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Research Note

Fundamental Frequency of Tapered
Plates Using Modi�ed Modes

F. Khoshnoudian1;� and S. Kazemi1

Abstract. The fundamental frequency of a rectangular orthotropic plate having an arbitrary thickness
variation is computed by using the method of Modi�ed Vibrational Mode (MVM) shapes. The change of
thickness within a plate is characterized by introducing a tapering index. It is shown that the vibrational
mode shapes of a tapered plate is in fact a linear combination of various mode shapes of intact plates.
This phenomenon is used to estimate the vibrational mode shapes of stepped plates. In turn, these mode
shapes are incorporated to evaluate their fundamental frequency. Many numerical analyses are carried
out to represent the accuracy and robustness of the proposed method by comparing the results to the works
presented by other researchers. The major advantage of the present method over the existing ones is its
simplicity for handling the problem of force vibration of tapered plates.

Keywords: Fundamental frequency; Stepped plate; Dynamic equation of motion; Modi�ed Vibrational
Mode shape (MVM)

INTRODUCTION

Tapered plates are being increasingly used in modern
engineering structures. The increasing use is due to
the distributed exural sti�ness that helps to reduce
the weight of structural elements and improve the
utilization of the material. The exural sti�ness,
vibrational and buckling capacities of these plates may
be signi�cantly increased by appropriate tapering. Fur-
thermore, provision of openings in the perforated plates
can greatly enhance the applicability and access for
inspection, services and maintenance of these members
in civil, mechanical, aeronautical and marine struc-
tures. Among all advantages, provision of openings in
these members will result in changes in the vibrational
capacity of plates that should be taken into account.
On the other hand, thickness non-uniformity within a
plate leads to changes in the dynamic characteristics
such as vibration responses, natural frequencies and
mode shapes. Therefore, sti�ness changes within a
structure can be used to look for the inuence of higher
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vibrational modes to determine the more accurate
modes of such tapered plates.

For the estimation of fundamental frequency of in-
tact plates many theories are proposed in the textbooks
by Meirovitch, Timoshenko and Gere, and Reddy [1-
3]. Many research have been directed towards the
study of the vibration of isotropic plates having a
linear thickness variation. Gumeniuk presented a
�nite di�erence approach to compute the fundamental
frequency of simply supported plates [4]. Chopra and
Durvasula presented the vibration of simply supported
skew plates having a linear variation in thickness
in one direction [5]. They have made approximate
analysis by using the Lagrange's equations and em-
ploying the double Fourier sine series in oblique co-
ordinates to represent the deected surface. Natural
frequencies are obtained for rhombic plates for several
ranges of thickness variation and skew angle. The
nodal patterns plotted for a few typical con�gura-
tions show interesting metamorphoses with variation
in thickness and skew angle. Chopra investigated the
free vibration of stepped plates as a composition of
uniform domains, and the thickness was allowed to
vary from domain to domain [6]. In his study the
overall eigenvalue problem was formulated by assuming
the boundary conditions and continuity conditions at
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the location of abrupt change of thickness. Ng and
Araar employed the Galerkin method to investigate the
vibration of clamped rectangular plates [7]. Kukreti
et al. have employed the di�erential quadratures
method to compute the fundamental frequency of
rectangular plates [8]. They have considered simply
supported, clamped and mixed boundary conditions
in their study. Gutierrez and Laura used the method
of di�erential quadratures to study vibration of rect-
angular and circular plates [9,10]. To study the
vibration of rectangular plates with elastic point con-
straints, Liew and Lam used two-dimensional Gram-
Schmidt orthogonal polynomials [11]. Kitipornchai
et al. incorporated the Lagrange multiplier method
to study the vibration of point-supported Mindlin
plates [12].

A numerical �nite element solution was developed
by Rossi et al. to study the transverse vibration of
rectangular cantilevered plates having a discontinuous
thickness variation [13]. Barton has employed the
method of eigensensitivity analysis to determine a
quadratic expression in order to compute the funda-
mental frequency of a rectangular, isotropic plate with
a linear thickness variation in one direction [14]. Var-
ious support conditions were analyzed in their study,
including simply supported and clamped boundary
conditions. They have compared their results with
those of provided by Kukreti [8].

