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3D Modeling of Damage Growth
and Crack Initiation Using
Adaptive Finite Element Technique

H. Moslemi' and A.R. Khoei'*

Abstract. In this paper, the continuum damage mechanics model originally proposed by Lemaitre
(Journal of Engineering Materials and Technology. 1985; 107: 83-89) is presented through an adaptive
finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation
criterion is used based on the distribution of damage variable in the continuum damage model. The micro-
crack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu
posteriort error estimator s employed in conjunction with a weighted Superconvergence Patch Recovery
(SPR) technique at each patch to improve the accuracy of error estimation and data transfer process.
Finally, the robustness and accuracy of proposed computational algorithm is demonstrated by several 3D
numerical ezamples.
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INTRODUCTION

The fracture of ductile materials is the consequence
of a progressive damaging process and considerable
plastic deformation usually precedes the ultimate fail-
ure. The numerical prediction of damage evolution
and crack initiation-propagation can be described by
the means of continuum damage approach. The
continuum damage mechanics was originally developed
to describe the creep rupture. It was first introduced
by Kachanov [1] to describe the effects of an isotropic
distribution of spherical voids on plastic flow. Rice
and Tracy [2] analytically investigated the evolution of
spherical voids in an elastic-perfectly plastic matrix.
Gurson [3] proposed a model based on the theory of
elasto-plasticity for ductile damage where the (scalar)
damage variable was obtained from the consideration
of microscopic spherical voids embedded in an elasto-
plastic matrix. It was shown that the theory is
particularly suitable for representation of the behavior
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of porous metals. Murakami and Ohno [4] proposed
a second-rank symmetric tensor for the anisotropic
damage variable in which the definition of damage
variable follows from the extension of effective stress
concept to three-dimensions by means of the hypothesis
of the existence of a mechanically equivalent fictitious
undamaged configuration. Lemaitre [5] proposed a
micro-mechanical damage model to simulate the phys-
ical process of void nucleation, growth and coalescence
using continuum mechanics. An anisotropic theory
of continuum damage mechanics was developed by
Chow and Wang [6] for ductile fracture in which
the anisotropic damage evolution characterized by a
generalized damage characteristic tensor. Lemaitre and
Chaboche [7] pointed out the fracture as the ultimate
consequence of material degradation process.

The conventional continuum damage descriptions
of material degeneration suffer from the loss of well-
posedness beyond a certain level of accumulated dam-
age. Peerlings et al. [8] introduced the higher-order de-
formation gradient in the constitutive model to improve
the deficiency of standard damage models. Pardoen [9]
proposed an extended Gurson model to encompass
both the low and large stress triaxiality regimes. A
comparison between the Lemaitre and Gurson damage
models was performed by Hambli [10] in crack growth
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simulation and demonstrated that the Gurson damage
model cannot predict the fracture propagation path
in a realistic way while the Lemaitre model gives
good results. Areias and Belytschko [11] coupled the
continuum damage constitutive model with the X-FEM
formulation to model the crack initiation and propaga-
tion. Grassl and Jirasek [12] combined the stress-based
plasticity and strain-driven scalar damage to model the
failure of concrete. Mediavilla et al. [13] simulated the
ductile damage and fracture in metal forming processes
using a combined continuous-discontinuous approach
which accounts for the interaction between macroscopic
cracks and the surrounding softening material. A
transition from continuum damage to cohesive crack
propagation was developed by Comi et al. [14] in
concrete structures via the X-FEM technique. The
aim of present study is to model the fracture of
ductile materials using an adaptive FE mesh refinement
technique.

Adaptive finite element method utilizes the error
estimation to assess the quality of results and mod-
ify the mesh during the solution, aiming to achieve
approximate solution within some bounds from the
exact solution of continuum problem. An overview of
various error estimation techniques was presented by
Verfurth [15] for elasticity problems. Error estimators
can be basically divided into two categories. A priori
error estimation, which is based on the knowledge of
characteristics of the solution, provides qualitative in-
formation about the asymptotic rate of convergence as
the number of degrees of freedom goes to infinity [16].
A posteriori error estimation employs the solution
obtained by the numerical analysis, in addition to a
priori assumptions about the solution [17]. Babuska
and Rheinboldt [18] proposed a residual based method
of error estimation which considers local residuals of
the numerical solution. The recovery technique is
an alternative approach which computes an improved
solution using a recovery process in which the error
is simply estimated as the difference between the
recovered solution and numerical solution [19]. Various
recovery procedures were proposed in the literature in
which the superconvergent patch recovery method is
one of the most effective ones.

The Superconvergent Patch Recovery (SPR)
method was first introduced by Zienkiewicz and
Zhu [19,20] in linear elastic problems. The technique
was applied in nonlinear analysis by Boroomand and
Zienkiewicz [21] in which the strain was recovered
by SPR in elasto-plasticity problems. The SPR
method was proposed by Wiberg et al. [22] to improve
the accomplishment of equilibrium equations and the
boundary conditions applied to the smoothed stresses.
A modified SPR method was applied by Gu et al. [23] to
improve the accuracy and stability of the technique by
introducing additional nodal points. