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Research Note

Health Monitoring of Structures Using
Few Frequency Response Measurements

A.A. Golafshani1;�, M. Kianian1 and E. Ghodrati1

Abstract. The development of damage detection techniques for o�shore jacket structures is vital for
preventing catastrophic events. This paper applies a frequency response based method for the purpose of
structural health monitoring. In this approach, the concept of a minimum rank perturbation theory is
used. The feasibility of using a �nite number of sensors and its e�ect on damage detection capabilities
is investigated. In addition, the performance of the proposed method is evaluated in the case of multiple
damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket
platform.
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INTRODUCTION

Structures face various loadings and confront di�erent
circumstances as they are built and used. This situa-
tion causes the aging structures to deteriorate, which
leads to a decrease in reliability and safety. In recent
decades, the need for systems to assure the integrity
of structures in terms of age, usage and level of safety,
when experiencing infrequent and extreme forces such
as earthquakes, tornados, hurricanes and large waves,
has been seriously recognized. These are often referred
to as Structural Health Monitoring (SHM) systems
in the literature. Overall, the �eld of SHM aims to
identify, localize and size any defect in the structure as
it happens. The main objective of such a system is to
increase the reliable operating lifetime.

Generally, structural damage detection can be
classi�ed into local damage detection and global dam-
age detection. Local damage detection techniques
refer to Non-Destructive Testing (NDT), such as X-ray
methods, eddy current approaches, thermal imaging
and ultrasonic methods, because it is mainly used to
detect local damage in structures [1]. Local damage
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detection is applicable only for small and regular struc-
tures, such as pressure vessels, and for detecting only
the �nite suspicious components of large structures.
In response to this limitation, a set of more global
vibration-based approaches has been used. Therefore,
global vibration-based damage detection is especially
essential for large and complicated structures in order
to detect the location of damage, and then with
primary knowledge of the location of the defect, the
inspection group can trace the damage right to the
speci�ed region, utilizing one of the local damage
detection techniques. In the case of o�shore structures,
utilizing such global vibration based damage detection
techniques is not only necessary, but also inevitable
due to some of its exclusive characteristics, which can
be summarized as:

1. O�shore structures being so important, expensive
and huge that their failure or collapse would be a
catastrophic event.

2. Poor visibility and concealment of damage by ma-
rine growth causing other techniques to be accom-
panied with prohibitive cost.

3. Cyclic wave loading, severe storms, sea quakes and
hostile environments harshly a�ecting the integrity
of the structure.

Most vibration-based damage detection techniques re-
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quire a signi�cant amount of modal test data. These
requirements make the damage detection procedure
costly, time consuming and impractical. Some research
using modal data has been recently developed. Kaouk
and Zimmerman [2] used eigenvalues and eigenvectors,
and adopted the concept of a minimum rank pertur-
bation theory to locate and size the damage in a two-
dimensional truss and a cantilevered beam. Li et al. [3]
applied the cross-model cross-mode method for damage
detection in o�shore jacket structures, where spatially
incomplete modal data is available.

On the other hand, some literature has concen-
trated on the use of a Frequency Response Function
(FRF) directly, as opposed to modal data extracted
from FRF measurements. There are two main advan-
tages of using FRF data. Firstly, modal data can be
contaminated by modal identi�cation errors in addition
to measurement errors, because they are derived data
sets. Secondly, a complete set of modal data can only
be measured in the simplest structures. FRF data can
provide much more information on damage at a desired
frequency range compared to modal data that is ex-
tracted from a very limited range around resonances [4].
Maia et al. [5] discussed some modal-based and FRF-
based damage detection techniques, and compared the
results on a simple beam. In addition, they introduced
an indicator of damage as a FRF-based damage index.
Hwang and Kim [6] found the location and amount of
damage through computational iterations by matching
experimental FRF and analytical FRF.

The objective of this paper is to present a promis-
ing methodology which applies FRF data at some
frequency points to arrive at perturbations to the
sti�ness matrix due to some defects in the structure.
The method is demonstrated numerically on a spring
mass system (shear building) and then applied to an
o�shore jacket platform. The authors' e�ort was to
consider a set of more probable and realistic dam-
ages in the jacket platforms relative to other similar
works.