Cheung and Zhou studied the problem of the
free vibrations of tapered rectangular plates [15]. A
wide range of non-uniform rectangular plates in one
or two directions are considered. The thickness of
the plate is continuously varying and proportional
to the power function, xsyt. Kang used 3-D Ritz
analysis procedure to determine extensive and accurate
frequency data for thick, tapered, circular and annular
plates [16]. The analysis uses the 3-D equations
of the theory of elasticity in their general forms for
isotropic materials. Cheung and Zhou investigated
the free vibrations of rectangular Mindlin plates with
variable thickness in one or two directions [17]. They
have represented the thickness variation of the plate
by a continuous power function of the rectangular
coordinates. They have developed two sets of new
admissible functions, respectively, to approximate the
exural displacement and the angle of rotation due to
bending of the plate. Cheung and Zhou have also
obtained the eigen-frequency equation by using the
Rayleigh-Ritz method. In this study the complete
solutions of displacement and angle of rotation due
to bending for a tapered Timoshenko beam (a strip
taken from the tapered Mindlin plate in some direction)
under a Taylor series of static load have been derived,
which are used as the admissible functions of the
rectangular Mindlin plates with taper thickness in one
or two directions.

Xiang and Wei presented an analytical approach
for studying the buckling and vibration behavior of
rectangular Mindlin plates with multiple steps [18].
The Levy solution method is employed in connection
with the domain decomposition technique that is used
to cater for the step variation in the plates. They
have investigated the inuence of the step length
ratios, step thickness ratios and the number of steps
on the buckling and vibration behavior of square and
rectangular Mindlin plates.

In this article, the method of modi�ed vibra-
tional modes is used to compute the fundamental
frequency of stepped rectangular orthotropic plates.
The main advantage of this method is that it can
be applied to determine the fundamental frequency of
tapered plates that non-uniformity within the thick-
ness of plate can be introduced with arbitrary func-
tion including polynomial, trigonometric etc. The
procedure may be readily extended to obtain modal
properties of plates having various boundary conditions
where their corresponding vibrational mode shapes are
known.

THEORY AND FORMULATIONS

General

Figure 1 shows an orthotropic elastic stepped rectan-
gular plate of length, a, width, b, mass density per unit
volume, �, and the intact Young's modulus, E. The
plate is formed by two subogines named O1 and O2
where in the middle zone, the plate has a thickness
of h1, and the rest of the plate has thickness of h0.
By assuming the expression h1 < h0, it is considered
that the plate has a damaged part of lengths, �a, and

Figure 1. Coordinate and geometry of abruptly varying
thickness plate.
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width, �b, located at xi < x < xi+1 and yi < y < yi+1
where i refers to the ith damaged or stepped segment.
The basic procedures in the vibrational analysis of such
stepped plates involve the following parts:

I. The dynamic equation of motion is used to obtain
the Modi�ed Vibrational Mode (MVM) shapes of
tapered plates.

II. The Modi�ed Vibrational Mode shapes (MVM) are
invoked to evaluate the fundamental frequency of
tapered plates.

The equation of motion governing the linear bending
of an orthotropic elastic plate is given by the following
equation:
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where k is the elastic foundation modulus (force per
unit surface area), wo denotes the out-of-plane deec-
tion measured from the pre-deformed state, MT

xx and
MT
yy are the normal thermal bending moments, MT

xy is
the twisting thermal moment, and q is the intensity of
the distributed transverse load.

In Equation 1, the D factors are bending sti�ness
coe�cients and are de�ned as follows:

D11 =
Eh3

12(1� �2)
; D22 =

E2

E1
D11;

D12 = �D22; D66 =
G12h3

12
:

Also I0 and I2 are mass moments of inertia and de�ned
as:

I0 = �� h;

I2 =
�� h3

12
;

where � is the material density in the undeformed body
and h is the plate's thickness.

