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Element Free Galerkin Mesh-Less Method for
Fully Coupled Analysis of a Consolidation Process

M.N. Oliaei1 and A. Pak1;�

Abstract. A formulation of the Element Free Galerkin (EFG), one of the mesh-less methods, is
developed for solving coupled problems and its validity for application to soil-water problems is examined
through numerical analysis. The numerical approach is constructed to solve two governing partial
di�erential equations of equilibrium and the continuity of pore water, simultaneously. Spatial variables
in a weak form, the displacement increment and excess pore water pressure increment, are discretized
using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create
the discrete system equations and a fully implicit scheme is used to create the discretization of the time
domain. Implementation of essential boundary conditions is based on penalty method. Examples are
studied and the obtained results are compared with closed-form or �nite element method solutions to
demonstrate the capability of the developed model. The results indicate that the EFG method is capable of
handling coupled problems in saturated porous media and can predict well, both soil deformation and the
variation of pore water pressure, over time.
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INTRODUCTION

The Finite Element Method (FEM) is well estab-
lished for modelling complex problems in engineering
science. It is a developed technique, but it is not
without shortcomings. The reliance of the method
on a mesh leads to complications for certain classes
of problem. Di�culties are encountered when mesh
distortion deals with FEM. Considerable loss in accu-
racy arises in problems of large deformations, crack
propagation, phase transformation, movement of free
surface, strain localization and shell problems. The
use of a mesh in modelling these problems creates
di�culties in the treatment of discontinuities, which
do not coincide with original mesh lines. This is due
to the essential properties of an element-based shape
function.

One solution for such a problem is to remesh the
problem domain and use an adaptive algorithm in com-
putation. This remeshing process is time-consuming
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and sometimes causes mesh-size dependent results (for
example, the crack tip problem of creep). Projection
of �eld variables between meshes in successive stages
of the problem, leads to logistical problems, as well
as a degradation of accuracy. In addition, for large,
three-dimensional problems, the computational cost
of remeshing at each step of the problem becomes
prohibitively expensive.

One e�ective numerical method is meshless
method that does not require any element for shape
function construction. Meshless methods have ap-
peared as connectivity free between elements and
nodes.

There are a number of mesh-less or mesh-free
methods that have been proposed and have achieved
remarkable progress in recent years. For example,
Smooth Particle Hydrodynamics (SPH) [1,2]; the Fi-
nite Di�erence Method with arbitrary irregular grids
(FDM) [3,4]; the Di�use Element Method (DEM) [5];
the Element Free Galerkin (EFG) method [6], which is
a developed version of DEM; the Reproducing Kernel
Particle Method (RKPM) [7], which is an improved
version of SPH; hp-clouds [8,9]; Partition of Unity FEM
(PUFEM) [10]; the Finite Point Method (FPM) [11];
boundary node methods [12]; the Mesh-less Local
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Petrov-Galerkin (MLPG) method [13]; the Point In-
terpolation Method (PIM) [14]; the Point Assembly
Method (PAM) [15]; boundary point interpolation
methods [16]; the Least Squares Collocation Mesh-Less
(LSCM) method [17] and so forth.

Among these methods, the EFG method has
been applied to various types of boundary value prob-
lem, which contain the above-mentioned numerical
di�culties. The shape functions that are obtained
by the Moving Least Square (MLS) approximation,
based on nodes (not elements), are both consistent and
compatible. They are of a higher order than those used
in ordinary FEM, because they are polynomials. These
higher order shape functions e�ectively induce more
accurate approximations.

This paper presents a formulation for the element
free Galerkin method to solve two-dimensional coupled
problems in saturated soil. The authors' goal is to
emphasize the bene�ts of this formulation in solving
of coupled problems in the �eld of geotechnical engi-
neering.

The �rst attempt to apply such mesh-less strate-
gies to a soil-water coupled problem was made by
Modaressi et al., using a coupled EFG(DEM)-FEM
technique with Lagrange multipliers [18]. In their work,
the displacement of a porous-solid skeleton is modelled
by a standard FEM, while uid pure pressures are
included as element{free nodes. Another mesh-less
strategy by Wang et al. [19,20]), based on PIM or radial
PIM, has also been applied to solve Biot's consolidation
problem for elastic material under in�nitesimal strain,
in order to overcome the disadvantage of the lack
of delta function properties in the shape functions
obtained by MLS approximation in the EFG method.
Nogami et al. [21] incorporated the double porosity
model into the radial PIM to analyze lumpy clay �lling.

