policy S4

II Cycle Time:

Robot Movement: T 4
II;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in S4
II is similar to S4

I but in this policy machine wi+1
1 = maxf0; b�(i+1) � wi3 � 4� � 2"g

M1 is assigned to the second operation, machine M2 is assigned to wi+1
2 = a�(i+1)

the �rst, and machine M3 is assigned to the third operation. wi3 = maxf0; c�(i) � 4� � 2"g
Policy Ŝ4

II Cycle Time:

Robot Movement: T 4
II;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ4
II is similar to S4

II but in this policy machine wi+1
1 = maxf0; c�(i+1) � wi3 � 4� � 2"g

M1 is assigned to the third operation, machine M2 is assigned to the wi+1
2 = a�(i+1)

�rst operation, and machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � 4� � 2"g
Policy S4

III Cycle Time:

Robot Movement: T 4
III;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in S4
III is similar to S4

I but in this policy machine wi+1
1 = maxf0; a�(i+1) � wi3 � 4� � 2"g

M1 is assigned to the �rst operation, machine M2 is assigned to the wi+1
2 = c�(i+1)

third operation and, machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � 4� � 2"g
Policy Ŝ4

III Cycle Time:

Robot Movement: T̂ 4
III;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi+1
2 + wi3

Robot movement in Ŝ4
III is similar to S4

III but machine M1 is assigned wi+1
1 = maxf0; b�(i+1) � wi3 � 4� � 2"g

to the second operation, machine M2 is assigned to the third operation, wi+1
2 = c�(i+1)

and machine M3 is assigned to the �rst operation. wi3 = maxf0; a�(i) � 4� � 2"g

Robot Movements in a Three-Machine Flexible Cell 51

Table A5. Robot movements of Category 5.

Category 5

S5 : fM+
3 ;M

�
2 ;M

�
1 ;M

�
3 ;M

+
3 g

The Initial State:

E0 = (�1;M2; �3)

Policy S5
I Cycle Time:

Robot Movement:

Pickup part Pi+1 from I=O(") move it to M1(�) load Pi+1 onto

M1(") go to M2(�) if necessary wait at M2(wi2), unload Pi from T 5
I;�(i)(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

M2(") move it to M3(�), load Pi onto M3("), wait at M3(wi3), wi+1
1 = maxf0:; a�(i+1) � c�(i) � wi2 � 4� � 4"g

unload Pi from M3(") move it to I=O(�) drop Pi at I=O(") go to wi2 = maxf0; b�(i) � 4� � 4"g
M1(�) if necessary wait at M1(wi+1

1), unload Pi+1 from M3(") move wi3 = c�(i)

it to M2(�), load Pi+1 onto M2(") go to I=O(2�) then start a new

cycle by picking up the part Pi+2.

Policy Ŝ5
I Cycle Time:

Robot Movement: T̂ 5
I;�(i)�(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

Robot movement in Ŝ5
I is similar to S5

I but in this policy machine wi+1
1 = maxf0:; c�(i+1) � a�(i) � wi2 � 4� � 4"g

M1 is assigned to the third operation, machine M2 is assigned to the wi2 = maxf0; b�(i) � 4� � 4"g
second operation, and machine M3 assigned to the �rst operation. wi3 = a�(i)

Policy S5
II Cycle Time:

Robot Movement: T 5
II;�(i)(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

Robot movement in S5
II is similar to S5

I but in this policy machine wi+1
1 = maxf0:; b�(i+1) � c�(i) � wi2 � 4� � 4"g

M1 is assigned to the second operation, machine M2 is assigned to wi2 = maxf0; a�(i) � 4� � 4"g
the �rst, and machine M3 is assigned to the third operation. wi3 = c�(i)

Policy Ŝ5
II Cycle Time:

Robot Movement: T̂ 5
II;�(i)(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

Robot movement in Ŝ5
II is similar to S5

II but in this policy machine wi+1
1 = maxf0:; c�(i+1) � b�(i) � wi2 � 4� � 4"g

M1 is assigned to the third operation, machine M2 is assigned to the wi2 = maxf0; a�(i) � 4� � 4"g
�rst operation, and machine M3 is assigned to the second operation. wi3 = b�(i)

Policy S5
III Cycle Time:

Robot Movement: T 5
III;�(i)(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

Robot movement in S5
III is similar to S5

I but in this policy machine wi+1
1 = maxf0:; a�(i+1) � b�(i) � wi2 � 4� � 4"g

M1 is assigned to the �rst operation, machine M2 is assigned to the wi2 = maxf0; c�(i) � 4� � 4"g
third operation and, machine M3 is assigned to the second operation. wi3 = b�(i)

Policy Ŝ5
III Cycle Time:

Robot Movement: T̂ 5
III;�(i)(i+1) = 8� + 8"+ wi+1

1 + wi2 + wi3

Robot movement in Ŝ5
III is similar to S5

III but machine M1 is assigned wi+1
1 = maxf0:; b�(i+1) � a�(i) � wi2 � 4� � 4"g

to the second operation, machine M2 is assigned to the third operation wi2 = maxf0; c�(i) � 4� � 4"g
and machine M3 is assigned to the �rst operation. wi3 = a�(i)

52 I.N. Kamal Abadi and S. Gholami

Table A6. Robot movements of Category 6.

Category 6

S6 : fM+
3 ;M

�
3 ;M

�
2 ;M

�
1 ;M

+
3 g

The Initial State:

E0 = (�1;M2;M3)

Policy S6
I Cycle Time:

Robot Movement:

Pickup part Pi+2 from I=O("), move it to M1(�), load Pi+2 onto

M1("), go to M3(2�), if necessary wait at M3(wi3), unload Pi from

M3("), move it to I=O(�), drop Pi at I=O("), go to M2(2�), if T 6
I;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

necessary wait at M2(wi+1
2), unload Pi+1 from M2("), move it to wi+2

1 = maxf0; a�(i+2) � wi+1
2 � wi3 � 8� � 4"g

M3(�), load Pi+1 onto M3("), go to M1(2�), if necessary wait at wi+1
2 = maxf0; b�(i+1) � wi3 � 8� � 4"g

M1(wi+2
1), unload Pi+2 from M1("), move it to M2(�), load wi3 = maxf0; c�(i) � wi+2

1 � 8� � 4"g
Pi+2 onto M2("), go to I=O(2�), then start a new cycle by picking

up the part Pi+3.

Policy Ŝ6
I Cycle Time:

Robot Movement: T̂ 6
I;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

Robot movement in Ŝ6
I is similar to S6

I but in this policy machine wi+2
1 = maxf0; c�(i+2) � wi+1

2 � wi3 � 8� � 4"g
M1 is assigned to the third operation, machine M2 is assigned to the wi+1

2 = maxf0; b�(i+1) � wi3 � 8� � 4"g
second operation, and machine M3 assigned to the �rst operation. wi3 = maxf0; a�(i) � wi+2

1 � 8� � 4"g
Policy S6

II Cycle Time:

Robot Movement: T 6
II;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

Robot movement in S6
II is similar to S6

I but in this policy machine wi+2
1 = maxf0; b�(i+2) � wi+1

2 � wi3 � 8� � 4"g
M1 is assigned to the second operation, machine M2 is assigned to wi+1

2 = maxf0; a�(i+1) � wi3 � 8� � 4"g
the �rst, and machine M3 is assigned to the third operation. wi3 = maxf0; c�(i) � wi+2

1 � 8� � 4"g
Policy Ŝ6

II Cycle Time:

Robot Movement: T̂ 6
II;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

Robot movement in Ŝ6
II is similar to S6

II but in this policy machine wi+2
1 = maxf0; c�(i+2) � wi+1

2 � wi3 � 8� � 4"g
M1 is assigned to the third operation, machine M2 is assigned to the wi+1

2 = maxf0; a�(i+1) � wi3 � 8� � 4"g
�rst operation, and machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � wi+2

1 � 8� � 4"g
Policy S6

III Cycle Time:

Robot Movement: T 6
III;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

Robot movement in S6
III is similar to S6

I but in this policy machine wi+2
1 = maxf0; a�(i+2) � wi+1

2 � wi3 � 8� � 4"g
M1 is assigned to the �rst operation, machine M2 is assigned to the wi+1

2 = maxf0; c�(i+1) � wi3 � 8� � 4"g
third operation and, machine M3 is assigned to the second operation. wi3 = maxf0; b�(i) � wi+2

1 � 8� � 4"g
Policy Ŝ6

III Cycle Time:

Robot Movement: T̂ 6
III;�(i)�(i+1)�(i+2) = 12� + 8"+ wi+2

1 + wi+1
2 + wi3

Robot movement in Ŝ6
III is similar to S6

III but machine M1 is wi+2
1 = maxf0; b�(i+2) � wi+1

2 � wi3 � 8� � 4"g
assigned to the second operation, machine M2 is assigned to the wi+1

2 = maxf0; c�(i+1) � wi3 � 8� � 4"g
third operation, and machine M3 is assigned to the �rst operation. wi3 = maxf0; a�(i) � wi+2

1 � 8� � 4"g

Robot Movements in a Three-Machine Flexible Cell 53

Table A7. Computational results for identical part type problem under six categories.