In the absence of thermal loadings and when no
elastic foundation is present, Equation 1 reduces to:
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In the case of natural vibrations, the solution to
Equation 2 is assumed to be periodic as shown in
Equation 3:

w0(x; y; t) = w(x; y)ei
t; (3)

where i =
p�1, and 
 is the frequency of natural vi-

bration associated with the mode shape. Substituting
Equation 3 into Equation 2 and setting q = 0 for no
lateral loading, it yields:�
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Equation 4a must hold for any time. So it can be
rewritten:�
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In case of a rectangular plate with all sides simply
supported, the following boundary condition can be
applied:

w = 0; w; xx = 0;

x = 0; a; w = 0;

w; yy = 0; y = 0; b: (5)

For a uniform thickness plate, the following Navier
solution can be considered:

wmn(x; y) = � sin
m�x
a

: sin
n�y
b
;

m; n = 1; 2; 3; � � � : (6)

Solving Equation 6 for the natural frequency of a
uniform section rectangular orthotropic plate and ne-
glecting the rotary inertia I2, the following expression
yield:
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For isotropic rectangular plates, this expression can be
represented by:
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This way, the fundamental frequency of a simply
supported uniform section plate is given by taking
m = n = 1:
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Modi�ed Vibrational Mode Shapes

By introducing I2 = 0 in dynamic equation of motion
(Equation 2) and di�erentiating from this equation
with respect to x; y and neglecting the change in
the mass distribution, the following equation can be
obtained:
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where �h is the mass per unit surface area of plate. It
is assumed that the changes in the �th mode shape of
tapered plate can be written as a linear combination
of M natural modes of the corresponding uniform
thickness plate:
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X
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Substituting Equation 9 in the dynamic equation of
motion for the �th mode shape yields:X�
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Multiplying both side of Equation 10 by w (displace-
ment of plate related to this mode) where  6= �, and
integrating for the whole area of plate yields:

X
���

8<:Z
�

�
D11

@4w�
@x4 +2(D12+2D66):

@4w�
@x2:@y2

+D22:
@4w�
@y4

�
w :dx:dy

�
+
Z
�

�
dD11

@4w�
@x4

+ 2(dD12 + 2dD66):
@4w�
@x2:@y2

+dD22:
@4dw�
@y4

�
wdx:dy

� �hd
2
�

Z
�

w�wdx:dy

+ �h
2
�

X
���

Z
�

w�wdxdy = 0; (11)

where � is the surface area of plate, i.e. � = a� b. The
orthogonal property implies that:Z
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where 
� is the natural frequencies of the uniform
thickness plate, M indicates the number of normal
modes superposed in the analysis, and ��� is the
Kronecker symbol de�ned as follows:

��� =

(
1 for � = �
0 for � 6= �

For brevity, the contracted subscripts for the mode
numbers will be consistently used in the following
manner, i.e. � is used for various compounds of m
and n, and � is used for various compounds of r and s
where m, n, r and s range for various mode shapes.

According to the orthogonal property in Equa-
tion 13, in order to avoid dissipation of the �rst term



400 F. Khoshnoudian and S. Kazemi

in Equation 11, � and  should be equal,  = �. On
the other hand, since  6= �, that term becomes zero,
thus the �rst term in Equation 11 will always become
zero, therefore:
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From the above equation, the e�ect of �th mode shape
on changes in the �th mode shape can be derived as
follows:
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Di�erentiating the orthogonality property of mode
shapes with respect to mass would yield to:
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It is assumed that the changes in the mass distribu-
tion are negligible in comparison with the signi�cant
changes in the sti�ness of the structure. Therefore,
the �rst term in the left side of Equation 16 can be
eliminated. Substitute Equation 9 into the second part
of above equation gives:
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By using orthogonal property (Equation 12), and
applying the Kronecker properties:
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Generally, vibrational mode shape of tapered plates is
given by:

(wd)� = w� + dw�; (20)

where (wd)� indicates the �th mode shape of tapered
plates, w� refers to various mode shapes of uniform
thickness plates, and dw� represents changes in the �th
mode shape. Substituting dw� from Equation 9 into
Equation 20 may yield:
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w� and w� are the natural modes satisfying the
eigenvalue problem for the intact plate, ��� are the
e�ect of �th mode shapes of intact plate on the �th
mode shape of tapered plate, and is de�ned as:

��� =8>>>>>>>>><>>>>>>>>>:

1

2
� � 
2

�
:
Z
A

�
dD11

@4w�
@x4

+ 2(dD12 + 2dD66):
@4w�
@x2:@y2

+dD22:
@4w�
@y4

�
:w�dx:dy for � 6=�

0 for �=�

(22)

Dij are the bending sti�ness of plate. 
� and 
� are
the natural frequencies of uniform thickness plates. In
order to demonstrate various domains of integration, an
example is presented in this section. Zero thicknesses
for zones 1, 2 and 3 in the plate shown in Figure 2
imply that the plate has a uniform thickness, and non-
zero values mean that the plate has abrupt changes
in the thickness. dDij in an orthotropic plate or dD
in an isotropic plate is the tapering function, which
characterizes the state of non-uniformity in various
parts and involves changes in the primary sti�ness
of plate. dDij is generally a function of variables
x and y, and can be represented in various forms,
such as continuous, piecewise, single-valued, and may
take positive values for sti�ened or negative values for
damaged plates.

The main advantage of this method is that the ta-
pering function can be applied to any form of damaged
plates, having various boundary conditions. That is, of
course, if the mode shapes of intact plates are known.
For an elastic isotropic plate Equation 22, becomes:
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Figure 2. 3-D view and coordinate of stepped plates.
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The domain of the integral in Equation 23 varies for
the tapered region of plate (see Figure 2) as follow:

Zone (1):

l1 < x < l1 + l2; 0 < y < b;

h = h1:

Zone (2):

l1 + l2 < x < l1 + l2 + l3; 0 < y < b;

h = 2h2:

Zone (3):

l1 + l2 + l3 < x < l1 + l2 + l3 + l4; 0 < y < b;

h = h1:

Vibrational modes of a taper plate can be obtained by
superposing M natural modes of corresponding intact

plate and applying Equation 23 into Equation 21.
Based on these modi�ed vibrational mode shapes, their
corresponding frequency can be obtained. The least
value among all frequency is the fundamental frequency
of tapered plate. The major advantage of the present
method over the existing ones is its simplicity for
handling the problem of force vibration of tapered
plates.

NUMERICAL RESULTS

General

Equation 21 provides a general closed-form equation
which is used to evaluate the vibrational mode shape
of tapered plate. The vibrational mode shape of the
plate in the intact state and the modi�cation coe�cient
��� from Equation 23 are then incorporated to predict
the vibrational mode shape and the corresponding
frequency of tapered isotropic plates. However, in order
to identify the lowest frequency, higher order values of
m, n, r and s may be required to be taken into account.
This is because during the evaluation process of w�,
there is no prior guarantee that the �rst mode shape,
w11, always induces the least frequency, although this
will often be the case. Therefore, higher modes should
also be taken into account.

The procedure based on the aforementioned for-
mulation is programmed on a desktop computer and
numerical results are presented for di�erent models.

Fundamental Frequency of Simply Supported
Tapered Plates

To demonstrate the versatility and to validate the
method, several vibrational analysis of plates with
variable thicknesses are carried out and compared with
existing results. The examples are selected for com-
parison purpose only. Generally speaking, this method
is applicable to all plates whose mode shapes can be
expressed by analytical functions, either trigonometric
or polynomial.

The deection surface of a uniform thickness
plate, having simply supported edges, can be repre-
sented by the following double sinusoidal series:
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�
i�x
a

�
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�
j�y
b

�
;

i; j = 1; 2; 3; � � � ;M: (24)

Normalized mode shapes are used in the formulation
process, thus using orthogonal property:Z
A

m:wi:wj :dxdy = �ij : (25)
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is the Kroniker symbol and i and j are the contracted
subscripts of the mode numbers. Substituting Equa-
tion 38 into 39 will lead to the following equation:
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Solving Equation 40 for various normalized mode
shapes will result in the following expression:

Q =
r

2
m:a:b

: (27)

By substituting Equation 41 into Equation 38 yields to
the normalized mode shape of uniform thickness plates:
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Substituting the natural frequency of simply supported
intact plates, Equation 7b, and the normalized mode
shape from Equation 42 into Equation 22 and �nally
using Equation 21 the Modi�ed Vibrational Mode
shape (MVM) can be achieved. Introducing this
MVM into the governing di�erential equation of plates
(Equation 4b), the corresponding natural frequency
can be obtained.

