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Reliability Analysis of Bridge
Structures for Earthquake Excitations

S. Pourzeynali1;� and A. Hosseinnezhad1

Abstract. In this paper, a numerical approach to the reliability analysis of prestressed reinforced
concrete long span bridges is presented. A bridge is modeled by �nite element software and the analysis
is performed in time domain by considering the bridge material nonlinearity. The considered random
variables are: Speci�c strength of concrete, yield stress of steel bars, yield stress of prestressed bars,
all sectional dimensions, structural damping ratio, e�ective depth of steel bars and the magnitude and
PGA of earthquake. In this study, the reliability of a bridge structure is evaluated under earthquake
excitations. For this purpose, the First-Order Second-Moment (FOSM) method is used. In this method,
the mean value and standard deviation of the random variables are considered for evaluating structural
reliability. The proposed procedure is applied to evaluate the reliability of an existing prestressed arch
concrete bridge located in Bandar-e-Anzali in Iran. Bandar-e-Anzali is a very high-risk earthquake zone.
The results of the study show that the structural damping ratio, magnitude and PGA of earthquakes have
a signi�cant e�ect on the variation of reliability in the structure, while variations in the dimensions of
the structure have little e�ect on the reliability index.
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INTRODUCTION

Most existing bridges were designed using deterministic
approaches. Due to the randomness of the parameters
involved in the design procedure, the deterministic
approach does not have a complete view regarding
bridge responses under various limit states. Therefore,
in order to get a reasonable response from the struc-
ture, it seems to be necessary to analyze the structure
using probabilistic methods, so that the reliability
analysis of these structures, which takes into account
the randomness of the involved parameters, would be
able to break down the failure risk of such structures.
The reliability analysis of structures, when under static
loads, has been investigated by many researchers, but
the reliability analysis of these structures, when under
dynamic loads, has not been further investigated.

Biondini et al. [1] evaluated the reliability of
a prestressed concrete arch bridge structure, when
under live and dead loads, using the Monte Carlo
method. They modeled and analyzed the bridge using
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a �nite element approach. Loads and mechanical and
geometrical properties were selected as random vari-
ables. The results were presented as graphs that show
di�erent reliability for di�erent limit states. Nowak et
al. [2] evaluated the reliability of a prestressed concrete
bridge, when under live and dead loads, based on three
codes (Spanish Norma IAP-98, 1998; ASHTO LRFD,
1998 and ENN 1991-3 Euro Code). Reliability indices
were evaluated using the trial method. The mechanical
and geometrical properties of sections were selected as
random variables. Enrique Castill et al. [3] compared
the three most common methods applied for evaluating
the reliability analysis of structures (Level 1, Level 2
and Level 3 Reliability Methods). They applied these
methods for a single supported beam and compared the
results. It is observed that the Level 3 method provides
exact results, while the results of the Level 2 method,
when the random variables have normal distribution,
are exact (the second exact should be opposite to the
�rst, ie inexact). They considered the mechanical and
geometrical properties of the beam cross-sections as
random variables.

Kiureghian and Taylor [4] are the �rst researchers
to couple the �rst order second moment (FOSM)
reliability analysis with the �nite element method
(FEM). Haukaas [5] also performed research work on
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the \�nite element reliability and sensitivity methods
for performance-based engineering". He developed a
modern and comprehensive computational framework
for a nonlinear �nite element reliability analysis. More-
over, much advanced research work on this subject has
been reported in the literature [6-12]. Frangopol and
Imai [13] studied the reliability of suspension bridges
located in Japan, when under wind and earthquake
loads. They applied spectral analysis and evaluated
the reliability of the structure. The mechanical and
geometrical properties of the sections were taken as the
random variables.

Because of the lack of attention paid to the
reliability analysis of bridge structures under earth-
quake excitations, in the current study, this subject
is presented. The reliability of the bridge is evaluated
using the FOSM method. For a numerical example,
the Ghazian Bridge located in Bandr-e-Anzali, Iran,
was selected. For evaluating system reliability, the
bridge was modeled using �nite element software and
analyzed during many earthquakes. The mechanical
and geometrical properties of the bridge; structural
damping ratio and earthquake loadings, are considered
as random variables.

The numerical results of the study show that vari-
ation of the structural damping ratio has a signi�cant
e�ect on bridge reliability.

ASSUMPTIONS

In this study, the following assumptions are made:

1. The bridge is modeled as a continuous beam with
2D-beam elements and, therefore, the e�ects of
bridge piers and abutments on bridge response and
reliability are ignored;

2. The bridge is analyzed only for the vertical compo-
nent of earthquake ground acceleration;

3. Earthquake excitation is modeled as a normally dis-
tributed stationary stochastic random process. The
bridge is analyzed from 50 earthquake acceleration
records, from which the mean values and standard
deviations of the bridge's response are calculated;

4. The Probability Density Functions (PDFs) of the
random variables, which are not available in the
literature, are assumed to be normal;

5. The bending failure mode of the bridge is consid-
ered as the dominant failure mode of the bridge;

6. No spatial variation is considered in ground accel-
eration; it means that it is asumed that all bridge
piers and abutments are subjected to the same
support excitation.

THEORY OF THE PROBLEM

The governing di�erential equation of the system can
be expressed as [14]:

[M ]f�ug+ [C]f _ug+ [K]fug = fPe�(t)g; (1)

where [M ] is the lumped mass matrix; [C] is the
structural damping matrix; [K] is the sti�ness matrix;
fPe�(t)g is the e�ective force vector of the earthquake;
and fug is the displacement vector.

The e�ective force vector of the earthquake can
be written as [14]:

fPe�(t)g = �[M ]frg�ug(t); (2)

where �ug(t) is the vertical component of the ground
acceleration applied to the piers and abutments of the
bridge; and frg is the inuence vector, with all elements
equal to unity. It is assumed that �ug(t) is the same for
all piers and abutments of the bridge.

In order to evaluate the bridge response, Equa-
tion 1 is solved using a standard modal transformation
for around 50 records of earthquake vertical accelera-
tions.

RELIABILITY ANALYSIS

Bending failure is the most common failure mode
in bridge structures, in comparison with the other
failure modes. Therefore, in this study, bending failure
mode is focused on for investigation. The bridge is
modeled as a continuous beam with 2D-Beam elements.
The bridge dead load is considered as a distributed
load along the span of each element. The vertical
components of ground earthquake accelerations are
considered as earthquake loadings. The earthquake
excitation is modeled as a normally distributed sta-
tionary stochastic random process. The bridge model
was analyzed using a �nite element approach, utilizing
the nonlinear version of SAP2000 software [15], and
the structural reliability was evaluated using the FOSM
method, utilizing the computer program developed by
the authors.

In order to calculate bridge reliability, the limit
state equation is de�ned as [15,3]:

g = R� S; (3)

in which, R is the resistance of the structure and S is
the load e�ect on the structure. A percentage of the
ultimate bending strength of the bridge cross-sections
is considered as the resistance of the structure, R, and
the bending moments caused by earthquake loadings in
the bridge elements were taken as the load e�ects, S.

A bridge was analyzed under the vertical com-
ponents of many earthquake accelerations (around
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50 records) and its responses, such as displacements
and bending moments, etc. were calculated. Then,
from the obtained results, the mean values and stan-
dard deviations of the bridge responses are calcu-
lated.

Referring to Equation 3, by de�nition, the struc-
ture is said to be failed if R < S. Therefore,
the probability of failure of structure Pf is expressed
as [16]:

Pf = P (R < S) = P (R� S < 0) = P
�
R
S
< 1
�
: (4)

Now, by considering R and S as random variables, Pf
can be written as [16]:

Pf = 1�R0 = 1�
1Z
�1

fS(s) [1� FR(s)] ds

=
1Z
�1

fS(s)FR(s)ds: (5)

Or:

Pf = 1�
1Z
�1

fR(r)Fs(r)dr; (6)

where R0 is the reliability of the structure; fs and
Fs are the Probability Density Function (PDF) and
Cumulative Distribution Function (CDF) of S, respec-
tively; and fR and FR are those of R.

In general, the above integrals should be calcu-
lated using numerical methods. If R and S are statis-
tically independent and normally distributed, then g
also would be a normally distributed random variable.
In this case, the mean value and standard deviation of
g are de�ned as [16]:

�g = �R � �S ; (7)

�g =
�
�2
R + �2

S
� 1

2 ; (8)

where �g, �R and �S are mean values of g, R and
S, respectively; and �g, �R and �S are the standard
deviations of g, R and S, respectively. Then, the
probability of failure, Pf , is de�ned as [16,3]:

Pf = P (g < 0) = Fg(0) = �
�

0� �g
�g

�
; (9)

Pf = �

"
�S � �Rp
�2
R + �2

S

#
; (10)

where � is the standard normal distribution function

(with � = 0 and � = 1) and Fg is the CDF of g. Now,
if � = �g

�g is de�ned as the reliability index, then:

Pf = �(��): (11)

From which [16,2]:

� = ���1(Pf ): (12)

In this study, a percentage of the ultimate strength
of the bridge cross-section is considered as the bridge
resistance, R. R itself is a function of the number of
basic variables, which, in this study, are considered as
the following [1]:

(a) f 0c: Speci�c strength of concrete;
(b) fy: Yield stress of steel bars;
(c) As: Cross sectional area of steel bars;
(d) fyp: Yield stress of prestressed steel bars;
(e) All geometrical dimensions of the bridge cross-

section;
(f) The structural damping ratio of the bridge.

Uncertainties Considered in the Analysis

The uncertainties in the geometric dimensions and
material properties of the bridge, plus construction
defects, �nally lead to uncertainties in the mass and
sti�ness properties of the bridge. The other uncer-
tainties that are considered include: Knowledge un-
certainties in the structural damping ratio, earthquake
Peak Ground Acceleration (PGA) and earthquake
magnitude. All these uncertainties a�ect the dynamic
characteristics of the bridge and, hence, its dynamic
response. Uncertainties arising from earthquake load-
ing itself are incorporated by modeling the earthquake
as a normally distributed stationary stochastic random
process, and the bridge is analyzed from the vertical
components of many earthquake ground acceleration
records. Then, from the results obtained, the mean
values and standard deviations of the bridge responses
are evaluated. More explanations of random variables
and their statistical values are provided in the numer-
ical study section of the paper.

Failure Model

In reliability analysis, each structure can be modeled as
a system with one or more component. Generally, the
systems are divided into three forms: Series, parallel
and mixed systems (Figure 1):

1. The series system works satisfactorily if all com-
ponents work satisfactorily. The block diagram for
this system is shown in Figure 1a and the reliability
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Figure 1. Structural systems in reliability analysis; a)
series system, b) parallel system and c) mixed system.

is calculated as below. Let:

Ai = the event wherein component i works
satisfactorily,

Pss = probability of survival of the system,
Pfs = probability of failure of the system,
Pss = 1� Pfs.

As every component should function satisfactorily

for the system to be reliable, so;

Pss = P (A1 \A2 \ � � � \An) : (13)

If the events, Ai, are assumed to be independent,
the above equation simpli�es to:

Pss = [P (A1)� P (A2)� � � � � P (An)]

=
nY
i=1

(1� Pfi); (14)

in which, Pfi is the probability of failure of event
Ai.

2. Parallel systems survive even if one component has
failed. The system fails to function satisfactorily
only when all components of the system have failed
to function satisfactorily. The block diagram for
this system is given in Figure 1b and the reliability
of the system is given by:

Pss = 1� Pfs = 1� P (AC1 \AC2 \ � � � \ACn );
(15)

where Aci= the event wherein component i does not
function satisfactorily. If events Aci are indepen-
dent, Equation 15 simpli�es to:

Pss = 1� �P (AC1 )� P (AC2 )� � � � � P (ACn )
�

= 1�
nY
i=1

Pfi: (16)

3. Mixed systems consist of series and parallel sys-
tems. These systems divide into some subsystems.
A subsystem can be a series or parallel system.
A mixed system is shown in Figure 1c. The
reliability of this system also can be calculated using
a combination of the above two systems.

In the present study, bridge reliability is calcu-
lated for ultimate conditions, explained in the follow-
ing.

Ultimate Strength Condition

In this condition, the margin equation is expressed
as [1]:

g = �Mu �Ms; (17)

where Mu is the ultimate strength moment of the crit-
ical section; � is a coe�cient showing the percentage
value of Mu considered in the analysis; and Ms is the
critical section moment caused by earthquake loading.
For each reinforced concrete section, it can be written
that [17,18]:

x =
"cu

"cu + "s
� d; (18)

where x is the distance between the neutral axis of the
section and the last compressed point of the concrete,
d is the e�ective depth of the steel bars, "s is the strain
in the steel bars, caused by Ms, and "cu is the ultimate
compressive strain in the concrete.

The equilibrium equation for a reinforced con-
crete section with compression steel can be expressed
as [17,18]:

TS = T 0S + Cc; (19)

in which TS is the tensile force in the tension bars, T 0S
is the compressive force in the compression bars and Cc
is the compressive force in the concrete, all expressed
as the following [17,18]:

TS = �sfyAs; T 0S = �sf 0SA0S ; Cc = �cf 0cAc;
(20)

in which �s is the reduction coe�cient for steel bar
yield stresses and �c is that of the concrete speci�c
strength, fy is the yield stress of steel bars, f 0S is the
existing stress in the compression steel bars, f 0c is the
speci�ed compressive strength of the concrete, AS is
the cross-sectional area of the tensile steel bars, A0S is
the cross-sectional area of the compression steel bars
and Ac is the area of the compressive concrete part of
the cross-section.