Problem
Condition

Problem
Instance

Category
1

Category
2

Category
3

Category
4

Category
5

Category
6

Best
Cycle
Time

Best
Policy

I01 156 90 114 114 84 78 78 Category 6

I02 142 106 118 118 104 104 104 Category 6

ai � bi � ci I03 175 110 125 125 104 77 77 Category 6

I04 152 104 102 102 98 60 60 Category 6

I05 141 104 122 122 102 102 102 Category 6

I06 197 126 131 131 120 83 83 Category 6

I07 110 79 92 92 77 77 77 Category 6

ai � ci � bi I08 66 42 52 52 40 40 40 Category 6

I09 192 109 121 121 107 107 107 Category 6

I10 125 75 96 96 73 73 73 Category 6

I11 120 73 69 77 69 59 59 Category 6

I12 200 114 110 138 110 98 98 Category 6

bi�ai�ci I13 161 100 96 105 96 73 73 Category 6

I14 159 87 85 116 85 85 85 Category 6

I15 214 141 137 143 137 85 85 Category 6

I16 142 92 90 113 90 90 90 S3
III , Ŝ3

III , S5
II ,

Category 6

I17 180 102 98 132 98 90 90 Category 6

bi�ci�ai I18 187 104 102 119 102 102 102 S3
III , Ŝ3

III , S5
II ,

Category 6

I19 155 98 96 115 96 96 96 S3
III , Ŝ3

III , S5
II ,

Category 6

I20 157 92 88 112 88 77 77 Category 6

I21 223 137 131 133 145 98 98 Category 6

I22 188 113 107 109 118 87 87 Category 6

ci�ai�bi I23 173 111 105 107 118 74 74 Category 6

I24 159 108 106 61 128 106 61 S5
I , Ŝ5

I

I25 86 58 52 53 53 40 40 Category 6

I26 205 134 128 130 137 83 83 Category 6

I27 222 128 122 124 154 106 106 Category 6

ci�bi�ai I28 170 102 96 98 125 80 80 Category 6

I29 132 74 72 68 94 72 72 S3
I , Ŝ3

I , S3
II , Ŝ3

II ,
Category 6

I30 239 162 156 158 159 89 89 Category 6

54 I.N. Kamal Abadi and S. Gholami

Table A8. Computational results for deferent type parts problems under category 6.

No. of Problem Problem S6
I Ŝ6

I S6
II Ŝ6

II S6
III Ŝ6

III

Parts Instance Condition OFVa CPU
Timeb OFVa CPU

Time
OFVa CPU

Time
OFVa CPU

Time
OFVa CPU

Time
OFVa CPU

Time

D01 ai � bi � ci 483 < 1 483 < 1 483 < 1 483 < 1 483 < 1 483 < 1

D02 ai � ci � bi 435 < 1 435 < 1 441 < 1 441 < 1 443 < 1 443 < 1

D03 bi � ai � ci 363 < 1 363 < 1 363 < 1 363 < 1 363 < 1 363 < 1

5 D04 bi � ci � ai 459 < 1 459 < 1 459 < 1 459 < 1 459 < 1 459 < 1

D05 ci � ai � bi 454 < 1 454 < 1 458 < 1 458 < 1 458 < 1 458 < 1

D06 ci � bi � ai 404 < 1 404 < 1 397 < 1 397 < 1 404 < 1 404 < 1

D07 Unconditional
case

321 < 1 321 < 1 323 < 1 323 < 1 321 < 1 321 < 1

D08 ai � bi � ci 754 1 754 2 754 1 754 1 754 1 754 < 1

D09 ai � ci � bi 763 < 1 763 < 1 763 1 763 1 763 1 763 < 1

D10 bi � ai � ci 910 < 1 910 1 910 1 910 < 1 910 < 1 846 < 1

10 D11 bi � ci � ai 825 1 825 < 1 825 < 1 825 < 1 825 1 765 1

D12 ci � ai � bi 907 < 1 907 < 1 907 < 1 907 < 1 907 < 1 907 < 1

D13 ci � bi � ai 753 1 752 < 1 753 < 1 753 1 753 < 1 753 1

D14 Unconditional
case

739 232 739 186 734 211 734 241 728 < 1 666 7

D15 ai � bi � ci 1312 < 1 1312 < 1 1321 1 3121 1 1312 < 1 1312 < 1

D16 ai � ci � bi 1272 < 1 1272 1 1272 1 1272 1 1272 3 1272 1

D17 bi � ai � ci 1212 1 1212 1 1212 1 1212 1 1212 < 1 1212 1

15 D18 bi � ci � ai 1352 < 1 1352 1 1352 < 1 1352 < 1 1352 1 1352 1

D19 ci � ai � bi 1331 < 1 1331 1 1331 1 1331 1 1331 1 1331 1

D20 ci � bi � ai 1222 3 1222 1 1222 1 1222 < 1 1223 7200c 1223 7200c

D21 Unconditional
case

1086 7200c 1095 7200c 1095 7200c 1099 7200c 1075 7200c 1072 7200c

a: Objective Function Value (Cycle Time),

b: All times are in second,

c: Denotes that the Lingo interrupted after this time and the best achieved value was reported.

