
Transaction E: Industrial Engineering
Vol. 16, No. 1, pp. 11{18
c Sharif University of Technology, June 2009

A Hybrid Scatter Search for the RCPSP

M. Ranjbar1;� and F. Kianfar2

Abstract. In this paper, a new hybrid metaheuristic algorithm based on the scatter search approach
is developed to solve the well-known resource-constrained project scheduling problem. This algorithm
combines two solutions from scatter search to build a set of precedence feasible activity lists and select
some of them as children for the new population. We use the idea presented in the iN forward/backward
improvement technique to de�ne two types of schedule, direct and reverse, and the members of the
sequential populations change alternately between these two types of schedule. Extensive computational
tests were performed on standard benchmark datasets and the results are compared with the best available
results. Comparative computational tests indicate that our procedure is a very e�ective metaheuristic
algorithm.

Keywords: Project scheduling; Metaheuristic; Scatter search.

INTRODUCTION

The Resource-Constrained Project Scheduling Problem
(RCPSP) is one of the most intractable optimization
problems in operations research. Also, Blazewicz et
al. [1] proved that the RCPSP, as a generalization of the
job shop scheduling problem, is strongly NP-hard such
that the computation times for obtaining the optimal
solution using exact algorithms can be extremely high
for more than 30 activities [2].

During previous decades, numerous exact, heuris-
tic and metaheuristic algorithms have been developed
for this problem. There are several survey papers on
the RCPSP and we mention here only some of the
most recent ones. Herroelen et al. [3] surveyed the
various branch-and-bound algorithms for the RCPSP.
Kolisch and Hartmann [4] presented a classi�cation and
performance evaluation of di�erent heuristic and meta-
heuristic algorithms, including the recent advances in
this �eld. For an excellent survey and introduction of
the RCPSP, we refer the readers to Demeulemeester
and Herroelen [1].

Several exact solution approaches have been pro-
posed for this problem: The linear programming based

1. Faculty of Engineering, Ferdowsi University of Mashhad,
Mashhad, P.O. Box 91775-1111, Iran.

2. Department of Industrial Engineering, Sharif University of
Technology, Tehran, Iran.

*. Corresponding author. E-mail: m ranjbar@um.ac.ir

Received 7 April 2007; received in revised form 7 August 2007;
accepted 22 September 2007

approach of Mingozzi et al. [5], the depth-�rst branch-
and-bound with dominance rules of Demeulemeester
and Herroelen [6,7] and also the branch-and-bound
algorithm of Brucker et al. [8], whose branching scheme
uses a set of conjunctions and disjunctions to pairs of
activities, are among some of the more e�ective exact
procedures. In the heuristic approaches category, there
are many di�erent solution procedures, such as X-path
methods [4], insertion techniques, based on the parallel
scheduling generation scheme, and the worst case slack
priority rule of Artigues et al. [9], the heuristic of
M�ohring et al. [10], based on Lagrangian relaxation
and minimum cut computations, the network decom-
position technique of Sprecher [11], which incorporates
exact methodologies into a heuristic search, and the
forward-backward improvement method of Tormos and
Lova [12]. The metaheuristics include the genetic
algorithm, simulated annealing, ant colony optimiza-
tion, the tabu search, the scatter search, path relink-
ing and hybrid algorithms. The algorithm of Valls
et al. [13], which incorporates the genetic algorithm
with the forward-backward-improvement method, is
ranked the best hybrid metaheuristic algorithm to date.
The genetic algorithm had been also used by Alcarez
and Maroto [14], Hartmann [15,16] and Coelho and
Tavares [17]. Bouleimen and Lecocq [18] tackle the
RCPSP by means of simulated annealing, whereas
Merkle et al. [19] use ant colony optimization. Nonobe
and Ibaraki [20] suggest a tabu search for a generalized
variant of the RCPSP. Also, Debels et al. [21] develop a
hybrid metaheuristic, in which two elements from scat-



12 M. Ranjbar and F. Kianfar

ter search are combined with a heuristic optimization
method that simulates the electromagnetism theory of
physics.

