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Application of Particle Swarm Optimization
to Optimal Design of Cascade Stilling Basins

M. Daraeikhah1, S.H. Meraji1 and M.H. Afshar1;�

Abstract. This paper employs the Particle Swarm Optimization (PSO) method to solve the problem
of the optimal design of cascade stilling basins. PSO is a relatively recent heuristic search method whose
mechanism is inspired by the swarming or collaborative behavior of biological populations. The objective
of this research is to minimize the total construction cost of cascade stilling basins, which is a function
of height of the falls and length of stilling basins, while ful�lling the hydraulic and topographical criteria.
To illustrate the application of PSO, a benchmark design is taken from the work of Vittal and Porey [1]
on a cascade stilling basin for the Tehri Dam, India.
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INTRODUCTION

Energy dissipation below hydraulic structures, like
dams, barrages across rivers and control weirs on
canals, is accomplished conventionally by single-fall
hydraulic jump-type stilling basins and roller buckets
on trajectory buckets. However, in the case of high
head dams, the kinetic energy at the toe of the spillways
is very high and the tailwater depths available in the
river are often inadequate for the former two devices.
Narrow and curved gorges, consisting of fractured rock,
prohibit the adoption of the last. In such situations,
especially for earth and rock �ll dams, a system of
falls cascading down the side of a valley, with a stilling
basin below each fall, can be used as an alternative
spillway. The �rst design method for this system was
developed by Vittal and Porey [1]. In this method, the
height of the lowest fall is determined by the available
river tailwater depth at design discharge, whereas the
number of preceding equal-height falls are determined
by the available distance for the spillway sections and
stilling basins. Thus, it seems to be empirical to
some extent and does not lead to an optimal design,
so, it is necessary to use an alternative approach to
obtain an optimal solution. In this paper, a PSO
algorithm is proposed for the optimal design of cascade
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stilling basins. The results of the PSO model are
compared with the results generated from the Vittal
and Porey method. It is also shown that the PSO
approach can produce better designs than those of
the Vittal and Porey method, in almost all the cases
considered. This paper is organized in �ve major
sections. First, the PSO algorithm is summarized.
Second, the Vittal and Porey method is explained.
Next, an optimization model of cascade stilling basins,
using the PSO algorithm, is introduced, and a case
study and conclusions are presented in the last two
sections.

PARTICLE SWARM OPTIMIZATION

In 1995, Russell Eberhart and James Kennedy [2]
applied a model to the problem of �nding optima in
a search space, which can be compared to a ock of
birds looking for a food source, and created the PSO
algorithm. The literature describing the application
of PSO to water engineering is not abundant. Gill
et al. [3] described a multi-objective optimization ap-
proach using PSO for parameter estimation in hydrol-
ogy.

Suribabu [4] applied a PSO for deriving operation
policies for maximum hydropower generation. Also,
in 2006, Suribabu and Neelakantan [5] used PSO to
the optimal design of water distribution networks.
Finally, Meraji and Afshar [6] used the algorithm to the
reservoir operation of the Dez Dam in Iran. Also, they
combined the PSO optimizer with an SWMM simulator
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to develop a model for the optimal design of a ood
control system.

In PSO, a collection of particles, called a \swarm",
move around in search space looking for the best
solution to an optimization problem. All particles have
their own velocity that drives the direction they move
in. This velocity is a�ected by both the position of
the particle with the best �tness and each particle's
own best �tness. Fitness refers to how well a particle
performs. In a ock of birds, this might be how close
a bird is to a food source; in an optimization algo-
rithm, �tness is a function of the objective function.
Each particle's location is given by the parameters of
the given optimization problem and a particle moves
around in search space by adapting and changing these
parameter values. At each time step, the particle's
�tness is measured by observing the parameter values
(location) of the particle. A particle keeps track of the
best position it has reached so far (called the personal
best position) and is also aware of the position of the
overall best particle at a certain time step (called the
globally best position). At each time step, the particle
tries to adapt its velocity (i.e. speed and direction)
to move closer to both the globally best position and
the personal best position, in order to try and improve
its �tness. Two variants of the PSO algorithm were
developed; one with a global neighborhood and one
with a local neighborhood. According to the global
variant, each particle moves towards its best previous
position and towards the best particle in the whole
swarm. On the other hand, according to the local
variant, each particle moves towards its best previous
position and towards the best particle in its restricted
neighborhood [2]. In the following paragraphs, the
global variant is exposed (the local variant can be easily
derived through minor changes).

Suppose that the search space is D-dimensional,
then, the ith particle of the swarm can be represented
by a D-dimensional vector, Xi = (xi1; xi2; � � � ; xiD)T .
The velocity (position change) of this particle can
be represented by another D-dimensional vector,
Vi = (vi1; vi2; � � � ; viD)T . The best previously vis-
ited position of the ith particle is denoted as Pi =
(pi1; pi2; � � � ; piD)T . De�ne g as the index of the best
particle in the swarm (i.e., the gth particle is the
best) and let the superscripts denote the iteration
number, then, the swarm is manipulated according to
the following two equations [2]:

vn+1
id =vnid+crn1;i;d(p

n
id�xnid)+crn2;i;d(p

n
gd�xnid); (1)

xn+1
id = xnid + vn+1

id ; (2)

where d = 1; 2; � � � ; D; i = 1; 2; � � � ; N , and N is the
size of the swarm; c is a positive constant, called the
acceleration constant; r1;i:d, r2;i;d are random numbers,

uniformly distributed in [0; 1]; and n = 1; 2; � � � deter-
mines the iteration number.

Equations 1 and 2 de�ne the initial version of the
PSO algorithm. Since there is no actual mechanism for
controlling the velocity of a particle, it was necessary to
impose a maximum value, Vd;max, on it (i.e. �Vd;max �
V n+1
id � Vd;max). If the velocity exceeded this thresh-

old, it was set equal to Vd;max. This parameter proved
to be crucial, because large values could result in
particles moving past good solutions, while small values
could result in insu�cient exploration of the search
space. The value of Vd;max is usually chosen to be
K � Xd;max with 0:1 � k � 1:0, where Xd;max is the
upper bound of the search space of particles in the dth
dimension [7]. This lack of a control mechanism for the
velocity resulted in low e�ciency for PSO, compared to
EC techniques [8]. Speci�cally, PSO located the area
of the optimum faster than evolutionary computation
techniques, but once in the region of the optimum, it
could not adjust its velocity step size to continue the
search at a �ner grain. The aforementioned problem
was addressed by incorporating a weight parameter for
the previous velocity of the particle. Thus, in the latest
versions of the PSO, Equations 1 and 2 are changed to
the following ones [9,10]:

vn+1
id = �(wvnid + c1rn1;i;d(p

n
id � xnid)

+ c2rn2;i;d(p
n
gd � xnid)); (3)

xn+1
id = xnid + vn+1

id ; (4)

where w is called inertia weight; c1 and c2 are two pos-
itive constants, called cognitive and social parameter,
respectively; and � is a constriction factor, which is
used alternatively to w and to limit velocity. The role
of these parameters is discussed in the next section.

The Parameters of PSO

The role of the inertia weight, w, in Equation 3, is
considered critical for the PSO's convergence behavior.
The inertia weight is employed to control the impact
of the previous history of velocities on the current one.
Accordingly, the parameter, w, regulates the trade-o�
between the global and local exploration abilities of
the swarm. A large inertia weight facilitates global
exploration (searching new areas), while a small one
tends to facilitate local exploration, i.e. �ne-tuning the
current search area. A suitable value for the inertia
weight, w, usually provides a balance between global
and local exploration abilities and, consequently, re-
sults in a reduction of the number of iterations required
to locate the optimum solution. Initially, the inertia
weight was constant. However, experimental results
indicated that it is better to initially set the inertia to
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a large value, in order to promote global exploration
of the search space, and gradually decrease it to get
more re�ned solutions. Thus, Shi and Eberhart [9,10]
made a signi�cant improvement in the performance of
the PSO, with a linearly varying inertia weight over
the iterations, which linearly varies from wmax at the
beginning of the search to wmin at the end. Thus,
the following weighting function is usually utilized in
Equation 3:

w = wmax � (wmax � wmin)� n
itermax

; (5)

