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An Improved Non-Linear Physical
Modeling Method for Brace Elements

A. Davaran1;� and M. Adelzadeh1

Abstract. In this paper, the cyclic nonlinear behavior of a brace element has been modeled. A brace
element is modeled as two elastic beam-column segments, which are connected to each other via a plastic
hinge. The far ends of the element are hinged. By a suitable combination of the isotropic and kinematical
hardening rules of plasticity, the nonlinear axial force-displacement relation for a beam element has been
derived. So, the strain hardening, strain softening, tangential modulus of elasticity and Bauschinger
e�ects are taken into account. This model shows good agreement with experimental results that have been
reported in other research works.
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INTRODUCTION

Concentric bracing is commonly used as a lateral load
resisting system in steel structures. This system is
comprised of brace elements. A brace element is a
beam-column element, which buckles in compression
with a subsequent plastic zone (ideally plastic hinge)
formation in its mid-span. The plastic hinge rotation
in compression or tension, as well as the extensional
plastic deformation of the element, causes a part of the
induced external energy to be dissipated per loading
cycle. The precise cyclic behavior of a brace element
is not yet well understood and many factors, such
as buckling and post-buckling behavior, Bauschinger
e�ect, local buckling and low- cycled fatigue failure,
complicate the precise analytical prediction of the
cyclic behavior. Nevertheless, the growth of more
powerful seismic codes, e.g., performance-design meth-
ods require that the inelastic behavior of this type of
structure can be simulated as accurately as possible.

Many analytical methods have been developed for
predicting the cyclic behavior of brace elements, which
can be classi�ed into three groups:

a) Finite element method;
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b) Phenomenological method;

c) Physical modeling method.

The �nite element method can provide a more precise
response of the brace element, but it is very time
consuming for use in the practical analysis of structures
with so many elements [1].

The phenomenological method mimics the cyclic
behavior of the brace element by using simple relations
that are successfully used for the analysis of large-scale
structures. The main shortcoming of this method is
that many experimental parameters are to be adjusted
to simulate the cyclic behavior of each brace element.

The variation of these parameters seriously
changes the �nal behavior. In addition, the precise
choice of these parameters is very tedious and a lot of
experiments have to be done for every speci�c case.

On the other hand, the physical model theories
attempt to present the geometric and material nonlin-
ear behavior of the brace element via the physical and
geometrical properties of the member such as: Cross
sectional area, moment of inertia, e�ective length and
plastic modulus. Examples of these methods can be
viewed in the works of Nilfrooshan [2] and Nanaka [3].
Most of these methods have some restrictions, for
instance:

a) The plastic behavior is concentrated at a point
called the plastic hinge, so the distributed plasticity
is ignored;
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b) The material is assumed to be elastic-perfectly
plastic with no Bauschinger e�ect;

c) The compressive force reduction in subsequent
cycles is not taken into account;

d) The end condition is only hinge-hinge.

The following methods have been developed to modify
parts of the above-mentioned faults.

For example, Ikeda and Mahin [1] and Remenikov
and Walpole [4] could enter the Bauschinger e�ect, and
deterioration of the postbuckled compressive force has
been revealed in their models.

Recently, El-Tawil and Jun Jin [5] proposed a
beam-column brace element with the capability of
distributed plasticity simulation and work hardening
material modeling. Their model also can include any
kind of end conditions.

In this paper, based on the method developed
by Remennikov and Walpole [6], work hardening rules
have been modi�ed, so that good agreement between
experimental and modi�ed analytical methods has
been attained.

The experimental results gained from the work of
other researchers [7,8], have been used as a bench mark
to validate the obtained results.

GENERAL CHARACTERISTICS OF
BRACE ELEMENT CYCLIC BEHAVIOR

Every cycle of the nonlinear load-displacement re-
sponse of a brace element is separated into di�erent
zones, corresponding to the di�erent de
ected positions
of the element.

A complete hysteretic cycle of an element is

divided to four general zones of elastic, plastic, axial
yielding and a post-buckled elasto-plastic zone (see
Figure 1). It should be mentioned that the word
\elastic" or \plastic" pertains to the plastic hinge state,
while the word \yield" relates to the state of the beam
segments.

The beam segments are assumed to behave elas-
tically, with the exception of cases wherein the element
is axially extended beyond the yield point. Other
than the aforementioned tensile yielding case of beam
segments, the rest of the plastic behavior is assumed
to be revealed in mid-span plastic hinges only. The
elastic zone can be separated into a shortening zone
(ES1, ES2) and an elongation zone (EL1, EL2). In
the shortening zone, both the length and axial force of
the member are decreased. The converse situation is
occurred in an elongation zone. Similarly, the plastic
zone is separated into plastic contraction P1 and plastic
elongation P2.