In this paper, we present a new hybrid meta-
heuristic algorithm for the RCPSP based on the scat-
ter search, further referred to as the Hybrid Scatter
Search (HSS). Although it is a little similar to the
scatter search presented in [21], it di�ers, particu-
larly in terms of a combination method, the core
of the scatter search and, also, in the use of the
forward-backward-improvement method. In [21], a
solution combination method is used based on the
electromagnetism theory of physics, but we develop a
solution combination method based on path relinking,
in which a set of precedence feasible activity lists is
generated, a number of which are selected as children
by a speci�ed procedure, as explained in the following
sections. Furthermore, Debels et al. [21] use directly
the forward/backward improvement technique as a
local search (intensi�cation method), but we use it
in a di�erent approach. We de�ne two kinds of
schedule, direct and reverse schedules, using the idea
introduced by Li and Willis [22], to employ some of the
bene�ts of their forward-backward improvement local
search, but without performing a local search. In our
HSS algorithm, the populations alternate sequentially
between direct and reverse schedules.

The remainder of the paper is organized as fol-
lows. First, de�nitions are provided. Then, the scatter
search and the combination method for the RCPSP
are presented. After that, the detailed and compara-
tive performance tests on the benchmark datasets are
described, and �nally, the conclusions of this study are
given.

DEFINITIONS

Problem De�nition

The RCPSP can be stated as follows. A single project
consisting of a set, N , of activities, including n real
activities and two dummy activities as the start and
�nish of the project, numbered from 0 to n + 1, has
to be scheduled on a set, R, of constrained renewable
resource types subject to �nish-start-type precedence
constraints with a time lag of zero. While being
processed, activity i requires rik 2 IN units of resource
type k 2 R in every time unit of its deterministic and
non-preemptive duration, di 2 IN. The capacity of
resource k is constant throughout the project horizon
and limited to Rk. The dummy start and �nish activ-
ities have zero duration and resource usage, while the
real activities have positive duration and nonnegative
resource usage subject to rik � Rk, i 2 N , k 2 R. The
objective of RCPSP is to �nd a precedence and resource
feasible schedule, S, de�ned by a �nish time vector,

f = (f0; � � � ; fn+1), such that the project makespan,
fn+1, is minimized.

Schedule Representation

Our constructive heuristic algorithm relies on a Sched-
ule Generation Scheme (SGS) and schedule represen-
tation. The schedule generation scheme determines
the way in which a feasible schedule is constructed
by assigning starting or �nishing times to the di�erent
activities and the schedule representation is a repre-
sentation of a relative priority rule determining the
activity that is selected next during the scheduling
process.

We work with the serial SGS, since it generates
active schedules [23]. Active schedules contain optimal
schedules if the measure of performance is regular and
the makespan is a regular measure of performance. In
each iteration of the serial SGS, the activity with the
highest priority is chosen and assigned the �rst possible
starting time, such that no precedence or resource
constraint is violated. Also, we choose to use the
Activity List (AL) representations, since it is one of the
most commonly used schedule representations in the
development of heuristics for the RCPSP [24]. Each
AL is a sequence of activities, in which the position
of each activity in the sequence determines its relative
priority versus the other activities.

Direct and Reverse Schedule

For de�ning direct and reverse schedules, we �rst de�ne
a direct and reverse project network. The direct project
network is a network in which the arrows show the
original precedence relations. If the directions of all the
arrows are reversed, the resulting network is de�ned as
the reverse project network. Now, any feasible schedule
for the direct network is called a direct schedule and
any feasible schedule for the reverse project network is
called a reverse schedule.

Precedence Feasible and Topologically Ordered
Activity List

As de�ned, AL may not be precedence feasible. If an
AL is precedence feasible, we call it the Precedence
Feasible Activity List (PFAL), in which every activity
is positioned after all of its predecessors. To obtain the
precedence feasible activity list, which has a Topologi-
cal Order-condition (TO-condition), we have to sched-
ule the activities and then order them based on their
topological position, called topological ordering. In
the original de�nition of the TO-condition introduced
by Valls et al. [25] for direct schedules, for all i and
j, if the start time of activity i is smaller than the
start time of activity j, activity i should have a higher



Resource-Constrained Project Scheduling Problem 13

priority than activity j. We adapted the TO-condition
to our settings for two types of schedule; direct and
reverse. More precisely, HSS uses direct schedules
to generate reverse children and reverse schedules to
generate direct children. To embed the TO-condition in
the AL-representation, we �rst schedule the activities
using the serial SGS and a given AL and, then, we
sort the activities based on the non-increasing order of
their �nish times, i.e. for all i and j, if fi(S) > fj(S),
activity i should have a higher priority than activity
j. The result of applying the TO-condition on an
arbitrary AL is a Topologically Ordered Activity List
shown as TOAL. The di�erence between the de�nition
of the TO-condition in our settings and the original one
is due to the use of two types of schedule; direct and
reverse schedules, in our algorithm.

THE HYBRID SCATTER SEARCH
ALGORITHM

Our algorithm is based on scatter search, an evolution-
ary method that constructs new solutions by combining
existing ones in a systematic way. For details of SS,
we refer the readers to Marti et al. [26]. The steps of
our HSS are depicted in Figure 1 and explained below.

Figure 1. Flowchart of the hybrid scatter search
algorithm.

Construction of the Initial Population

In the �rst step, we generate an initial population (P )
of TOALs with size jP j. Each TOAL in the initial
population is obtained from a direct schedule applied
on a randomly generated AL using the serial SGS.

Construction of the New Population

Steps 2, 3, 4, 5 and 6 of the algorithm, shown in
Figure 1, are used to generate the new population.
In the second step, we build a reference set (RefSet)
consisting of RefSet1 and RefSet2. RefSet1 is a set of
size b1 of TOALs with the least makespans, selected
from the current population. Every TOAL of RefSet1
should have a distance more than t1 with other TOALs
of RefSet1. The distance of two TOALs, say TOAL1
and TOAL2, is computed as follows [21]:

distance (TOAL1;TOAL2)

=
1
n

nX
i=1

jposition of activity i in TOAL1

� position of activity i in TOAL2j:
Due to distance threshold t1, there may not be enough
TOAL in the current population to make a complete
RefSet1. In this case, the rest of the needed TOALs for
RefSet1 are generated randomly, as explained for the
initial population, and they are not tested for having
minimum distance t1 with other elements of RefSet1.
RefSet2 has the size of b2 TOALs selected from Pn
RefSet1, in the same way as explained for RefSet1, but
the distance of each selected element should be more
than t2, t2 > t1, from each element of RefSet1 and other
elements of RefSet2. If needed, random generation
of TOALs is used for RefSet2 too. The distance
thresholds, t1 and t2, are imposed to RefSet1 and
RefSet2, respectively, in order to avoid homogeneous
solutions and keep diversity in each population. The
solutions in the RefSet1 and RefSet2 are ordered,
according to their quality.

In Step 3, we select solutions from RefSet1 and
RefSet2 to be combined. For this purpose, we generate
two-element subsets of either two solutions in RefSet1
or one from RefSet1 and one from RefSet2, respectively,

resulting in
�
b1
2

�
+ b1 � b2 subsets. Before starting

the combination phase, we add the best found solution
to the new population in Step 4. Next, the elements
of each subset are combined using the combination
method, which will be described later, in order to
generate the new population. From each combination,
a set of PFALs is generated and then nrc of them
are selected by a systematic random selection as the



14 M. Ranjbar and F. Kianfar

combination children. These children are incorporated
with the TO-condition and then added to the new pop-
ulation. Based on our de�nition of the TO-condition,
the direct schedules generate reverse children and the
reverse schedules generate direct children. By applying
the combination method to the elements of all subsets
and adding the best so far solution, we obtain a new

population with size
��

b1
2

�
+ b1 � b2

�
� nrc + 1 that

remains constant for all populations. In Step 6, we
change the type of schedule from direct to reverse or
vice versa. The termination criterion is considered
as the maximum number of generated schedules and
denoted as max�sch, which is in line with the existing
literature on the RCPSP heuristics. Steps 2 to 6
are repeated until the number of generated schedules
(nr sch) is smaller than max�sch. Step 7 selects the
best solution in the population as the output of the
algorithm.