DAMAGE DETECTION FORMULATION

Basic Theory

The basic theory of this type of damage detection
initiates with the second order structural equation of
motion:

[M ]f�xg+ [C]f _xg+ [K]fxg = ffg; (1)

where [M ], [C] and [K] are undamaged mass, damping
and sti�ness matrices, respectively, fxg is the vector of
positions, ffg is the vector of applied forces, and the
over dots represent di�erentiation with respect to time.
If the structure is excited by a set of forces all at the
same frequency, !, but with individual amplitudes and

phases, then:

ff(t)g = fF (!)g:ei!t; (2)

by neglecting the transient response and concerning the
steady state:

fx(t)g = fX(!)g:ei!t; (3)

where fFg and fXg are vectors of time-independent
amplitudes. The equation of motion then becomes:

fX(!)g = ([K] + i![C]� !2[M ])�1fF (!)g;
i =
p�1;

fF (!)g = ([K] + i![C]� !2[M ])fX(!)g;
[H(!)] = ([K] + i![C]� !2[M ])�1;

[Z(!)] = ([K] + i![C]� !2[M ]); (4)

where [H(!)] is standard FRF and [Z(!)] is inverse
FRF. In the undamaged condition, it can be written
as:

fF (!)g = [Z(!)]fX(!)g: (5)

But due to damage interference, Equation 5 changes to
the following form:

fF (!)g = [Z(!) + �Z(!)]fX(!)g; (6)

where [�Z(!)] represents the e�ect of damage on the
inverse FRF.

The force damage vector can be de�ned by a slight
manipulation of Equation 6:

fd(!)g=fF (!)g�[Z(!)]fX(!)g=[�Z]fX(!)g: (7)

Assuming that the inverse FRF has been measured at
p discrete frequencies, and the introduced defect has
only a�ected one of the structural property matrices
(either [M ], [C] or [K]), Equation 7 can be rewritten
as:

[�Z][X] = [D]; (8)

where the frequency and space information of fX(!)g
and fd(!)g were arranged as the rectangular matrices.
[X] and [D], respectively:

[X] = [X(!1) � � �X(!p)]; (9)

[D] = [d(!1) � � � d(!p)]: (10)
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Minimum Rank Perturbation Theory

Equation 8 can be solved by using the same approach
as used in the minimum rank perturbation theory [2].
In [7], the symmetric minimum rank solution of Equa-
tion 8 was derived and mathematical characteristics of
the solution were investigated.

The minimum rank perturbation theory provides
the unique minimum rank solution for Equation 8 as:

[�Z] = [D]([D]T [X])�1[D]T : (11)

This solution is motivated by the application of damage
detection where the perturbations could be assumed to
be limited to a few isolated locations. The minimum
rank sti�ness matrix perturbation can be thought of
as the sti�ness matrix perturbation with the smallest
number of nonzero values.

It should be decided, by engineering judgment,
which property matrix (either [M ], [C] or [K]) has
caused the perturbation [�Z]. For example, if damage
has a�ected the sti�ness of the structure, then the
displacement should be measured by sensors, and [�Z]
would be equal to [�K]. All required information,
such as damage location and the extent of sti�ness
reduction, is contained in the matrix [�K].

Computational Improvement

The key issue in the damage detection scheme is the
ability to identify the matrix [D].

The components of this matrix are just associated
with the measured degrees of freedom. Therefore, the
size of the equation takes e�ect from the measured
degrees of freedom (number of sensors). Note that
vector fdg, which appeared in Equation 7, is a kind
of residual force vector. Indeed, one interpretation of
fdg is as a collection of externally applied loads acting
on the undamaged structure to give a response similar
to that of the damaged structure [8]. In numerical
examples without the presence of noise, matrix [D] is
rank de�cient. In other words, it has several singular
values that are very close to zero. But in practical
examples due to the presence of noise, matrix [D] is
close to full rank. This fact causes Equation 8 to be
an ill-conditioned numerical problem. As mentioned
above, the source of this numerical problem is mainly
because of matrix [D], so operations to improve the
numerical condition concern matrix [D].

The subspace selection algorithm, proposed by
Zimmerman [9], consists of determining a matrix [Q]
such that Equation 12 is numerically well-conditioned:

[�Z][X][Q] = [D][Q]: (12)

Consider the singular value decomposition of [D] as:

[D] = [U ][S][V ]T ; (13)

where [S] is the diagonal matrix of non-negative singu-
lar values in decreasing order, and U and V are the left
and right singular vectors, respectively. Here, we need
a criterion for partitioning S, U and V in the following
order:

[D] = [U1][U2]
�
� 0
0 "

�
[V1][V2]T ; (14)

where � is the matrix of top `m' singular values (m is
user-de�ned).

With the selected m columns of [U ], matrix [U1]
can represent [D][Q], the right hand side of Equa-
tion 12, which will improve computational e�ciency by
excluding damage vectors of smaller singular values:

[D][Q] = [U1]: (15)

Thus matrix [Q] can be computed by using the pseudo-
inverse of [D] as:

[Q] = [D]+[U1]: (16)

Then, with the substitution of [X][Q] and [D][Q] for
[X] and [D] in Equation 11, the minimum rank solution
can be easily derived as:

[�Z] = [D][Q]([Q]T [D]T [X][Q])�1[Q]T [D]T : (17)

NUMERICAL STUDIES

Two examples are presented here to illustrate the
characteristics of some of the developed theories. The
�rst example is an idealized 3 degrees of freedom shear
building system. In this example, a perturbation to
the sti�ness property matrix is used to illustrate the
numerical procedure of damage detection using FRF
data. The second example involves the identi�cation
and localization of some small damages, which are
arti�cially introduced to the two-dimensional model of
an o�shore jacket platform.

Idealized Shear Building System

This example consists of 3 degrees of freedom, as shown
in Figure 1. Consider the undamaged model of the
system to have the following parameters;

fk1; k2; k3g = f10; 10; 10g; (18)

fm1;m2;m3g = f0:1; 0:1; 0:1g; (19)

which have the undamaged mass and sti�ness matrices:

[Mu] =

240:1 0 0
0 0:1 0
0 0 0:1

35 ; (20)

[Ku] =

24 20 �10 0
�10 20 �10

0 �10 10

35 : (21)
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Figure 1. Idealized shear building system.

Now, consider a damage case in which parameter k1
decreases one unit:

[Kd] =

24 19 �10 0
�10 20 �10

0 �10 10

35 ; (22)

where the subscripts (:)u and (:)d denote undamaged
and damaged conditions, respectively. We want to
detect damage by considering the frequency points of 1,
2 and 3 Hertz. Assuming that only the sti�ness matrix
is to be perturbed, displacement should be measured
by sensors under arbitrary excitation. Therefore, [X]
and [D] are computed by Equations 7, 9 and 10.

fFg =

8<:0
0
1

9=; ;

[X] =

24�0:154 0:555 �0:043
�0:232 0:178 0:07
�0:218 �0:48 �0:067

35 ;
[D] =

240:154 �0:555 0:043
0 0 0
0 0 0

35 : (23)

Then, perturbation to the sti�ness property matrix
from Equation 17 yields:

[�Z] = [�K] =

24�1 0 0
0 0 0
0 0 0

35 ; (24)

which is the exact anticipated perturbation to the
sti�ness matrix:

Figure 2. (a) The sketch of the structure. (b) The
locations of damage cases.

[Ku] + [�K] = [Kd]: (25)

Two-Dimensional Jacket Platform

A two-dimensional jacket platform used in this example
is shown in Figure 2a. The structure consists of two
stories and is �xed to the ground. The height of the
two stories and the length of the beams are 18.3 meters.
The material properties of the steel tabular members
are: elastic modulus E = 200 (Gpa), Poisson's ratio
� = 0:3 and mass density � = 7800 (kg/m3).

For obtaining a clearer insight into the e�ect of
the number of measured degrees of freedom (number
of sensors), we have tried to implement the dam-
age detection procedure with two classes of sensor
placement. The �rst class involves only 4 sensors,
whereas the second class utilizes 18 sensors. The
position of sensors in each class is illustrated in Fig-
ure 3.

In this example, the damage is simulated by
reducing the thickness of members. Three damage
cases have been investigated. Locations of the damage
cases are illustrated in Figure 2b. Damage case
number one involves the upper-left beam of the second
story with a length of 9.1 centimeters. Damage
case number two engages the upper zipper column
of the �rst story with a length of 9.1 centimeters.
The third damage case involves both the other two
damage cases. Notably, matrix [�K] has some neg-
ative values that could not be displayed easily on
a three-dimensional plot. Thus the authors made
them positive arti�cially. Sti�ness matrix perturba-
tions due to damage cases one, two and three are
shown in Figures 4, 5 and 6, respectively. Matrix
[�K] has localized damage by displaying greater val-
ues at corresponding DOFs, as shown in Figures 4



Health Monitoring of Structures 497

Figure 3. Measured DOFs (sensors' placement). (a) First
class; (b) second class.

Figure 4. Sti�ness matrix perturbation due to damage
case one; thickness reduction 89.5%. (a) First class; (b)
second class.