By referring to Figure 2, it can be written that:

Mu = Cc �
�
d� a

2

�
+ T 0S � (d� d0); (21)

from which, using the statistical theory, it is calculated
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Figure 2. Stress distribution on cross section. a)
Moment-Curvature; b) Ultimate condition.

that [16]:

�M = �CC �
�
�d � �a

2

�
+ �TS0 � (�d � �d0); (22)

�1 = �2
C

�
�d � �a

2

�2
; �2 = �2

T 0S (�d � �d0)2 ;

�3 =
�
�1

2
�2
Cc

�2

�2
a; �4 = �2

d
�
�CC + �T 0S

�2 ;
�5 = (��T 0S )2�2

d0 ;

�M = (�2
1 + �2

2 + �2
3 + �2

4 + �2
5)

1
2 ; (23)

in which �i and �i are the mean value and standard
deviation of the corresponding variable.

In reinforced concrete structures, the rotation of
each cross-section is limited to a speci�c value, de�ned
as �P , and called the plastic rotation of the section. If
a section rotation exceeds the value of �P , that section
is said to be failed, in the form of rotation failure mode.
In the following, the required equations for computing
the sections plastic rotation, �P , are presented.

Plastic Rotation
The curvature of the section at the start of yielding is
de�ned as 	y (Figure 2), and is presented as below:

	y =
"y

d(1� k)
; (24)

in which, "y is the yield strain of the steel bars, d is the
depth of the tensile bars and k is a coe�cient [18,19].

The yielding moment, My, of the section is given
as:

My = Asfy
�
d� kd

3

�
: (25)

The maximum bending moment or ultimate bending
moment, Mu, is also given as:

Mu = Asfy
�
d� �1c

2

�
; (26)

in which, �1 is a coe�cient and c is the distance
between the last compressive �ber in the compressive
concrete section and the neutral axis [20].

The maximum curvature of the section is given
by:

	u =
"cu
c
: (27)

Then, the plastic rotation of the section can be ex-
pressed as:

�P =
�

	u �	y
Mu

My

�
lP ; (28)

where, lP is the length of the plastic hinge, given by:

lP = 0:5d+ 0:05z; (29)

in which, z is the distance between the neutral axis and
the location of the maximum bending moment.

NUMERICAL STUDY

For the numerical example, a three-span prestressed
concrete arch bridge located in Bandar-e-Anzali, I.R.
Iran, is chosen. A typical cross-section of this bridge
is shown in Figure 3, for which the structural data
are also shown in Table 1. In this three-span bridge,
the main span is 125 meters in length, the left span
is 55.35 meters and the right span is 45.05 meters
in length. In order to analyze the bridge using the
�nite-element model, a nonlinear version of SAP2000
software is utilized by considering 28 �nite elements
in the main span, 14 elements in the left span and 10
elements in the right span. For each span, element
length, node number and element number are shown
in Figures 4 to 6. The elements' positions are also
shown in Figures 4a to 4d. Figure 4a shows the element
position on the right side of the middle span. For
example, element \3L" is the third element on the left
side of the middle span. Also, Figures 4b, 4c and 4d
show the elements' positions for the right side of the
middle span, those of the left span and those of the
right span, respectively. Figure 5 shows the elements'
length and number for side spans and Figure 6 shows
those of the middle span.

Figure 3. Bridge cross-section.
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Table 1. Bridge cross-sectional data (according to the notations shown in Figure 3).

Section Position A (mm) B (mm) C (mm)
1R, 1L 6180 800 650
2R, 2L 5880 700 500
3R, 3L 5570 500 500
4R, 4L 5240 450 500
5R, 5L 4940 350 500
6R,6L 4670 300 500
7R, 7L 4420 300 500
8R, 8L 4210 300 500
9R, 9L 4020 300 500

10R, 10L 3860 300 500
11R, 11L 3730 300 500
12R, 12L 3630 300 500
13R, 13L 3500 300 500
14R, 14L 3500 300 500
15R, 15L 3500 300 500

Figure 4. Bridge longitudinal view and the elements positions.

For a concrete bridge, the following values are
assumed:

�f 0C = 322
N

mm2 ; �f 0C = 5
N

mm2 ; (Table 2):

Steel bars are also assumed to be AIII-type with yield
stress fy = 400 N

mm2 and standard deviation �fy = 30
N

mm2 (Table 2). As shown in Table 2, both f 0C and
fy are assumed to be log normally distributed random
variables. The modulus of elasticity for steel bars is

assumed to be about [18].