Combination Method

In Step 5 of Figure 1, we use our combination method
to generate nrc children from each subset generated
in Step 3 of the scatter search algorithm. In our
combination method, we make use of the path relinking
idea, originally proposed by Glover and Laguna [27].
This method explores a set of PFALs obtained by
moving between the two elements of each subset. Since
each TOAL is also a PFAL, and we consider only
the precedence feasibility in the combination method,
we call these two elements the guiding and initial
PFAL, denoted as PFAL1 and PFAL2, respectively.
The PFAL1 and PFAL2 are speci�ed, such that the
makespan of PFAL1 is not worse than the makespan of
PFAL2 and the move direction is always from PFAL2
towards PFAL1. To explain the combination method,
we �rst consider the following process. Suppose we
have a precedence feasible activity list denoted as
PFAL = (0; [1]; � � � ; [n]; n + 1), in which [p] represents
the activity located at position p in PFAL. If we
exchange activities [p] and [q], q > p, we get a new
activity list, which may not be precedence feasible.
Suppose we know that activity [q] in position p is
precedence feasible and we are looking for a PFAL
which has activity [q] in position p. For this purpose,
we start from position p + 1 and move to the right
of PFAL and, at each position, say position y, if
the activity at position q of the current list is the
predecessor of activity [y], we exchange the activities
in positions y and q. This move is continued till y = q
and we get the desired PFAL.

Now, the combination method can be ex-
plained. Let the guiding PFAL be PFAL1 =
(0; [1]1; � � � ; [n]1; n + 1) and the initial PFAL be
PFAL2 = (0; [1]2; � � � ; [n]2; n + 1). First, we make a

set, C, of precedence feasible activity lists as follows:
we �nd the smallest p, for which [p]1 6= [p]2 and assume
activity [p]1 is located at position q of PFAL2, i.e.
[q]2 = [p]1. Note that q is larger than p. Now, in order
to have the same activity at position p in both PFAL1
and PFAL2, we exchange the activities in position p
and q of PFAL2 and call the resulting list AL. If AL is
precedence feasible, it is added to set C; otherwise, we
change it to a PFAL, as explained above, and then add
it to set C. Note that the added PFAL has the same ac-
tivities as PFAL1 in positions 1 to p. Now, consider this
PFAL as the PFAL2 and repeat the process till p = n.
At this point, we have jCj precedence feasible activity
lists, whose characteristics changed progressively from
the characteristics of the initial PFAL to that of the
guiding PFAL. The combination of PFAL1 and PFAL2
terminates by selecting nrc of PFALs from set C,
using a systematic random sampling, as the children
of them. To select nrc children from set C, we number
its members from 1 to jCj and divide them as equally
as possible to bjCj=nrcc subsets. Then, we select one
member from each subset randomly. The selected
children are incorporated with the TO-condition and
then added to the new population.

A Numerical Example
Figure 2 represents an example project and Figure 3
illustrates the combination method. In this project,
there is only one constrained renewable resource with
4 available units.

In the example shown in Figure 2, we have
considered PFAL1 = (0; 3; 5; 1; 2; 6; 8; 10; 4; 7; 9; 11) and
PFAL2 = (0; 1; 2; 4; 7; 5; 3; 6; 9; 8; 10; 11). In the �rst
step, we have p = 1, where [1]1 6= [1]2 and, therefore,
activities [1]2 = 1 and [1]1 = 3 of PFAL2 should
be exchanged. The successor of activity 1 with the
lowest position in the new activity list, AL, is activity
6 located at position 7; therefore, this new activity list
is precedence feasible and is added to set C. Note

Figure 2. Example project.



Resource-Constrained Project Scheduling Problem 15

Figure 3. Illustration of the combination method.

that we consider this added list as the PFAL2 for
the next step. Follow the similar process in Step 2
for activities 2 and 5 in the new PFAL2. In the
third step, where activities 4 and 1 are exchanged, we
obtain a precedence infeasible activity list, because the
successor of activity 4 with the lowest position, activity
7, is located before activity 4, therefore, it should
be exchanged with activity 4. As the successor of
activity 7, with the lowest position in the new activity
list, activity 9, which is located after activity 7, we
have found a new PFAL, called PFAL2. By following
the combination procedure, set C will contain 6 new
precedence feasible activity lists. Note that the �rst
and the last precedence feasible activity lists in Figure 3
are the PFAL2 and PFAL1, respectively, and are not
eligible to be considered as the members of set C.
If we assume nrc = 2, we have to divide C to two
subsets, C1 and C2, including the �rst three and the
last three members of C. r1 = 2 and r2 = 1 are
two random numbers between 1 to 3, as the selected
members from subsets C1 and C2, respectively, which
have been speci�ed with the gray color in Figure 3.

PERFORMANCE TESTS

We tested the performance of our HSS algorithm as
explained below. The HSS procedure was coded in

Visual C++ 6.0 and the computer used was a PC
Pentium IV 3GHz processor with 1024 Mbytes of RAM.
The problem set was taken from PSPLIB datasets [28].
The dataset consists of four test sets J30, J60, J90
and J120 that contain problem instances of 30, 60,
90 and 120 activities, respectively, and have been
constructed by the instance generator ProGen [29]. In
this study, the maximum number of generated sched-
ules (max�sch) was considered as the termination
criterion, in order to be able to compare the results
of the proposed procedure with the results reported
in the literature and be independent of the computer
platform, compilers and implementation skills. This
criterion holds, in particular, for methods which apply
the serial or parallel SGS; one pass of an SGS, with
one start time assignment per activity, counts as one
schedule.

Before using the coded HSS for performance tests,
we tuned the parameters of HSS. For nrc, we tested the
values of 1, 2, 3, 4 and 5 and noted that nrc = 2 gives
the best results and is not sensitive to the values of
the other parameters, hence, it was �xed at 2. The
other parameters of HSS were tuned for each test
set. The tuned values of the other parameters that
have been obtained by �ne tuning are presented in
Table 1. This table reveals that the tuned values of
the size of the initial population, jP j, and the size of
RefSet1 and RefSet2, b1 and b2, are positively related
to max�sch, while the tuned values of threshold
distances, t1 and t2, are positively related to the
number of activities.

The details of the computational results are shown
in Table 2. The rows labeled \Sum" give the sum of
the makespans of all problem instances in each test set.
The rows, labeled \Avg. Dev. CPM", represent the
average percent deviation from the critical-path lower
bound. The two next rows, labeled \Avg. Dev. Hrs"
and \Avg. Dev. LB", indicate the average percent

Table 1. Tuned values of the parameters.

Parameter max�sch Data Set
J30 J60 J90 J120

t1 1 1 1 1.1

t2 1.9 2.1 2.2 2.3

1000 4 4 3 4
b1 5000 7 6 8 7

50,000 21 22 18 21

1000 2 4 2 2
b2 5000 7 5 4 5

50,000 13 15 17 14

1000 50
jP j 5000 100

50,000 500



16 M. Ranjbar and F. Kianfar

Table 2. Detailed computational results.