where wmax and wmin are the maximum and minimum
value of inertia weight, respectively, n is the current
iteration number and itermax is the maximum iteration
number. The parameters c1, c2 in Equation 3 are not
critical for PSO's convergence. However, proper �ne-
tuning may result in faster convergence and alleviation
of local minima. An extended study of the acceleration
parameter in the �rst version of PSO is given in [11].
As default values, c1 = c2 = 2 were proposed, but
experimental results indicate that c1 = c2 = 0:5 might
provide even better results. Recent work reports that
it might be even better to choose a larger cognitive
parameter, c1, than a social parameter, c2, but with
c1 + c2 � 4 [12]. The parameters r1 and r2 are used
to maintain the diversity of the population and they
are uniformly distributed in the range [0, 1]. The
constriction factor, �, controls the magnitude of the
velocities, in a way similar to the Vd;max parameter,
resulting in a variant of PSO di�erent from the one
with the inertia weight.

VITTAL & POREY DESIGN PROCEDURE

The design of cascade stilling basins was �rst in-
troduced by Vittal and Porey in 1987 [1]. In the
following paragraphs, the considerations and procedure
for the design of cascade stilling basins, as well as the
necessary relationships for design, are presented. The
procedure for the design of cascade stilling basins can
be summarized as:

1. Determination of the height and the length of the
terminal fall and the proportioning of a suitable
stilling basin for it;

2. Determination of the number and nature of the
preceding falls;

3. Determination of the height of the raised crest for
the preceding falls.

Terminal Fall

The height of terminal fall Ht (the di�erence in the
levels of the terminal crest and river bed in Figure 1)

Figure 1. Longitudinal section of cascade of falls.

is determined, such that the post jump depth of ow
for hydraulic jump formation at the design discharge is
equal to the tailwater depth available in the river. This
will avoid deep excavation of the river bed, which would
be expensive and might induce dangerous landsliding
of the valley slope.

Ht =
gy4
td

7:80q2
d
; (6)

where qd is the unit design discharge, ytd is the
tailwater depth at the design discharge and g is the
acceleration due to gravity. The de�ciency or excess
of tailwater at partial discharge can be known by
comparing the Free-Jump-Height Curve (FJHC) for
the terminal fall with the Tailwater Rating Curve
(TWRC) of the river. In the event of a tailwater excess,
the stilling basins need not be depressed, whereas, in
the event of a de�ciency, the oor will be lowered by
�zt, equal to the maximum di�erence in the ordinates
of FJHC and TWRC at partial discharge. With the
drop in the oor level, the height of the terminal
crest above the stilling basin oor, Pt, will now be
replaced by Ht + �zt. The length of the stilling basin
for the terminal fall will vary according to the Froud
number [13]:

Lt =

(
4:25y2d Fr1 � 4:5
2:80y2d Fr1 < 4:5

(7)

where Lt is the length of the stilling basin for terminal
fall, y2d is the post jump depth of ow at the design
discharge and the Froude number is the pre jump
Froude number for the last cascade, which may be
computed from Equation 8 by trial and error [13]:
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1 � 1
2 1

3C 2
3

� 3
2

; (8)

where C is the discharge coe�cient.
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Preceding Falls

The length required to accommodate all the spillway
section and stilling basins, (L), is:

L = (N � 1)(xp + Lp) + (xt + Lt); (9)

in which xt and xp are the base widths of the spillway
sections; Lt and Lp are the lengths of the stilling basins
for the terminal fall and preceding falls, respectively;
and N is the number of cascades. Adopting the ogee
pro�le given by [13], one obtains the following:

y
h0d

= 0:50
�
x
h0d

�1:85

; (10)

in which x and y are the coordinates of the spillway
pro�le and h0d is the total head over crest at the design
discharge. The following equations can be written for
xt and xp:

xt = 1:455h0d

�
Pt
h0d

� 1
1:85

; (11)

xp = 1:455h0d

�
P
h0d

� 1
1:85

: (12)

The equation suggested by Poggi [14] for the oor
length of stilling basins without appurtenance can be
adopted for a cascade system:

Lp = 6(y2 � y1); (13)

where y1 and y2 are the pre-jump and post-jump depths
of ow, respectively.