Es = 2� 105 N
mm2 :

The mean value of the cross-sectional area of the steel
bars (�AS ) is assumed to be the nominal cross-section
area and its standard deviation is also assumed to be
�AS = 0:025 � �AS . Its PDF is also assumed to be
normal [1]. The structural damping ratio is also a
random variable, assumed to be normally distributed,
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Figure 5. Bridge sides (left and right) bays.

Figure 6. Bridge middle bay.
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Table 2. Random variables and their required data.

Random Variable Standard Deviation Mean Value Distribution
Function�

f 0C 5 N/mm2 32.2 N/mm2 LN
fyp 100 N/mm2 600 N/mm2 LN
fy 30 N/mm2 400 N/mm2 LN

Sectional dimensions 50 mm Nominal dimensions N
Depth of steel bars 5 mm Nominal dimensions N

Cross-section area of steel bars (As) 0.025 As Nominal dimensions N
Damping ratio 3% 5% N

Earthquake PGA 0.017 g 0.125 g N
Earthquake magnitude 2 Richter 6 Richter N

� LN = log-normal, N = normal

with a mean value of 5% (Table 2). The other
statistical data are given in Table 2.

In the following, a reliability analysis of the bridge
under an ultimate strength condition is presented. This
procedure is performed for two cases. In the �rst case it
is performed without considering the bars prestressing
e�ect and, in the second case, it is performed by
considering the bars prestressing e�ect. For computing
the reliability of the structure, the mean value and
standard deviation of the resistant moment of the
bridge cross-sections are necessary.

Reliability Analysis of Bridge for Ultimate
Strength Condition Without Bars Prestressing
E�ect

In this condition, a speci�c percentage of the ultimate
moment of the bridge cross-section is considered as
the resistance, R, and the mean value and standard
deviation of the moments, caused by earthquake, in
the bridge element are considered as the load e�ect, S.

The bridge critical sections are shown in Fig-
ures 5c, 5f and 6c (Node number). For these critical
sections, by applying Equations 19 to 29, the mean
values and standard deviations of the resisting mo-
ments and plastic rotations are computed. All results
are presented in Table 3. The reliability analysis is
accomplished without considering the bars prestressing
e�ect. The mean values and standard deviations
of the resistent moments and moments caused by
earthquake loadings, at the bridge critical sections are
presented in Figures 7 and 8, respectively. The bridge
is subjected to vertical components of many earthquake
accelerations (50 earthquakes) [20,21]. Some of the
most famous of these earthquakes are the El-Centro
earthquake (USA), the Kobe earthquake (Japan), the
Newhall earthquake (USA), the Zanjiran earthquake
(Iran) and the Sarein earthquake (Iran). The magni-
tude of these earthquakes varies from 5 to 7.7 Richter.

In order to perform a reliability analysis, the

bridge block diagram, consisting of its failure modes,
is constructed and is shown in Figure 9. The bridge
system consists of piers, abutments and a deck. But,
because of the very low probability of failure of the
bridge piers and abutments, in this study, the e�ects
of piers and abutments on bridge reliability are ignored

Figure 7. Mean value of resistant moments and moments
caused by earthquake (without bars prestressing e�ect).

Figure 8. Standard deviation of resistant moment
(curve 1), and moments caused by earthquake (curve 2)
(without bars prestressing e�ect).
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Table 3. Mean values and standard deviation of resistant moments and plastic rotation.

Section
Position

Mean Value of
Resistant Moments

(KN.m)

Standard Deviation
of Resistant

Moments (KN.m)
�P (rad)

1R, 1L 621.41 80.06 3.822*10�3

2R, 2L 522.3 76.154 4.039*10�3

3R, 3L 514 70.611 5.780*10�3

4R, 4L 474.074 64.84 6.020*10�3

5R, 5L 435.835 59.7 7.880*10�3

6R, 6L 407.166 55.17 9.068*10�3

7R, 7L 378.641 51.05 9.190*10�3

8R, 8L 355.067 47.65 9.290*10�3

9R, 9L 334.042 44.61 9.389*10�3

10R, 10L 316.651 42.1 0.0102
11R, 11L 302.509 40.1 0.0114
12R, 12L 291.792 38.53 0.0103
13R, 13L 277.979 36.54 0.0104
14R, 14L 277.979 36.54 0.0104
15R, 15L 277.979 36.54 0.0104

Figure 9. Block diagram for failure modes.

and, therefore, a bridge system is considered consisting
of only the bridge deck as a continuous beam. Thus,
noting the fact that this three-span continuous beam
fails, if three hinges occur, a block diagram of the
bridge failure modes is constructed (Figure 9).

In Figure 9, the numbers in blocks show the
bridge critical cross-section numbers. For example, 34
means the 34th critical section (see Figure 6). Block
model of, for example, the bridge system, consists of
54 subsystems connected together in the form of a
series and each subsystem consists of 3 plastic hinged
sections connected together in the form of a parallel
(Figure 9). The probability of failure of each failure
mode is presented in Table 4. The probability of
survival or reliability of a series system is expressed
as [16]:

Pss = 1�
nX
i=1

Pfi; (30)

where, Pss is the probability of survival of the system

and Pfi is the probability of failure of the ith subsys-
tem.

In order to evaluate the reliability of the bridge,
the ultimate strength condition is considered. The
results of the reliability analysis show that the �rst
two plastic hinges occur at bridge section numbers 2
& 3 (shown in Figure 4, over the middle supports of
the bridge). After forming these two plastic hinges, by
forming more plastic hinges, a mechanism is formed,
after which, the failure modes of the bridge can be
extracted, which are shown in Table 4. By using
Equation 30, considering the failure modes shown in
Table 4 and the block diagram shown in Figure 9, the
reliability of the bridge under the considered condition
is evaluated as:

Pfs � 0:02196; Pss = 1� 0:02196 = 0:97804:

Reliability Analysis of Bridge for Ultimate
Strength Condition by Considering Bars
Prestressing E�ect

The mean value and standard deviation of the ultimate
moments (evaluated using Equations 18-23 and the
moments caused by earthquakes (obtained by analyz-
ing the bridge conditions under many earthquakes) are
shown in Figures 10 and 11.

Then, by performing a reliability analysis (using
Equations 13-16), the probability of the survival of the
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Table 4. failure modes and their probability of failure.

Sections Mode No. failure Mode � Pf
2,3,34 1 Mechanism failure 2.791 0.00264
2,3,33 2 Mechanism failure 2.793 0.00260
2,3,10 3 Mechanism failure 2.804 0.00250
2,3,32 4 Mechanism failure 2.826 0.00235
2,3,35 5 Mechanism failure 2.826 0.00235
2,3,11 6 Mechanism failure 2.853 0.00217
2,3,9 7 Mechanism failure 2.939 0.00164
2,3,6 8 Rotation failure 3.047 0.00115
2,3,31 9 Mechanism failure 3.0995 0.000970
2,3,36 10 Mechanism failure 3.1000 0.000968
2,3,12 11 Rotation failure 3.116 0.000921
2,3,8 12 Mechanism failure 3.354 0.000400
2,3,37 13 Rotation failure 3.3638 0.000380
2,3,30 14 Mechanism failure 3.3638 0.000380
2,3,13 15 Mechanism failure 3.556 0.000190
2,3,38 16 Rotation failure 3.6951 0.000110
2,3,29 17 Mechanism failure 3.6951 0.000110
2,3,14 18 Mechanism failure 4.0518 0.000030
2,3,7 19 Mechanism failure 4.0706 0.0000235
2,3,28 20 Rotation failure 4.07635 0.0000230
2,3,39 21 Rotation failure 4.0806 0.0000225
2,3,54 22 Mechanism failure 4.103 0.0000207
2,3,55 23 Mechanism failure 4.2000 0.0000133
2,3,53 24 Mechanism failure 4.3620 0.0000065
2,3,27 25 Rotation failure 4.4954 0.00000356
2,3,56 26 Mechanism failure 4.5790 0.0000024
2,3,40 27 Rotation failure 4.6954 0.0000014
2,3,15 28 Mechanism failure 4.7419 0.0000013
2,3,26 29 Rotation failure 4.7889 0.00000085
2,3,41 30 Rotation failure 4.7889 0.00000085
2,3,52 31 Mechanism failure 4.8093 0.000000793
2,3,51 32 Mechanism failure 5.0286 0.000000240
2,3,25 33 Rotation failure 5.1104 0.000000160
2,3,42 34 Rotation failure 5.1107 0.000000160
2,3,57 35 Mechanism failure 5.3247 0.0000000510
2,3,24 36 Rotation failure 5.4051 0.000000330
2,3,43 37 Rotation failure 5.4051 0.000000330
2,3,16 38 Rotation failure 5.4563 0.000000260
2,3,23 39 Rotation failure 5.7907 0.0000000037
2,3,44 40 Rotation failure 5.7907 0.0000000037
2,3,46 41 Rotation failure 6.0525 0.00000000077
2,3,50 42 Mechanism failure 6.1295 0.00000000046
2,3,45 43 Rotation failure 6.1301 0.00000000040
2,3,22 44 Rotation failure 6.158 0.00000000037
2,3,17 45 Rotation failure 6.1661 0.00000000036
2,3,5 46 Rotation failure 6.3337 0.00000000013
2,3,58 47 Mechanism failure 6.3761 0.00000000010
2,3,21 48 Rotation failure 6.4408 0.000000000077
2,3,49 49 Mechanism failure 6.7253 0.000000000009
2,3,47 50 Rotation failure 6.7505 0.0000000000079
2,3,20 51 Rotation failure 6.7519 0.0000000000070
2,3,18 52 Rotation failure 6.7908 0.0000000000060
2,3,19 53 Rotation failure 7.0074 0.00000000000128
2,3,48 54 Rotation failure 7.0086 0.00000000000120
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Figure 10. Mean value of ultimate moments (curve 1),
and moments caused by earthquake (curve 2) (with bars
prestressing e�ect).