The arrangement of the current paper is as
follows. Following the introduction, in EFG shape
function construction, MLS approximation and weight
function implementation is stated along with a ow
chart. In the third section, the weak form is developed
through a global equilibrium in soil-water system at
each time-step. Then, spatial variables, displacement
increments and excess porewater pressure increments
are discretized by the same EFG shape functions.
A fully implicit scheme in the time domain is used
to avoid spurious ripple e�ects. At the end of this
section, an algorithm for numerical solution is pro-
posed for solving coupled problems, based on EFG.
The fourth section presents the numerical analysis of
two coupled problem in geotechnical engineering and
compares the results with closed-form and numerical
(FEM) solutions, in order to examine the accuracy of
the description of the present algorithm. The problems
are 1D and 2D consolidation, respectively. Conclusion
follows in the last section.

EFG SHAPE FUNCTION CONSTRUCTION

The EFG method is used to establish a system of
equations for the whole problem domain, without the
use of a prede�ned mesh. EFG uses a set of nodes
scattered within the problem domain, as well as a set
of nodes scattered on the boundaries of the domain to
represent (not discretize) the problem domain and its
boundaries. So, construction of the shape functions is
only based on the nodes.

The EFG method employs MLS approximants
to approximate the function. These approximants
are constructed from three components: A weight
function of compact support associated with each node;
a basis usually consisting of a polynomial; and a set
of coe�cients that depend on position. The weight
function is nonzero only over a small subdomain around
a node, which is called its support. The support of
the weight function de�nes a node's inuence domain,
which is the subdomain over which a particular node
contributes to the approximation. The overlap of the
nodal inuence domains de�nes the nodal connectivity.

One attractive property of MLS approximants is
that their continuity is related to the continuity of the
weight function; therefore, a low order polynomial ba-
sis, e.g., a linear basis, may be used to generate highly
nonlinear continuous approximations by choosing an
appropriate weight function. Thus, post processing
to generate smooth �elds of �eld variables derivatives,
which is required for C0 FEM, is unnecessary in EFG.

Since the shape function can be constructed with
arbitrary continuity, the boundaries of the node sup-
ports do not a�ect deleteriously the smoothness of the
shape function.

The arbitrary overlaps of the nodal supports
lead to a variable connectivity: The number of nodes
a�ecting the approximation varies from point to point
arbitrarily, and is usually higher than that for the FEM.

In the Moving Least Squares (MLS) approxima-
tion, the weight function takes its maximum value over
each desired point in the domain wherein the unknown
function should be evaluated, but in the Weighted
Least Squares (WLS) approximation, the peak of the
weight function is placed only on distributed nodes.

In the WLS method, the set of coe�cients is
constant in each subdomain and the approximation
order is, directly, the order included in the set of basis
functions. On the other hand, in the MLS approach,
the set of coe�cients are a function of position and the
resultant unknown function may include higher order
functions.

There is another important characteristic of the
MLS approach. The shape functions of this method
are global and can be used all over the domain.

Although MLS approximation is both consistent
and compatible, the use of MLS approximation pro-
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duces shape functions that do not possess the Kro-
necker delta function property, which implies that one
cannot impose essential boundary conditions in the
same way as in conventional FEM.

To conquer this problem, in this paper, the
penalty method [22] is used to create a constrained
Galerkin weak form for the imposition of essential
boundary conditions. The use of the penalty method
produces equation systems of the same dimensions that
conventional FEM produces for the same number of
nodes; the modi�ed sti�ness matrix is still positive
de�nite, banded and symmetric and the treatment of
boundary conditions is as simple as it is in conventional
FEM.

MLS Approximation

Moving Least Squares (MLS), originated by mathe-
maticians for data �tting and surface construction, is
often termed local regression and loss [23]. Nayroles
et al. [5] were the �rst to use the MLS procedure to
construct shape functions for DEM. DEM was modi�ed
by Belytschko et al. [6], as the EFG method, where the
MLS approximation is also employed. The invention
of DEM and the advances in EFG have had a great
impact on the development of mesh-less methods. The
MLS approximation has two major futures that make
it popular:

1. the approximated �eld function is continuous and
smooth in the entire problem domain;

2. it is capable of producing an approximation with
the desired order of consistency.

In this paper, the procedure of constructing shape
functions for EFG, using MLS approximation, based on
the work of Belytschko et al. [6], is stated in Figure 1.

An important ingredient in the EFG method is
the weight function. The weight function should be
non-zero only over a small neighbourhood of XI , called
the inuence domain of node I, in order to generate
a set of sparse discrete equations. This is equivalent
to stating that the weight functions have compact
support. The precise character of the weight function
seems to be unimportant, although it is almost manda-
tory that it be positive and increase monotonically
as the distance between the evaluation point and the
node decreases. Furthermore, it is desirable that the
weight function be smooth: If the weight function is
C1 continuous, then, for a polynomial basis, the shape
function is also C1 continuous.

The choice of weight function a�ects the result-
ing approximation, uh(X). Constant weight function
over the entire domain and constant weight function
with compact support cannot result in e�cient MLS
approximation, but continuous weight function with

compact support, where they are smooth functions that
cover larger subdomains such that (n > m), results in
e�cient MLS approximation that is used in the EFG
method; the approximation is continuous and smooth,
even though the polynomial basis is only linear, since
the approximation inherits the continuity of the weight
function.

Note that most mesh-less weight functions are
bell-shaped. Among these weight functions, the cubic
spline weight function has been tested and worked very
well for many applications. As it has basically been
adopted for various kinds of computation, this weight
function has been used in the authors' EFG code.

FORMULATION

In this section, �rst, the weak form is developed and
then discretization of the weak form is stated. At
the end of this section, an algorithm for numerical
implementation of the EFG code is proposed.

Weak Form

Two sets of governing equations for soil-water coupled
problems are given as follows [24,25]:

� Equilibrium equation:

��ij;j + �bi = 0; (1)

where �ij is total stress tensor; and bi is body force
vector.

� Continuity equation of uid ow:

r:(�v)�G = �@(n�)
@t

; (2)

where:

� density of uid;
v velocity vector of uid ow;
G uid mass ux from sink or source;
n porosity of soil mass; and
t time.

In this formulation, the uid is pore water,
so the density of the uid is considered constant.
Assuming that the sink or source term may be con-
sidered later as a boundary condition, the continuity
equation of the pore water is written in the following
form.

� Continuity equation of pore water ow:

r:(v) = �@n
@t
: (3)

This is the same as the incompressibility equation
of the solid-water mixture in the Biot consolidation
theory [26].

Other related equations are given as follows.
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Figure 1. EFG shape function and its derivatives construction ow chart in developed EFG code.
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� Terzaghi's e�ective stress principle:

��ij = ��0ij � ��p�ij ; (4)

where �0ij is e�ective stress tensor (tension positive);
� is Biot coe�cient (� 1); �p is excess pore water
pressure increment (compression positive); and �ij
is kronecker delta.

Note that, for consistency between two govern-
ing equations, p is considered to be positive when
compressive.

� Constitutive law for soil skeleton:

��0ij = Dijkl(�"kl +
1
3
cs�kl�p); (5)

where Dijkl is material matrix; �"kl is total strain
increment tensor; and cs is compressibility of solid
particles of soil.

� Darcy's law for ow in porous media:

vi = �Kij

�
y +

p


�
;j
; (6)

where Kij is permeability tensor of soil skeleton; y
is elevation head; p is pore water pressure; and  is
unit weight of water.

� Boundary conditions:
{ For the soil skeleton boundary:(

ui = ui on ��u[0;1)
�ijnj = ti on ��t [0;1)

(7)

{ For the uid boundary:(
p = p on ��p[0;1)
vi = vi on ��v[0;1)

(8)

where:

ui displacement vector;
ui the boundary value of displacement;
�u displacement boundary;
nj the unit normal vector at the boundary;
ti the boundary value of traction;
�t traction boundary;
p excess pore pressure;
p the boundary value of pore pressure;
�p pore pressure boundary;
vi velocity vector;
vi the boundary value of velocity; and
�v velocity (ux) boundary.

� Initial conditions:(
ui = uijt=0 on 
�0
p = pjt=0 on 
�0 (9)

where 
 is the domain.

By applying the Weighted Residual Method
(W.R.M) on Equation 1 and inserting Equations 4, 5
and 7 -Appendix A- the soil skeleton should satisfy
the following constrained Galerkin weak form of the
equilibrium equation:Z



�(L�u)TDijkl�"kld
�

Z


�(�u)T�bid


�
Z

�t
�(�u)T�ttd��

Z


�(L�u)T��ij�pd


+
Z



�(L�u)T (1=3)csDijkl�kl�pd


� �
Z

�u
(1=2)(�u��u)T�pu(�u��u)d�

= 0; (10)

where:

�(�u) test function;
L di�erential operator;
�u incremental displacements;
�u prescribed incremental displacements on the

essential boundary; and
�pu penalty factor for equilibrium equation weak

form.

Note that, in the weak form, incremental displace-
ments, (�u), relate to the incremental displacements
in an x; y direction. So, �u must be considered as a
vector.

�u =
�

�u
�v

�
: (11)

According to the time domain discretization methods,
the following relation can be used for �eld function f
in the time interval [t; t+ �t]:

f = (1� �)ft + �ft+�t = ft + ��f: (12)

� can vary from zero (fully explicit scheme) to 1.0 (fully
implicit scheme). The approximation is uncondition-
ally stable when � � 0:5, but for any value of � 6= 1,
the numerical solution can exhibit a spurious ripple
e�ect [20].

Time integration is applied to Equation 3 and,
by using the weighted residual method and inserting
Equations 6 and 8 - Appendix A - the weak form for
state variables in the continuity equation of the pore
water is expressed as:



70 M.N. Oliaei and A. Pak

Z
�v
�(�p)T (vini)d� +

Z


�(Lp�p)TKi2d


+
Z



�(Lp�P )T (Kij=)pi;jd


+
Z



�(Lp�P )T �(Kij=)�p;jd


+
Z



�(�P )T (@n=@t)d


+ �
Z

�p
(1=2)(�p��p)T�pp(�p��p)d� = 0;

(13)

where:

�(�p) test function;
Lp di�erential operator;
�p excess pore water pressure increment;
�p prescribed excess pore water pressure

increment on the essential boundary;
�pp penalty factor for the continuity

equation weak form.

Numerical Discretization

Displacement increments (�u;�v) and excess pore
water pressure increment (�p), at any time and at any
point, are approximated using Equation 7* (Figure 1),
so:

�uh =
�

�u
�v

�h
=

nX
I

�
'I 0
0 'I

��
�uI
�vI

�
=

nX
I

�I�uI ; (14)

and:

�ph =
nX
I

'I�pI : (15)

Di�erential operator matrices L and Lp are given by:

L =

24@=@x 0
0 @=@y

@=@y @=@x

35 ; (16)

and:

Lp =
�
@=@x
@=@y

�
: (17)

By using Equations 14 to 17, the products of L�uh
and Lp�ph become:

L�uh =
nX
I

24'I;x 0
0 'I;y
'I;y 'I;x

35��uI
�vI

�
=

nX
I

BI�uI ;
(18)

and:

Lp�ph =
nX
I

�
'I;x
'I;y

�
�pI =

nX
I

BpI�pI : (19)

Note that �pu is a diagonal matrix of penalty factors
which is as follows:

�pu =
�
�pu1 0

0 �pu2

�
: (20)

The penalty factors can be a function of coordinates
and can be di�erent from each other. However, in
practice, they are often assigned identical constants of
a large positive number for each set of equations. �pp is
also a scalar penalty factor. The imposition of essential
boundary conditions is described in Appendix B.

Substituting Equations 14, 15, 18 and 20 into
Equation 10, after a lengthy manipulation, the fol-
lowing system of equations can be obtained for the
equilibrium equation:

[KG11 +K�
u ]�U +KG12�P = �FGu + �F�u : (21)

Again, by substituting Equations 15 and 19 into
Equation 13, and with consideration of:

�"v =
nX
I

�
'I;x 'I;y

���uI
�vI

�
=

nX
I

CI�uI ; (22)

after a lengthy manipulation, the following system of
equations can be obtained for the continuity equation:

KG21�U + [KG22 +K�
p ]�P = �FGp + �F�p : (23)

Equations 21 and 23 are the �nal system of discrete
equations for the entire problem domain. These
equations should be solved simultaneously for a fully
coupled model. As shown, both equations contain the
same state variables that are displacement increments
and the excess pore water pressure increment. The
matrix equation in coupled form can be written as:�

KG11 +K�
u KG12

KG21 KG22 +K�
p

��
�U
�P

�
=
�

�FGu + �F�u
�FGp + �F�p

�
: (24)

The non-diagonal terms in the matrix, [K], of Equa-
tion 24 represent the coupling terms in the analysis.
KG12 represents the force induced by pore pressure
and KG21 represents the uid ow caused by ground
deformation.

In Equation 24, KG11, KG12, KG21, KG22 are the
parts of the global sti�ness matrix assembled using
the nodal sti�ness matrices. Their dimension are
(2nt; 2nt), (2nt; nt), (nt; 2nt), (nt; nt), respectively;
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where nt is the total number of nodes in the entire
problem domain. K�

u , K�
p are the global penalty ma-

trices assembled using the nodal penalty matrices. �U
and �P are the global displacement increments vector
and the global excess pore pressure increment vector,
respectively. Their dimensions are 2nt, nt, respectively.
�FGu, �FGp are the global force increments vector
and the global uid ux increment vector, respectively.
�F�u , �F�p are the global penalty vectors. The global
vectors collect the relative nodal vectors at all nodes in
the entire problem domain.

The nodal matrices and vectors that form system
of discrete equations are all summarized below:

K11ij =
Z



BTi DBjd
; (25)

K12ij =
Z



BTi (1=3)csDm'jd
�

Z


BTi �m'jd
;

(26)

where `m' represents �ij in vector form, i.e.:

m =


1 1 0

�T ; (27)

K21ij =
Z



'iCjd
; (28)

K22ij = ��t
Z



BTpi(Kw=)Bpjd
; (29)

where `Kw' represents the permeability tensor, i.e.:

Kw =
�
Kx 0
0 Ky

�
; (30)

�Fui =
Z



�Ti �bd
 +

Z
�t

�Ti �td�; (31)

�Fpi =��t
Z



BTpiKw2d


��t
Z



BTpi(Kw=)Bpipid


��t
Z

�v
'ivTi nid�; (32)

where:

Kw2 =
�

0
Ky

�
; (33)

and pi is pore pressure of node i.
In �Fpi , the �rst and second terms are the

ows due to changes in velocity, while the third term

indicates the e�ect of a speci�ed ux on the boundaries.

K�
uij =

Z
�u

�Ti �pu�jd�; (34)

K�
pij =

Z
�p
'i�pp'jd�; (35)

�F�ui =
Z

�u
�Ti �pu�ud�; (36)

�F�pi =
Z

�p
'i�pp�pd�: (37)

Numerical Implementation

The sequence of the numerical algorithm for the 2D-
EFG code is, briey, as follows:

1. De�ne the geometrical dimensions and properties
(material, plane strain or plane stress condition,
permeability, etc) of the domain;

2. Set up the nodal points;
3. Determine the inuence domain of each node;
4. Set up quadrature cells in the domain and quadra-

ture lines on the essential and natural boundaries
(displacement and pore pressure - traction and uid
ux);

5. Set up all Gauss points, weights and Jacobian for
each cell and line over the background mesh;

6. Set up the initial displacement, the initial pore
pressure at the nodal points and the stress levels
at the Gauss points;

7. Loop over the time steps;
8. Loop over the Gauss points to assemble the K

matrix and �F vector in Equation 24.
(a) Select the neighboring nodes for a Gauss point

based on the inuence domain of the nodes;
(b) Determine the shape functions and shape func-

tion derivatives for the nodes;
(c) Evaluate the nodal matrices/vectors;
(d) Assemble the nodal contribution to the global

matrices/vectors;
(e) End loop.

9. Solve the system equation to obtain the displace-
ment increments and excess pore water pressure
increment at each node;

10. Recalculate the displacement increments and excess
pore water pressure increments at each node, using
the MLS shape function based on nodes in a local
domain to achieve more accuracy;

11. Determine nodal displacements and pore water
pressure;
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12. Evaluate strain, stress and uid velocity at each cell
Gauss point;

13. Evaluate e�ective stress on nodal points by inter-
polation;

14. Record the history of state variables and their
derivatives;

15. Back to 7;
16. End.

NUMERICAL ANALYSIS

The examples in this section are selected for bench-
marking the code demonstrating the capability to solve
fully coupled hydro-mechanical problems.

One-Dimensional Consolidation

For validation process, the developed code is exam-
ined �rst for solving the 1D Terzaghi's consolidation
problem. A saturated layer of soil, with a thickness
H = 10 m and large horizontal extent, rests on a
rigid, impervious base. This is a 1D problem, so,
a certain width is su�cient for modeling (Figure 2).
The EFG model is a regular nodal arrangement (21
nodes in height and 11 nodes in a 2.5 m width). In
the model, only the upper surface is permeable and
the rest is impervious. The bottom is �xed for dis-
placement, while two sides are �xed against horizontal
displacements only. The soil matrix is homogeneous
and behaves elastically with E = 10000 Kpa and v = 0.
A constant surcharge, � = 20 Kpa, is suddenly applied
to the surface of the soil layer and the initial state of the
problem is set to a uniform pore pressure P0 = 20 Kpa.