Normalized Frequency of a Simply-Supported
Plate
Figure 3 shows a uni-directional stepped plate. The
plate is analyzed by the present method (MVM), and
the results are compared to those obtained by Barton
[14]. Table 1 illustrates results for the simply supported
plate on all sides. In this table, columns 1 and 2 provide
the values used for the aspect ratio  s and taper ratio
�. The aspect ratios for each plate considered were
0.5, 1 and 2, and the taper parameter �, varied from 0
to 1. Also the value used for Poisson ratio is � = 0:3.
Columns 3 and 4 provide the normalized fundamental
frequency as follow:

� = 
a2

r
�h
D
: (29)

As shown in Table 1, the results computed by the
present method (MVM) are compared to those ob-
tained by the Di�erential Quadrature Method (DQM)
and the approximate closed-form expression, respec-
tively. It means that the result obtained by MVM is
close to DQM and approximate closed-form expression
methods. As shown the results obtained by the present

Figure 3. Three-dimensional view of abruptly varying
thickness plate.

method are in very good agreement with those obtained
by the other method.

Normalized Frequency of a S-C-S-C Plate
Table 2 presents the results for a plate with mixed
simply supported and clamped boundary conditions.
This plate has the simply supported boundary in the
tapered direction. The vibrational mode shape of a
uniform thickness plate can be expressed as:

wij = A: sin
�
i�x
a

�
:
�
sin
�
j�y
b

��2

;

m; n = 1; 2; 3; � � � ;M: (30)

Using the aforementioned procedure used for simply
supported stepped column will result in Table 2, which
implies the agreement between present method (MVM)
and those obtained by Barton [14]. Table 2 demon-
strates that the error of MVM method in comparison
with two others is less than 1%.

Normalized Frequency of a Clamped Plate
Finally, Table 3 contains the results for the clamped
plate on all sides. The aspect ratios for each plate
considered were 0.5, 1 and 2, and the taper parameter
� varied from 0 to 1. Also the value used for
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Table 1. Comparison of the present analysis results (MVM) with the other results on the normalized fundamental
frequency of a simply supported stepped plate (see Figure 3).

Specimen Dimension �

 s � DQM [14] Quadratic [14] Present (MVM)

0.5 0.1 12.9518 12.9482 12.9732

0.5 0.2 13.5539 13.549 13.5834

0.5 0.3 14.1473 14.1412 14.1563

0.5 0.4 14.7332 14.7264 14.7552

0.5 0.5 15.3123 15.306 15.3442

0.5 0.6 15.885 15.8812 15.8912

0.5 0.7 16.451 16.4529 16.4658

0.5 0.8 17.0101 17.022 17.1252

1.0 0.1 20.7296 20.7206 20.7725

1.0 0.2 21.7025 21.6915 21.7652

1.0 0.3 22.6669 22.6541 22.6859

1.0 0.4 23.6239 23.6105 23.7152

1.0 0.5 24.574 24.5624 24.6125

1.0 0.6 25.5177 25.5113 25.5525

1.0 0.7 26.4547 26.4584 26.4785

1.0 0.8 27.3845 27.4048 27.4051

2.0 0.1 51.8244 51.7834 51.3150

2.0 0.2 54.2056 54.1611 54.2315

2.0 0.3 56.5370 56.4916 56.5515

2.0 0.4 58.8237 58.7847 58.8601

2.0 0.5 61.0699 61.0489 61.0814

2.0 0.6 63.2796 63.2915 63.2955

2.0 0.7 65.4562 65.5182 65.4568

2.0 0.8 67.6021 67.7339 67.6541

Poisson ratio is � = 0:3. This table provides some
information on the accuracy and convergence of the
present solution with those obtained by Barton [14]. As
seen, the results obtained by present method (MVM)
is in good agreement with those obtained by other
researchers.