Figure 11. Standard deviation of ultimate moments
(curve 1), and moments caused by earthquake (curve 2)
(with bars prestressing e�ect).

bridge is obtained as:

Pfs � 0:000025;

and

Pss = 1� 0:000025 = 0:999975:

It is seen that the reliability of the bridge signi�cantly
increases by considering the bars prestressing e�ect.

SENSITIVITY ANALYSIS

Since bridge reliability depends on many random vari-
ables, for which the probability distributions are not
exactly known, in this part of the study, the e�ects
of a variation of these random variables on the bridge
reliability index, �, are investigated. In the following,
the numerical results are presented only by considering
the bars prestressing e�ect.

E�ect of Variation of Ultimate Moment on
Reliability Index

In general, under an ultimate condition, the reliability
of the bridge highly depends on the ultimate moments
(Mu) of the bridge cross section. In this condition,
a percentage of the ultimate moment is considered
as the threshold level for evaluating bridge reliability.
Figures 12 and 13 show the e�ects of a variation
in the value of Cov(Mu) on the reliability index for
the damping ratios of 5% and 8%, respectively, for
di�erent values of threshold level. It is seen from the
�gures that � decreases with an increase in the value
of the coe�cient of variation of the ultimate moment
[Cov(Mu)]. Moreover, the sensitivity of the reliability
index to the variation of Cov(Mu) for high threshold
levels is much more than that of low threshold levels.

E�ect of Variation of Structural Damping
Ratio on Reliability Index

In this part of the study, the e�ect of the structural
damping ratio � on the bridge reliability index is con-

Figure 12. E�ect of variation in the resisting moment on
reliability index � for � = 5%.

Figure 13. E�ect of variation in the resisting moment on
reliability index � for � = 8%.
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ducted. Figure 14 shows the e�ect of a variation in the
structural damping ratio on the reliability index. In the
reliability limit state equation, a percent of the ultimate
resistant moment of the bridge's last failed section in a
mechanism path is considered as the resistance of the
structure, R. Also, the internal moments in the bridge
elements caused by earthquakes are considered as the
load e�ect, S. Here, also, the results are presented for
di�erent values of the threshold level. It is seen from
the �gure that the reliability index, �, increases with
an increase in the value of �. Also, the reliability index
increases with an increase in the value of the threshold
level (the percentage value of ultimate moment which
is considered as bridge resistance). Furthermore, the
rate of increase in the value of � for low values of the
threshold level is higher than that of the high values of
the threshold level. When the threshold level becomes
higher, the variation of the reliability index, �, versus
�, almost becomes a smooth curve.

E�ect of Variation in E�ective Depth of Steel
Bars on Reliability Index

The depth of the steel bars has also a signi�cant e�ect
on the reliability index of the bridge. This e�ect is
shown in Figures 15 and 16 for the structural damping
ratio taken at about 5% and 8%, respectively. In both
�gures, the reliability index, �, of the example bridge
is traced versus the standard deviation of the e�ective
depth of the steel bars. The �gures show that �
decreases with an increase in the value of the standard
deviation (Stdev) of the e�ective depth, d. Again, at
high threshold levels, the sensitivity is greater.

E�ect of Variation in Speci�c Strength of
Concrete and Yield Stress of Steel Bars on
Reliability Index

Figure 17 shows the e�ect of a variation in the standard
deviation of the concrete speci�c strength, f 0C (Stdev

Figure 14. E�ect of damping ratio variation on the
reliability index �.

f 0C), on the bridge reliability index, �, for di�erent
values of the threshold level. The �gure shows that the
reliability index, �, decreases by increasing the value
of Stdev (f 0C), but the sensitivity of � to the variation
of Stdev (f 0C) for low values of the threshold level, is
more than that of the high threshold level.