The height of the crest above the stilling basin
oor, (P ), for the preceding falls of equal height can
be calculated from Equation 14 [1]. Assuming a known
value of N , Equation 14 can be solved for P by trial
and error:

P =
H0 �Ht

N
+ 1:671

q
1
2
d P

1
4

g 1
4
�
�

qd
C
p

2g

� 2
3

+ 0:179
qd

g 1
2P 1

2
: (14)

To force the jump, a control or crest, preferably of ogee
pro�le, is placed at the end of the oor. The required
height of crest �z for jump formation at the design
discharge is given by:

�z = P � H0 �Ht

N � 1
: (15)

Here, P is computed from Equation 14, H0 is the total
fall and Ht is the height of the terminal fall.

OPTIMAL DESIGN OF CASCADE
STILLING BASINS

The aim of the PSO model is to minimize the con-
struction cost of the system by changing the design
variables, i.e. height of falls and length of stilling
basins, while ful�lling the topographical and hydraulic
criteria. The design principles used in the optimization
model are those of the Vittal and Porey method, with
the di�erence that, in the Vittal and Porey method,
the length and the height of the preceding falls are
equal, thus, it is not necessarily optimal. However, the
PSO model can choose di�erent values for the height
and length of the falls in order to design a system
with optimum cost. The optimization model can be
mathematically stated as follows:

Minimize f =
NX
i=1

(f1(Pi; `i) + f2(Pi; `i)); (16)

where f is the total cost of construction, which is a
function of the design variables, and f1 and f2 are
the concrete and excavation costs of the ith cascade,
respectively, Pi is the height of the ith fall, li is the
length of the ith fall, and N is the total number
of cascades. The general constraints of the system
are topographical and hydraulic as explained in the
following paragraphs.

Topographical Constraints

NX
i=1

(L(i) + x(i)) = La; (17)

H0 �
NX
i=1

(Pi ��z(i))��zt = 0; (18)

where La is the total length available, which is the
horizontal distance between the center point of the �rst
fall and the terminal point of the last basin; �zt is
equal to the maximum di�erence in the ordinates of
FJHC and TWRC at partial discharge; and �z(i) is
the height of the crest for the ith fall. The required
height of crest �z(i) for jump formation at the ith fall
and the design discharge is de�ned as follows [1]:

�z(i) = 1:671
q0:5
d Pi
g 1
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�
�
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g 1
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;

�z(N) = 0; (19)

where C is the discharge coe�cient, qd is the unit
design discharge and Pi is the height of the ith fall.
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Hydraulic Constraints

Maximum and Minimum Height of the Fall

Pmin � Pi � Pmax: (20)

Pmax and Pmin are the maximum and minimum allow-
able heights of the falls, respectively, which have been
calculated using the maximum and minimum pre-jump
Froude numbers of the ow in the corresponding stilling
basins. For the range of Froud numbers of the incoming
ow between 4.5 and 9, a stable and well-balanced
jump occurs. Turbulence is con�ned to the main
body of the jump and the water surface downstream
is comparatively smooth [13]. Thus, Fr1;max = 9 and
Fr1;min = 4:5:

Pmax =
q

2
3
d

g 1
3
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1
2

Fr
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3
1 max + Fr
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3

1max
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2 1
3C 2

3

�
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q
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3
d

g 1
3
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+ Fr
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1min
� 1

2 1
3C 2

3

�
: (22)

Minimum Length of Stilling Basins

li � li;min; (23)

where li;min is the minimum allowable length of the falls
and is determined based on the so-called throw length
of the jet and the necessary length of a hydraulic jump.

li;min = 6(y2;i � y1;i): (24)

with:

h0D =
�

qd
C
p

2g

� 2
3

; (25)

y1;i =
�

qd
g 1

2 Fr1i

� 2
3

; (26)

y2;i =
y1;i

2

�q
1 + 8Fr2

1i � 1
�
: (27)

y1;i and y2;i are the pre-jump and post-jump depths of
ow, respectively; Fr1;i is the pre-jump Froude number
in the ith fall; and C is the discharge coe�cient.