CONCLUSIONS

Fundamental frequency of simply supported tapered
plates in one or two directions, having arbitrary
boundary condition, can be achieved by the use of
modi�ed vibrational mode shapes. The proposed
method can also be used to predict the frequency of
tapered plates having any polynomial variation in the
thickness. The method is proved to be very e�cient,
if the mode shapes of corresponding intact plates

are known. Comparisons of several analytical and
numerical results for various types of tapered plates
to those presented by other researchers validate the
proposed method.

NOMENCLATURE

a length of plate
b width of plate
D exural rigidity of isotropic plate
Dij bending sti�ness of orthotropic plate
dD tapering indices, variations in the

primary sti�ness in various regions of
plate

E Young's modulus of elasticity
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Table 2. Comparison of the present analysis results (MVM) with the other results on the fundamental frequency of a
plate clamped and simply supported on parallel sides (see Figure 3).

Specimen Dimension �

 s � DQM [14] Quadratic [14] Present (MVM)

0.5 0.0 23.8157 23.8113 23.8204

0.5 0.2 26.0570 26.1427 26.0654

0.5 0.4 28.0829 28.3959 28.0914

0.5 0.6 29.9778 30.5831 29.9850

0.5 0.8 31.8006 32.7166 31.8125

0.5 1.0 33.5891 34.8036 33.6120

1.0 0.0 28.9515 28.9572 28.9650

1.0 0.2 31.8030 31.7956 31.8450

1.0 0.4 34.5873 34.5371 34.5940

1.0 0.6 37.3319 37.2012 37.328

1.0 0.8 40.0568 39.8010 40.0615

1.0 1.0 42.7752 42.3453 42.7458

2.0 0.0 54.7551 54.8235 54.7665

2.0 0.2 60.1385 60.1797 60.1521

2.0 0.4 65.3754 65.3223 65.3950

2.0 0.6 70.5170 70.2943 70.5325

2.0 0.8 75.6006 75.1258 75.6115

2.0 1.0 80.6513 79.8387 80.6662

Table 3. Comparison of the present analysis results (MVM) with the other results on the fundamental frequency of a
plate clamped on all sides (see Figure 3).

Specimen Dimension �

 s � DQM [14] Quadratic [14] Present (MVM)

0.5 0.0 24.5877 24.5789 24.6105

0.5 0.2 26.9971 26.9708 27.0543

0.5 0.4 29.3233 29.2602 29.3354

0.5 0.6 31.5836 31.4856 31.6105

0.5 0.8 33.7888 33.6749 33.7952

0.5 1.0 35.9465 35.846 35.9650

1.0 0.0 36.0056 35.9812 36.0154

1.0 0.2 39.5485 39.5396 39.5518

1.0 0.4 42.9408 43.0339 43.0154

1.0 0.6 46.2504 46.4923 46.3356

1.0 0.8 49.4776 49.9357 49.4845

1.0 1.0 52.6374 53.3772 52.6425

2.0 0.0 98.3475 98.3155 98.3612

2.0 0.2 107.8149 108.0055 107.9518

2.0 0.4 116.6358 117.4573 117.0115

2.0 0.6 124.9588 126.7766 125.1541

2.0 0.8 132.8875 136.0392 133.1548

2.0 1.0 140.5029 145.2929 141.2855
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f(x; t) external force
G shear modulus
h; h0; h1 plate thicknesses
I(x) second moment of inertia
I0; I2 mass moments of inertia
k foundation modulus (force per unit

surface area)
M mass moments of inertia
MT
xx;M

T
yy thermal bending

MT
xy twisting thermal moments

O1; O2 zones of stepped plate
q intensity of the distributed transverse

load
t time
w(x; y) exural deection of plate
(wd)� the �th modi�ed mode shape of taper

plate
w�; w� various mode shapes of intact plates
� contracted subscripts for various

compound of m, n
��� the e�ect of �th mode shape on the

�th mode shape
� contracted subscripts for various

compound of r; s
� Poisson's ratio
�b width of stepped part
�a length of stepped part
��� Kronecker's symbol
� material density, mass per unit volume

m natural frequencies of the intact plate
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