The e�ect of variation in the standard deviation

Figure 15. E�ect of variation in e�ective depth of steel
bars on the reliability index � for � = 5%.

Figure 16. E�ect of variation in e�ective depth of steel
bars on the reliability index � for � = 8%.

Figure 17. E�ect of variation in speci�c strength of
concrete on the reliability index � for � = 5%.
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of the yield stress of the steel bars (Stdev (fs)) is also
shown in Figure 18. The �gure shows that the bridge
reliability index, �, is not very sensitive to the variation
of Stdev (fs).

E�ect of Variation in the Area of Cross
Section of Steel Bars on Reliability Index

Figure 19 shows the e�ect of the coe�cient of variation
of the steel bars (As) on the reliability index, �. This
�gure shows that the reliability index, �, is not very
sensitive to the variation in CoV of As.

E�ect of Earthquake Magnitude on Reliability
Index

In the reliability analysis of the structures against
earthquake loadings, the magnitude of the earthquake
is one of the most important random variables to
seriously a�ect the results of the analysis. So, the
e�ect of this parameter on the bridge reliability index
is studied and the results are shown in Figure 20. The

Figure 18. E�ect of variation in yield stress of steel bars
on the reliability index � for � = 5%.

Figure 19. E�ect of variation in cross section of steel
bars on the reliability index � for � = 5%.

reliability index, �, is evaluated for di�erent values of
the standard deviation of the involved random variables
shown in Table 5. For example, type 2 shows the
results of the reliability analysis for a second set of
standard deviations assumed for di�erent random vari-
ables (Table 5). As seen from the �gure, the reliability
index, �, signi�cantly decreases with an increase in the
value of the earthquake magnitude. Furthermore, it
is seen from the �gure that the e�ect of a variation
in the standard deviations of other random variables
on reliability index � for high values of earthquake
magnitude, is less than that of low values of earthquake
magnitude.

E�ect of Earthquake PGA on Reliability Index

The e�ect of earthquake Peak Ground Acceleration
(PGA) on reliability index � is shown in Figure 21.
The �gure is plotted for di�erent values of the standard
deviations of the considered parameters (Table 5). It
can be seen from the �gure that the reliability index
decreases with an increase in the value of PGA.

Figure 20. Magnitude vs reliability index � for various
standard deviations.

Figure 21. PGA vs reliability index � for various
standard deviations.
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Table 5. Random variables and their standard deviation range.

Random Variables Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

f 0C 5 N/mm2 6 N/mm2 7 N/mm2 8 N/mm2 9 N/mm2 10 N/mm2

fyp 100 N/mm2 110 N/mm2 120 N/mm2 130 N/mm2 140 N/mm2 150 N/mm2

fy 30 N/mm2 35 N/mm2 40 N/mm2 45 N/mm2 50 N/mm2 55 N/mm2

Cross-sectional
dimension

50 mm 55 mm 60 mm 65 mm 70 mm 75 mm

E�ective depth of
steel bars

5 mm 6 mm 7 mm 8 mm 9 mm 10 mm

Cross section of
steel bars

0.025 As 0.035 As 0.045 As 0.055 As 0.065 As 0.075 As

Structural damping
ratio

0.5% 1% 1.5% 2% 2.5 % 3%

Earthquake PGA 0.0028 g 0.0056 g 0.0084 g 0.0112 g 0.014 g 0.017 g

Earthquake magnitude 0.5 Richter 1 Richter 1.5 Richter 2 Richter 2.5 Richter 3 Richter

CONCLUSION

In this paper, a numerical approach to the reliability
analysis of prestressed concrete bridges is presented.
The bridge is modeled using a �nite element approach
and analyzed utilizing a nonlinear version of SAP2000
software and its reliability is evaluated using the FOSM
method. A three-span prestressed arch concrete bridge,
located in Bandar-e-Anzali, Iran, is chosen as the
numerical example. From the numerical results of the
study, it is concluded that:

1. Variation in the threshold level has a signi�cant
e�ect on the reliability index, �;

2. Sensitivity of the reliability index, �, to the varia-
tion of the random variables at high threshold levels
is much more than that for low threshold levels;

3. The structural damping ratio, �, has a signi�cant
e�ect on �. Reliability index � increases with an
increase in the value of the structural damping
ratio, �;

4. Reliability index, �, decreases with an increase in
the values of the coe�cient of variation (CoV ) of
Mu, earthquake PGA and standard deviation of the
e�ective depth of the steel bars;

5. Reliability index � signi�cantly decreases with the
increase in the value of the earthquake magnitude.
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