Minimum Height of Terminal Crest Above
Stilling Basins Floor

P (N) � Ht + �zt: (28)

The basin must be made deep enough to provide for the
full post-jump depth of ow (or some greater depth, to

include a factor of safety) at maximum spillway design
discharge. A tailwater depth greater than the required
post-jump depth is conducive to the formation of a so-
called drowned jump (with the drowned jump, instead
of achieving a good-type dissipation by intermingling
of the upstream and downstream ows, the incoming
jet plunges to the bottom and carries along the entire
length of the basin oor at high velocity). The above
constraint assures that the required post-jump depth
will be always greater than the tailwater depth.

The problem's constraints now can be written in
standard form as:

g1 = H0 �
NX
i=1

(Pi ��z(i))��zt = 0; (29)

g2 = La �
NX
i=1

(L(i) + x(i)) = 0; (30)

g3 = 1� Pi
Pmax

� 0; (31)

g4 = 1� Pi
Pmin

� 0; (32)

g5 = 1� li
limin

� 0; (33)

g6 = 1� Ht + �zt
P (N)

� 0: (34)

CASE STUDY

In this section, both the Vittal and Porey method and
the proposed PSO model are used for the design of the
Tehri dam spillway and the results are compared. The
Tehri dam is an earth and rock�ll dam, 260.50 m high,
on the river Bhagirathi, a tributary of the river Ganga
valley of the central Himalayan region of India. The
spillway is located on the right abutment of the dam.
At the dam site, the exposed rocks are alternate bands
of weak quartzites and phyllites. Various alternatives
for the type of spillway were considered. A single-
stage hydraulic jump-type stilling basin involves a
velocity of 66.00 m/s in the basin and a 15.00 m
riverbed excavation to make up for the de�ciency of
tailwater depth. A chute spillway, followed by a ski-
jump bucket, throws trajectories on the hill slopes
of the narrow valley, and the rocks cannot withstand
signi�cant impact. Further, the situation of the hills,
due to the spray, may result in sheet landslides. Thus,
a spillway with a cascade of falls and stilling basins
will be adopted. A 95.00 m wide control structure,
consisting of �ve bays of 16.00 m each, separated by
3.75 m thick piers, is provided with a full-reservoir level
of 818.00 m. Other design data are listed in Table 1.
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Table 1. Design data for Tehri dam.

Characteristic Datum
Design discharge, Qd 11000.00 m3/s
Total fall, H0 218.00 m
River level at exit 600.00 m
Length of spillway crest at lower falls 95.00 m
Tailwater depth at design discharge, ytd 29.20 m
Distance available between �rst crest and exit, La 778 m

Figure 2. TWRC and FJHC for terminal fall - Tehri dam
spillway.

As seen in Figure 2, the TWRC is entirely below
the FJHC at partial discharge, and the maximum
tailwater de�ciency of 2.06 m occurs at 1960 m3/s.
Hence, �zt = 2:06 m.

Considering the site condition and its type, there
exist just two types, N = 3 and N = 4, in the feasible
space. In the following, the results of the design by the
Vittal and Porey and PSO methods are compared (all
dimensions in meters). It is notable that, in this study,
the concrete and excavation costs per cubic meter are
considered to be 180000 and 23100, respectively.

PSO has several explicit parameters, whose values
can be adjusted to produce variations in the way the
algorithm searches the solution space. Shi and Eber-
hart [9,10] tried to examine the parameter selection of
these parameters. According to their examination, the

following parameters are appropriate and adopted in
this paper:

Wmax = 0:9; Wmin = 0:4; c1 = c2 = 2:0:

In the following, the results are presented.
Table 2 compares the results obtained by the

proposed PSO algorithm with that of Vittal and Porey.
Table 3 shows the maximum, minimum, average and
standard deviations of the solution costs obtained in 10
runs on a Pentium 4 with a CPU of 2.40 GHz and 512
MB of RAM. As mentioned above, for each swarm size,
the model has been run ten times and the best solution
is selected as an optimal cost, as presented in Table 4.
As can be seen from Table 4, in both cases the PSO
has produced superior results to the Vittal and Porey
method. The savings o�ered by the PSO are about
22 and 17 percent for the number of cascades equal to
3 and 4, respectively. Figures 3 and 4 schematically
compare the PSO and Vittal and Porey solutions for
N = 3 and N = 4, respectively. As can be seen clearly
in both cases, PSO has chosen a smaller height for the
�rst cascade than that of Vittal and Porey.