Figure 2. One-dimensional consolidation problem.

With time, the uid drains through the surface layer,
transferring the load from the uid to the soil matrix.
The closed form solution of 1D Terzaghi's consolidation
problem is as follows [27]:

- Excess pore water pressure:

P =
4
�
�
1X
n=1

1
2n�1

sin
�

(2n�1)�y
2H

�
e�(2n�1)2 �2

4 Tv :
(38)

- Degree of consolidation:

Ut = 1� 8
�2

1X
n=1

1
(2n� 1)2 e

�(2n�1)2 �2
4 Tv : (39)

- Surface settlement:

St = Utmv�H; (40)

where the parameters are de�ned as:

Tv =
Cv
H2 t; Cv =

k
wmv

;

mv =
(1 + �)(1� 2�)

E(1� �)
: (41)

The following criterion is used to maintain stability and
freedom from oscillation [19,28]:

h2

6Cv
� �t � h2

2Cv
; (42)

where h is the characteristic size of the node distance.
For the 1D model, h is the nodal spacing.

A constant permeability of Ky = 5�10�8 m/s is
used, while the value of Kx is considered zero.

Analytical and numerical results are plotted in
Figures 3 through 6. The variation of surface settle-
ment is plotted in Figure 3 and the history of excess

Figure 3. Surface settlement history for 1D consolidation
problem.
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pore water pressure is plotted in Figure 4 for 5 sample
points. They are all in excellent agreement with closed
form solutions. It is also shown in Figure 4 that the
essential boundary condition for the pore pressure on
the surface of soil layer (y=H = 0) is imposed exactly by
the penalty method. In Figure 5 isochrone curves give

Figure 4. Pore water pressure dissipation history for 1D
consolidation problem.

Figure 5. Normalized isochrones for 1D consolidation
problem.

Figure 6. Histories of pore water pressure and e�ective
stress at mid-height of soil layer for 1D consolidation
problem.

the spatial distribution of excess pore water pressure
at di�erent times. The transfer of pore pressure to
e�ective stress is illustrated in Figure 6. It is seen
that the e�ective stresses are less accurate than pore
pressures. The reason is that the e�ective stresses are
obtained from vertical total stresses at each node, using
the derivatives of the displacement �eld as the state
variable, while the pore pressure is the state variable
itself.

Two-Dimensional Consolidation

Most consolidation problems of practical interest are
two or three dimensional, so the one dimensional solu-
tions provided by the Terzaghi consolidation theory are
useful only as indicators of settlement magnitudes and
rates. This problem here examines a two dimensional
plane strain consolidation case: The settlement and
pore pressure histories of a partially loaded strip of soil,
which is assumed to be linear elastic. This particular
case is chosen because an exact solution is available
for this 2D consolidation problem [29]. Furthermore,
for comparison of the accuracy of EFG results with
FEM results, the last ones are obtained by ABAQUS
as well.

A schematic model of a partially loaded strip of
soil is shown in Figure 7.

The material properties assumed for this analysis
are as follows: Young's modulus is chosen 690 Gpa
(108 lb/in2); the Poisson ratio is 0; the material's
permeability in both horizontal and vertical directions
is 5:08�10�7 m/day (2:0�10�5 in/day); and the speci�c
weight of the pore uid was chosen as 272.9 KN/m3

(1.0 lb/in3).
The applied load has a magnitude of 3.45 Mpa

(500 lb/in2). The strip of soil is assumed to lie on
a smooth, impervious base. The top surface is fully
drained and the rest of the boundaries are all imper-
vious. For displacement boundaries, the horizontal
base boundary �xes the vertical freedom and vertical
boundaries �x the horizontal freedom. Note that the
left vertical boundary is a symmetry line. A regular
arrangement of nodes (41�11) is used for the EFG
model.

Validation of the settlement of the surface on
the symmetry line is plotted in Figure 8, where it is

Figure 7. Two-dimensional consolidation problem.
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compared with the exact solution of Gibson et al. [29]
and the FEM results of ABAQUS. There is very good
agreement between the EFG results and the theoretical
and �nite element solutions. Also, it is seen that the
EFG results are more accurate than the FEM solutions.
As mentioned earlier, the reason relates to the concept
of weight function in the EFG.