Problem Set max�sch Data Set

J30 J60 J90 J120

1000 28352 38722 46297 76664

Sum 5000 28326 38541 46030 75612

50,000 28316 38395 45802 74620

1000 13.53% 11.59% 11.24% 35.08%

Avg. Dev. CPM 5000 13.41% 11.07% 10.60% 33.24%

50,000 13.37% 10.64% 10.04% 31.49%

1000 0.10% 0.83% 1.21% 3.55%

Avg. Dev. Hrs 5000 0.03% 0.47% 0.75% 2.36%

50,000 0.00% 0.17% 0.37% 1.24%

1000 0.10% 2.75% 3.06% 7.94%

Avg. Dev. LB 5000 0.03% 2.37% 2.58% 6.66%

50,000 0.00% 2.05% 2.16% 5.46%

Num. Test Problem 480 480 480 600

1000 453 362 361 194

Best 5000 471 384 369 215

50,000 480 416 389 252

Improved 50,000 - 0 5 18

1000 0.03 0.07 0.12 0.24

Avg. CPU (seconds) 5000 0.14 0.34 0.58 1.18

50,000 1.67 4.07 6.54 13.58

deviation from the currently best known solutions
and best known lower bounds, respectively, based
on PSPLIB results from January 1, 2007. The row
labeled \Num. Test Problem" indicates the number
of problem instances in each test set and the rows
labeled \Best" show the number of instances for which
our HSS algorithm reports a makespan not worse than
the currently best known solution. The row labeled
\Improved" reports the number of problem instances
for which we have been able to improve the best known
solution (it can be seen at PSPLIB) and the last rows
labeled \Avg. CPU" indicate the average computation
time per instance.

Comparative results are available for sets J30,
J60 and J120 in the literature. Tables 3 to 5 display
the rank of HSS among ten best heuristics, up to
the current date for the test sets J30, J60, and J120,
respectively, based on the results presented in the
literature survey paper [4] and the new developed
research paper [13]. The comparison is made for
values of 1000, 5000 and 50000, as the limits of the
maximum number of schedules. For the J30 set, the
results are given in terms of average percent deviation
from the makespan of the optimal solution. For the
other sets, the average percent deviation from the

Table 3. Comparative results for J30.

Author (year) max�sch
1000 5000 50,000

Ranjbar and Kianfar (this work) 0.10 0.03 0.00

Kochetov and Stolyar (2003) [4] 0.10 0.04 0.00

Debels et al. (2006) [21] 0.27 0.11 0.01

Valls et al. (2007) [13] 0.27 0.06 0.02

Valls et al. (2005) [4] 0.34 0.20 0.02

Alcaraz et al. (2004) [4] 0.25 0.06 0.03

Alcaraz and Maroto (2001) [14] 0.33 0.12 -

Tormos and Lova (2003) [4] 0.25 0.13 0.05

Nonobe and Ibaraki (2002) [20] 0.46 0.16 0.05

Tormos and Lova (2001) [12] 0.30 0.16 0.07

critical path-based lower bound is used as a measure
of performance, since many optimal solutions are
unknown. In all tables, the heuristics are sorted for
the case of max�sch = 50000. As a tie-breaker, the
results for 5000 and then 1000 schedules are used in
sorting. Tables 3 to 5 reveal that HSS outperforms
other heuristic for J30 and J60 and is ranked second
for J120.



Resource-Constrained Project Scheduling Problem 17

Table 4. Comparative results for J60.

Author (year) max�sch
1000 5000 50,000

Ranjbar and Kianfar (this work) 11.59 11.07 10.64

Debels et al. (2006) [21] 11.73 11.10 10.71

Valls et al. (2007) [13] 11.56 11.10 10.73

Kochetov and Stolyar (2003) [4] 11.71 11.17 10.74

Valls et al. (2005) [4] 12.21 11.27 10.74

Alcaraz et al. (2004) [4] 11.89 11.19 10.84

Hartmann (2002) [16] 12.21 11.70 11.21

Hartmann (1998) [15] 12.68 11.89 11.23

Tormos and Lova (2003) [4] 11.88 11.62 11.36

Alcaraz and Maroto (2001) [14] 12.57 11.86 -

Table 5. Comparative results for J120.

Author (year) max�sch
1000 5000 50,000

Valls et al. (2007) [13] 34.07 32.54 31.24

Ranjbar and Kianfar (this work) 35.08 33.24 31.49

Alcaraz et al. (2004) [4] 36.53 33.91 31.49

Debels et al. (2006) [21] 35.22 33.10 31.57

Valls et al. (2005) [4] 35.39 33.24 31.58

Kochetov and Stolyar (2003) [4] 34.74 33.36 32.06

Valls et al. (2005) [4] 35.18 34.02 32.18

Hartmann (2002) [16] 37.19 35.39 33.21

Tormos and Lova (2003) [4] 35.01 34.41 33.71

Merkle et al. (2002) [19] - 35.43 -

SUMMARY AND CONCLUSIONS

In this paper, we presented a hybrid metaheuristic
algorithm for solving the resource-constrained project
scheduling problem. This algorithm contains a scatter
search skeleton and uses a special solution combination
method for making children. The performance of the
algorithm has been tested on test sets J30, J60, J90
and J120 from PSPLIB. The comparative computa-
tional results show that our procedure outperforms
other state-of-the art heuristics in the literature for
J30 and J60 and is the second-best for test set J120.
We think that three factors are the cause of the high
performance of our algorithm, namely the structure of
our scatter search, the solution combination method
and the generation of reverse schedules from direct
schedules and vice versa. We chose the general
structure of a scatter search but with a new solution
combination method. In this method, we move in
the space of the precedence feasible activity lists,
which is much smaller than the space of all possible

activity lists. We move between promising solutions
and try as much as possible to have the bene�ts of
explorations in the solution space. Furthermore, the
forward-backward improvement technique, introduced
by [22], has recently been used as a local search in
many developed metaheuristics, but we used it in
a di�erent manner. We changed the population of
solutions alternately from direct schedules to reverse
schedules and vice versa, to exploit the bene�t of the
forward-backward improvement technique.

For further research, we recommend the idea of
this hybrid scatter search for solving other combinato-
rial optimization problems.

REFERENCES

1. Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, A.H.G.
\Scheduling subject to resource constraints: classi�ca-
tion and complexity", Discrete Applied Mathematics,
5(1), pp. 11-24 (1983).

2. Demeulemeester, E. and Herroelen, W., Project
Scheduling - A Research, Handbook, Boston, Kluwer
Academic Publishers (2002).

3. Herroelen, W. and Demeulemeester, E. and De Reyck,
B. \Resource-constrained project scheduling- A survey
of recent developments", Computers and Operations
Research, 25(4), pp. 279-302 (1998).

4. Kolisch, R. and Hartmann, S. \Experimental inves-
tigation of heuristics for resource-constrained project
scheduling: An update", European Journal of Opera-
tional Research, 174(1), pp. 23-37 (2006).

5. Mingozzi, A., Maniezzo, V., Ricciardelli, S. and
Bianco, L. \An exact algorithm for the resource-
constrained project scheduling problem based on a
new mathematical formulation", Management Science,
44(2), pp. 714-729 (1998).

6. Demeulemeester, E. and Herroelen, W. \A branch-
and-bound procedure for the multiple resource-
constrained project scheduling problems", Manage-
ment Science, 38(1), pp. 1803-1818 (1992).

7. Demeulemeester, E. and Herroelen, W. \New bench-
mark results for the resource-constrained project
scheduling problem", Management Science, 43(1), pp.
1485-1492 (1997).

8. Brucker, P., Knust, S., Schoo, A. and Thiele, O. \A
branch & bound algorithm for the resource-constrained
project scheduling problem", European Journal of
Operational Research, 107(2), pp. 272-288 (1998).

9. Artigues, C., Michelon, P. and Reusser, S. \Insertion
techniques for static and dynamic resource-constrained
project scheduling", European Journal of Operational
Research, 149(2), pp. 249-267 (2003).

10. M �Ohring, R., Schulz, A., Stork, F. and Uetz, M.
\Solving project scheduling problems by minimum cut
computations", Management Science, 49(3), pp. 330-
350 (2003).