There is no rule as to how many particles should
be used to solve a speci�c problem. A large number
of particles allow the algorithm to explore the search
space faster; however, the �tness function needs to be
evaluated for each particle, so the number of particles
will have a huge impact on the speed at which the
simulation will run. Here, a sensitivity analysis is
carried out on the swarm size for a �xed number of

Table 2. Comparisons of the results obtained by PSO and vittal and porey method.
Cascade P L XP �z

No. PSO V.P. PSO V.P. PSO V.P. PSO V.P.
N = 3

1 62.28 93.55 304.88 175.39 48.98 58.15 15.48 17.80
2 92.39 93.55 173.95 175.39 57.68 58.15 17.67 17.80
3 92.39 66.87 134.26 125.04 57.68 46.19 0 0

N = 4
1 32.40 65.57 138.27 156.61 32.73 48.06 10.86 15.25
2 43.86 65.57 143.36 156.61 38.56 48.06 12.61 15.25
3 92.39 65.57 174.26 156.61 57.68 48.06 17.67 15.25
4 92.39 66.87 134.89 125.04 57.68 49.16 0 0

P : Height of crest above stilling basin oor �z: Rise of crest
L: Length of stilling basin XP : Base width of spillway section
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Table 3. Solution costs and average run time obtained in 10 runs.

Population Maximum
(106)

Minimum
(106)

Average
(106)

Standard
Deviation (106)

CPU Time/Run
(sec)

N = 3
25 1063.4 979.1 1014.2 28.6 70
50 1143.7 986.9 1025.8 48.6 68
100 1080.9 982.8 1019.3 30.4 67
125 1051.9 976.8 1013.1 24.5 70
150 1063.6 940.1 1008.6 37.2 71
200 1054.9 983.5 1014.5 26.6 66

N = 4
25 1025.5 930.3 976.8 31.3 87
50 1034.1 917.8 989.1 34.8 85
100 1025.1 922.1 966.5 31.1 88
125 1029.4 951.9 996.3 26.9 89
150 1049.1 914.8 985.7 48.5 87
200 1063.7 943.4 983.3 36.5 86

Figure 3. Comparison between PSO and Vittal and
Porey designs (N = 4).

Figure 4. Comparison between PSO and Vittal and
Porey designs (N = 4).

50,000 function evaluations. Figures 5 and 6 show the
variations of the solution costs with the swarm sizes
used for N = 3 and N = 4, respectively. It is seen
that the best results are obtained with swarm sizes
of 150 for the number of cascades equal to 3 and 4.
Figures 7 and 8 show the convergence characteristics

Table 4. Optimal unit cost of the designs (106).

N PSO V.P.
3 940 1194
4 914 1094

of the PSO for N = 3 and N = 4. It is clearly seen
that the method has been e�ectively able to locate the
best solutions within 20,000 function evaluations, long
before the maximum number of function evaluations
has been exhausted.

CONCLUSION

A Particle Swarm Optimization (PSO) algorithm is
applied to the cascade stilling basins problem. A
cascade system of falls with a stilling basin below
each fall is well suited to energy dissipation below
high head spillways. The previous design method of
a cascade stilling basin was based on the hypothesis
that the length and height of the preceding falls are
equal; thus, it seems to be empirical, to some extent,
and not necessarily optimal. While a lot of meta-
heuristic algorithms have been developed for combi-
natorial optimization problems, PSO has been basi-
cally developed for continuous optimization problems.
One particularly interesting aspect of the algorithm is
that there are very few parameters to adjust. Also,
PSO comprises a very simple concept and can be
implemented in a few lines of computer code. It
requires only primitive mathematical operators and is
computationally inexpensive, in terms of both memory
requirements and speed. The performance of PSO is
compared to that of the Vittal and Porey method on a
test example of the Tehri dam spillway. The result
indicated that the optimization model is capable of
signi�cant savings in the cost of cascade stilling basins.
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Figure 5. Sensitivity of PSO to swarm size (N = 3).

Figure 6. Sensitivity of PSO to swarm size (N = 4).

Figure 7. PSO convergence curve (N = 3).

Figure 8. PSO convergence curve (N = 4).
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