The dissipation history of excess pore pressure
on the symmetry line at the mid-height of the soil
layer is shown in Figure 9. The EFG and FEM
results are in good agreement. As shown, at initial
consolidation times, an increase in the pore pressure
will be induced in the sample. Subsequently, the
pore pressure falls. This e�ect was pointed out by
Mandel [30] as an e�ect in 2D. It was also predicted
by Cryer [31], thus, it is known as the Mandel-
Cryer e�ect and was demonstrated experimentally by
Verruijt [32].

For midpoint on the symmetry line, when time
of about 0.01 days elapses, the dissipation of excess
pore water pressure is almost complete and settlement
reaches its stable state, as shown in Figure 10.

Figure 8. Surface settlement history on the symmetry
line for 2D consolidation problem.

Figure 9. History of pore uid pressure at mid-height of
soil layer on the symmetry line for 2D consolidation
problem.

Figure 10. Settlement history at mid-height of soil layer
on the symmetry line for 2D consolidation problem.

In this problem, the computation speed for EFG
is 1.11 times slower compared to the FEM's.

Since the EFG with the penalty method does
not increase the size of the system equation and the
sti�ness matrix is banded, the computational e�ort is
approximately the same order as that of FEM for this
problem, in which the number of nodes is 451.

The computational e�ort of EFG may increase
for a large number of �eld nodes. The reasons are:
(1) Much time is used for computing the EFG shape
functions compared with the FEM shape functions;
(2) The number of integration points is needed in
EFG compared with FEM to guarantee an accurate
solution.

It worths noting that the principle attraction
of the EFG method is the possibility of simplify-
ing adaptivity and simulating problems with moving
boundaries and discontinuities, which compensates the
computational e�ort of the EFG method, with respect
to that of FEM.

CONCLUSIONS

The details of the Element Free Galerkin (EFG) mesh-
less method and its numerical implementation have
been presented in this paper to study the numerical
solution of the coupled problem of consolidation in
geotechnical engineering. The numerical results show
the accuracy of the method to be better than that
achievable with the �nite element method.

The results of the examples indicate EFG validity,
and capability for analyzing coupled problems in sat-
urated porous media. From this study, the following
conclusions can be drawn.

First, EFG is an e�ective method to discretize
spatial variables (displacement and excess pore water
pressure). Unlike other mesh-less methods, EFG has a
simple shape function and construction of the spatial
derivatives, due to the polynomial basis and weight
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function, are easy. Essential boundary conditions can
be easily implemented, using the penalty method.

Second, using the same order of shape functions
for displacement and excess pore water pressure is
e�cient to avoid spatial oscillation, if a fully implicit
scheme in the time domain is used.

Third, since the weakform developed in this paper
is an incremental Galerkin weak form, so it can be used
improved for nonlinear problems.
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APPENDIX A

Derivation of Weak Forms

Weighted residual method is employed to obtain the
weak forms:

� The weak form of the equilibrium equation (Equa-
tion 1):Z



(��ij;j + �bi)!d
 = 0; (A1)

where ! is the test function (it is a variation of the
displacement increment - �(�u)- for the equilibrium
equation).

Integration by parts of Equation A1 leads to
the following equation:Z

�
��ijnj!d��

Z



��ij!;jd
+
Z



�bi!d
=0:

(A2)

Now, by substituting boundary conditions (Equa-
tion 7) in Equation A2, one obtains:Z

�t
�ti!d�+�

Z
�u
(1=2)(�u��u)T�pu(�u��u)d�

�
Z



��ij!;jd
 +

Z



�bi!d
 = 0:
(A3)

By applying Terzaghi's e�ective stress principle
(Equation 4) in Equation A3, the following is ob-
tained:Z

�t
�ti!d�+�

Z
�u
(1=2)(�u��u)T�pu(�u��u)d�

�
Z



��0ij!;jd
 +

Z


��p�ij!;jd


+
Z



�bi!d
 = 0: (A4)

Inserting the constitutive law for the soil skeleton
(Equation 5) into Equation A4 the following is

obtained:Z
�t
�ti!d�+�

Z
�u

(1=2)(�u��u)T�pu(�u��u)d�

�
Z



Dijkl�"kl!;jd


�
Z



Dijkl(1=3)cs�kl�p!;jd


+
Z



��p�ij!;jd
 +

Z



�bi!d
 = 0:
(A5)

By employing the Galerkin method:

! = �(�u); !;j = �(L�u): (A6)

Substituting Equation A6 into A5 and, after rear-
rangement, the constrained Galerkin weak form of
the equilibrium equation (Equation 10) is obtained.

� The weak form of the continuity equation of the pore
water ow (Equaiton 3) is as follows:Z



(vi;i + _n)!0d
 = 0; (A7)

where !0 is test function. (It is a variation of the
pore pressure increment - �(�p)- for the continuity
equation.)

Integration by parts yields:Z
�
vini!0d��

Z


vi!0;id
 +

Z



_n!0d
 = 0: (A8)

Substituting boundary conditions (Equation 8) in
Equation A8 yields the following:Z

�v
vini!0d�+�

Z
�p
(1=2)(�p��p)T�pp(�p��p)d�

�
Z



vi!0;id
 +

Z



_n!0d
 = 0: (A9)

Considering Darcy's law for ow in porous media
(Equation 6) and inserting Equation 12 leads to:

vi = �Kij

�
y +

p


�
;j

= �Ki2 � (Kij=)p;j

= �Ki2 � (Kij=)(pt + ��p);j : (A10)

By employing the Galerkin scheme:

!0 = �(�p); !;i = �(Lp�p); (A11)

and substituting Equations A10 and A11 into Equa-
tion A9 and, after rearrangement, the constrained
Galerkin weak form of the continuity equation of
pore water (Equation 13) is obtained.
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APPENDIX B

Imposition of Essential Boundary Conditions

Due to the lack of Kronecker delta function properties
in the MLS shape function, there is a di�erence
between the displacement of MLS approximation and
the prescribed displacement on the essential boundary.
The same concept exists for prescribed pore pressure
on the essential boundary:

�u 6= �u; on �u; �p 6= �p; on �p: (B1)

Therefore, the test functions of �(�u) and �(�p) are
not equal to zero on the essential boundaries for the
weak forms of the equilibrium equation and continuity
equations, respectively, which are in contrast to the
conventional FEM. In FEM, for the Kronecker delta
function properties, the test functions, �(�u) and
�(�p), are equal to zero on the essential boundaries.
Hence, in FEM, the curve integrals on � in the weak
forms (Equations A2 and A8 in Appendix A) will
change to the curve integrals on �t and �v (Equa-
tions A3 and A9), and the curve integrals on �u and
�p will be zero in these equations.

To penalize the di�erence between the
approximated and the prescribed state variables
on essential boundaries in EFG, the terms,
�
R

�u
(1=2)(�u � �u)T�pu(�u � �u)d� and

�
R

�p
(1=2)(�p � �p)T�pp(�p � �p)d�, are added to

the weak forms (Equations 10 and 13) to introduce
the constrained Galerkin weak form using the penalty
method. These terms are produced by the penalty
method for handling essential boundary conditions for
cases when �u��u 6= 0 and �p��p 6= 0. They can
be viewed physically as smart terms that can force
�u��u = 0 and �p��p = 0. If the trial functions,
�u and �p, can be so chosen that �u ��u = 0 and
�p � �p = 0 (similar to FEM), the smart terms will
be zero and the added terms will vanish completely.

Considering the term �
R

�u
(1=2)(�u �

�u)T�pu(�u��u)d�, the following can be written:

�
Z

�u
(1=2)(�u��u)T�pu(�u��u)d�

=
Z

�u
�(�u)T�pu(�u��u)d�

=
Z

�u
�(�u)T�pu�ud�

�
Z

�u
�(�u)T�pu�ud�: (B2)

Substituting the expression of the MLS approximation

for the displacement increment of Equation 14 into
Equation B2 the following is obtained:Z
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=
ntX
I

ntX
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�(�uI)T (K�
uIJ )�uJ

�
ntX
I

�(�uI)T (�F�uI ); (B3)

where K�
uIJ and �F�uI are nodal penalty matrix and

nodal penalty vector for the weak form of the equilib-
rium equation, respectively; and nt is the total number
of nodes in the entire problem domain. (Note that,
in the weak form, the integration is over the entire
problem domain, and all the nodes can be involved.
Therefore, the summation limits have to be changed to
nt).

Finally we have:

ntX
I

ntX
J

�(�uI)T (K�
uIJ )�uJ �

ntX
I

�(�uI)T (�F�uI )

= �(�U)T (K�
u�U ��F�u ): (B4)

In which K�
u and �F�u are the global penalty matrix

and the global penalty vector for the weak form of the
equilibrium equation, respectively; which are imple-
mented in the system Equation 21 for the equilibrium
equation.

A similar approach is used for implementation
of K�

p and �F�p in the system Equation 23 for the
continuity equation.