18 M. Ranjbar and F. Kianfar

11. Sprecher, A. \Network decomposition techniques for
resource-constrained project scheduling", Journal of
the Operational Research Society, 53(4), pp. 405-414
(2002).

12. Tormos, P. and Lova, A. \A competitive heuristic
solution technique for resource-constrained project
scheduling", Annals of Operations Research, 102(1),
pp. 65-81 (2001).

13. Valls, V., Ballestin, F. and Quintanilla, M.S. \A hybrid
genetic algorithm for the resource-constrained project
scheduling problem", European Journal of Operational
Research, 185(2), pp. 495-508 (2008).

14. Alcaraz, J. and Marot, C. \A robust genetic algorithm
for resource allocation in project scheduling", Annals
of Operations Research, 102(1), pp. 83-109 (2001).

15. Hartmann, S. \A competitive genetic algorithm for
resource-constrained project scheduling", Naval Re-
search Logistics, 45(1), pp. 733-750 (1998).

16. Hartmann, S. \A self-adapting genetic algorithm for
project scheduling under resource constraints", Naval
Research Logistics, 49(3), pp. 433-448 (2002).

17. Coelho, J. and Tavares, L. \Comparative analysis of
metaheuristics for the resource constrained project
scheduling problem", Technical Report, Department of
Civil Engineering, Instituto Superior Tecnico, Portugal
(2003).

18. Bouleimen, K. and Lecocq, H. \A new e�cient simu-
lated annealing algorithm for the resource-constrained
project scheduling problem and its multiple modes
version", European Journal of Operational Research,
149(2), pp. 268-281 (2003).

19. Merkle, D., Middendorf, M. and Schmeck, H. \Ant
colony optimization for resource-constrained project
scheduling", IEEE Transactions on Evolutionary
Computation, 6(1), pp. 333-346 (2002).

20. Nonobe, K. and Ibaraki, T. \Formulation and tabu
search algorithm for the resource constrained project
scheduling problem", in Essays and Surveys in Meta-
heuristics, C.C. Ribeiro and P. Hansen, Eds., Kluwer
Academic Publishers, pp. 557-588 (2002).

21. Debels, D., De Reyck, B., Leus, R. and Vanhoucke,
M. \A hybrid scatter search/electromagnetism meta-
heuristic for project scheduling", European Journal of
Operational Research, 169(2), pp. 638-653 (2006).

22. Li, K.Y. and Willis, R.J. \An iterative scheduling
technique for resource-constrained project scheduling",
European Journal of Operational Research, 56(8), pp.
370-379 (1991).

23. Kolisch, R. \Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation", European Journal of Operational Re-
search, 90(2), pp. 320-333 (1996).

24. Kolisch, R. and Hartmann, S. \Heuristic algorithms
for solving the resource-constrained project scheduling
problem: Classi�cation and computational analysis",
in Project Scheduling: Recent Models, Algorithms and
Applications, J. Weglarz, Ed., Berlin, Kluwer Aca-
demic Publishers, pp. 147-178 (1999).

25. Valls, V., Quintanilla, M.S. and Ballestin, F.
\Resource-constrained project scheduling: A critical
reordering heuristic", European Journal of Operational
Research, 149(2), pp. 282-301 (2003).

26. Marti, R., Laguna, M. and Glover, F. \Principle
of scatter search", European Journal of Operational
Research, 169(2), pp 359-372 (2006).

27. Glover, F. and Laguna, M. \Tabu search", in Modern
Heuristic Techniques for Combinatorial Problems, C.
Reeves, Ed., Oxford, Blackwell Scienti�c Publishing,
pp. 70-141 (1993).

28. Kolisch, R. and Sprecher, A. \PSPLIB - A project
scheduling library", European Journal of Operational
Research, 96(1), pp. 205-216 (1997).

29. Kolisch, R., Sprecher, A. and Drexl, A. \Character-
ization and generation of a general class of resource-
constrained project scheduling problems", Manage-
ment Science, 41(10), pp. 1693-1703 (1995).