BASIC EQUATIONS

For simplicity, basic equations are derived for the right
half of a brace member, as shown in Figure 2.

The de
ected shape of the right half of the brace is
obtained by solving the basic beam-column equations:

EI�IV + P�00 = 0: (1)

By solving Equation 1 and considering the boundary
conditions, the plastic hinge moment- rotation relation-
ship can be written as [9,10]:

M = 
(k)
EtI
L
�; (2)

Figure 1. De�nition of di�erent zones; (a) P � � curve, (b) P �M curve and (c) P � � curve.
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Figure 2. Typical geometry of model.

where:

k2 =
jP jL2

EtI
; (3)


(k) =

(
k
2 tan

�k
2

�
P < 0

�k2 tanh
�k

2

�
P > 0

(4)

From Equation 2, the plastic hinge rotation can be
expressed as:

� =
LM


(k)EtI
: (5)

The tangent modulus of elasticity Et varies in di�erent
zones and is determined based on the experimental
data on stub columns. In this paper, Et is prepared
based on an empirical model that has been used by
most researchers, as shown in Figure 3.

The total axial deformation increment is assumed
to consist of four components:

d� = d�e + d�g + d�p + d�ty; (6)

Figure 3. Empirical model of tangent modulus of
elasticity.

where:

�e is the elastic axial deformation;
�g is the geometric shortening deformation;
�p is the plastic hinge deformation;
�ty is the tensile yield deformation.

The elastic axial deformation increment can be
expressed as:

d�e =
L
EtA

dP: (7)

The expression for the geometric shortening deforma-
tion is:

�g = �1
2

Z L

0
(�0(x))2dx: (8)

The incremental form of Equation 8 can be expressed
as:

d�g = L2
�
dh(k)
dk

dk
dP

�2

L
+ 2h(k)�

d�
dP

�
; (9)

h(k) =

8>><>>:
sin k
k +1

16 cos2 k
2

P < 0

sinh k
k +1

16 cosh2 k
2

P > 0

(10)

The plastic hinge deformation increment is evaluated
via the 
ow rule, according to Druker's postulate [11]:

d�P = d�:fP ; d�P = d�:fM ; (11)

where fP and fM denote the derivatives of yield
function f , with respect to P and M . For a uni-
axial stress state, the yield surface can transform into
function inter-relating stress resultants, i.e. axial force
P and bending moment M . This function is usually
demonstrated in the form of an interaction curve.
The P � M interaction curves can be generated for
any cross-section using simple beam-column theoretical
formulas [9].

For example, the interaction curve for the
150UC30 section is shown in Figure 4, which has been
used in one of the examples.

From Equation 11, the plastic hinge displacement
takes the form:

d�p =
fP
fM

d�p
dP

dP: (12)

From Equations 7, 9 and 12, dP can be de�ned as
follow:
dP = Ktd�; (13)

Kt =

EtA

1+EtAL2
h
dh(k)
dk

dk
dP

�2

L +2h(k)� d�dP
i
+EtA fP

fM
d�p
dP

:
(14)
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Figure 4. Interaction curve for the 150uc30 section.

Kt is the tangent sti�ness coe�cient, in general, and it
should be noted that, if the brace behaves under elastic
loading or unloading conditions, the terms pertaining
to the plastic state in Equation 14 must be skipped.
It should be mentioned that an initial imperfection, in
the form of an initial �, is required for starting the
numerical procedure.

A general form of hysteretic curve resulting from
Equation 14, without considering the hardening e�ect,
is shown in Figure 5. This curve has been obtained for
a brace with an H-shaped cross-section which will be
fully discussed in the next section.

From Figure 5, it can be seen that this model
accurately shows a decrease in buckling load capacity,
especially in the second cycle, as compared with the
�rst cycle.

HARDENING OF MATERIAL

In this article, a combination of kinematical and
isotropic hardening rules, i.e. a mixed hardening rule,
is explained to simulate the hardening behavior of
material to obtain a compliance with experimental
results. Each kind of hardening rule is brie
y explained
in the following sections.

ISOTROPIC HARDENING

The isotropic hardening rule is the simplest hardening
rule, which is recognized via identical and independent
strain hardening, both for tension and compression
paths, without revealing the Baucshinger e�ect. Con-
sequently, the yield surface expands uniformly during
hardening.