Figure 5. Sti�ness matrix perturbation because of
damage case two; thickness reduction 47.5%. (a) First
class; (b) second class.

Figure 6. Sti�ness matrix perturbation because of
damage case three; thickness reduction 47.5% in both
damage cases.
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and 5b. Figure 5a shows the bad performance of
the �rst class sensor placement for detection of zipper
columns, as opposed to the second class (shown in
Figure 5b).

In damage case number three, which is a combina-
tion of the �rst and second damage cases, the localiza-
tion of damage has not occurred properly. Matrix [�K]
mainly gets an impact from the damaged beam. The
damaged zipper column displayed itself in, somehow,
`seepage' to other DOFs.

As demonstrated in the damage detection formu-
lation, matrix [D] contains damage vectors of p discrete
frequency points. Matrix [D], the second class sensor
placement for �rst and third damage cases, is presented
in Figure 7. The frequency of 4 (Hz) was the most
sensitive frequency which is near to a mode that has a

Figure 7. Damage vectors in each frequency point or
matrix [D] in second class. (a) Damage case one; (b)
damage case three.

very large mode shape value in the speci�ed damaged
beam.

PRACTICAL REMARKS

As demonstrated in the damage detection formulation,
the proposed method needs some information about
the healthy or undamaged structure, as well as data
extracted from the damaged structure. The complete
matrix of inverse FRF in the undamaged situation is
the only necessary data for damage detection before
the occurrence of any damage. This set of data
should be measured experimentally or computed an-
alytically within a suitable frequency domain, which
will probably be selected for damage detection. Now,
two questions arise here. The �rst is how to specify
a suitable frequency domain for this purpose. The
second is how to select the p discrete frequency points
that were used in Equations 9 and 10. For the �rst
question, it should be noted that the `regions' around
the �rst several modes exhibited the highest level of
FRF discrepancy between the damaged and healthy
structure. But those regions of the FRF which show
low coherence, due to either noise or nonlinearities,
must be eliminated [10]. About the second question,
Zimmerman et al. [11] investigated the e�ect of se-
lecting a subset of measured frequency points by �ve
di�erent subset selection techniques. These selection
techniques could be characterized as:

1. Evenly spaced throughout the frequency range,

2. Clustered about the resonances,

3. Clustered about the anti-resonances,

4. Placed away from the resonances and anti-
resonances,

5. Placed at points of maximum percentage di�erence
between the healthy and damaged FRF.

It was observed in this study that selection technique
number 1 (evenly spaced throughout the frequency
range) performed best, and provided nearly the same
assessment of damage as when the full FRF data set
was used.

After damage occurrence, one column of the FRF
matrix within the prescribed frequency domain is the
only requirement for damage detection purposes. For
this purpose, the researcher imparts some dynamic
input on the structure in question and obtains the
resulting FRF. One column of FRF can be extracted by
excitation of just one DOF. It does not matter which
DOF is selected as the excited DOF, because it has no
inuence on the detection capabilities.

It is easier to use FRF in each frequency point
directly as fX(!)g and to consider fF (!)g unitary
at the corresponding degree of freedom. One of the



Health Monitoring of Structures 499

excitation techniques that has been discussed in [12,13]
could be applied to o�shore jacket platforms.

If the researcher guesses that the existing pertur-
bation is due to sti�ness reduction, then displacement
([Z] = dynamic sti�ness) should be measured by
sensors, otherwise, if [�Z] is an outcome of mass
perturbation, then acceleration ([Z] = apparent mass)
should be measured.

CONCLUSIONS

This paper investigated the damage detection of o�-
shore jacket platforms utilizing an FRF-based method,
which applies only one column of FRF after damage
occurrence. This means that, in a damaged condition,
only a single arbitrary excitation point is necessary. It
was demonstrated that the detection procedure could
be done by using a few sensors, but for more accurate
detection, it is more suitable to use as many sensors as
possible. Application of more sensors will help in two
ways:

1. An increment in detection resolution.

2. The global sti�ness matrix takes up greater values
in each component, therefore, tinier damage will
cause larger perturbation and detection ability en-
hances as the number of measured DOFs (number
of sensors) increases.

Notably, in the case of multiple damages, this method
sometimes gives an imprecise output. As illustrated in
damage case number three, the damage at the beam
was dominant and the e�ect of the damaged zipper
column was diminished. Therefore, if the detection
outputs show damage in a speci�ed location, we cannot
strictly say that there are no other damages in the
structure.
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