Suppose that the initial yield surface is described

Figure 5. Analytical cyclic behavior of a brace element.

by:

f(P;M) = 0: (15)

By the aforementioned de�nition, the isotropic harden-
ing can be expressed as:

f(P;M)� �(�) = 0: (16)

Usually, there are two measures of hardening, which
have been speci�ed as follows [12]:

1. On the basis of the plastic strain:

� = "p =
Z
d"p: (17)

2. On the basis of the total plastic work:

� = W p =
Z
�d"p: (18)

Considering both de�nitions, it appears that strain
hardening is simpler to use, but the work-hardening
hypothesis is more general.

KINEMATICAL HARDENING

In the kinematical hardening model, it is assumed that
during the process of plastic loading the yield surface
translates in the stress space, but its shape and size
remain unchanged.

This is motivated by the Bauschinger e�ect, which
occurs in the uni-axial tension - compression behavior
of steel materials.

In this model, the yield surface takes the following
form:

f(P � �P ;M � �M ) = 0; (19)

in which � = (�P ; �M ) represents the center of the
yield surface in stress space.
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There are several methods to determine �. In the
present study, the Prager method has been used.

According to the Prager method, the increment of
� is proportional to the increment of the plastic strain
as follows:

d� = cd"p; (20)

where c is a material constant.
By assuming this model, the yield surface keeps

its original shape and size, but moves in the direction
of the plastic strain rate (or increment), which is
normal to the yield surface at the loading point, due
to the normality condition. By virtue of the measured
response of a braced element, the real plastic behavior
seems to be well established with a combination of
both hardening rules at the plastic hinge. From a
computational point of view, the derivatives of yield
function, f , i.e. fP and fM , in Equation 14, are
calculated via the instantaneous state of the yield
function, which is altered by Equations 16 to 20. As
a special case of no hardening, the elastic perfectly
plastic behavior governs and the yield function and its
derivatives remain constant overall in the analysis.

COMPARISON OF ANALYTICAL AND
EXPERIMENTAL DATA

To investigate the accuracy of the theoretical model
prediction, a computer program has been written,
based on the presented formulation. The experimental
data of two brace elements are extracted from valid
references and are compared with the analytic results
of this paper. These tests have been carried out by
Popov et al. and Walpole- Leowardi [13] on tubular
and wide 
ange sections, respectively.

Brace Element Investigated by
Walpole-Leowardi

A test was conducted on the pinned-pinned speci-
men with a length of 2.41 m and a 150UC30 cross-
section [13], having the following properties:

A = 3:795� 10�3:m2; I = 5:62� 10�6:m4;

E = 2� 1011 Pa; Fy = 3:2� 108 Pa:

In Figure 6, the dashed line denotes the experimental
result and the solid line denotes the analytical result.

The axial force vs plastic hinge rotation and the
history of the axial force plastic hinge moment in
consecutive cycles are shown in Figures 7 and 8, re-
spectively. It must be noted that the dashed lines have
been provided by precise scanning of the clear graphs,
which are available from the mentioned reference, and
then by redrawing and having them undergo special
treatment using ACAD drafting tools.

Figure 6. Comparison of analytical and experimental
P � � curves.

Figure 7. P � � curve.

Figure 8. P �M curve.
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Brace Element Investigated by Popov et al.

Popov et al. conducted tests on six tubular struts [7],
one of which is veri�ed here. The test specimen
properties are shown in Figure 9.

As Figure 10 shows, a good adjustment exists
between experimental and analytical results. In Fig-
ures 11 and 12, the P � � and P �M cyclic curves at
the plastic hinge are depicted, respectively.

CONCLUSIONS

In this paper, regarding the observed experimental re-
sults of the cyclic nonlinear behavior of brace elements,
the physical modeling method is further improved to
obtain more adjustment between experimental and
analytical hysteresis curves. Both the kinematical and
istropic strain hardening rules are suitably combined

Figure 9. Speciment used in tests by Popov et al.

Figure 10. Comparison of analytical and experimental
P � � curves.

Figure 11. P � � curve.

Figure 12. P �M curve.

and added to a code, which is prepared in Matlab,
based on the recent works of other researchers. The
modi�ed method has been applied to predict the
hysteresis response of two di�erent brace elements
that have been studied as bench mark cases by many
researchers. A reasonable agreement can be deducted
by comparing the analytic and experimental hysteresis
loops.

A slight discrepancy, which is observed in a few
cycles, especially in the second example, can be at-
tributed to local buckling and low cycle fatigue e�ects,
which cannot yet be gained by this method. These local
e�ects can be handled using a non-linear �nite element
approach.

It seems the presented method could be further
improved to encompass the aforementioned e�ects.
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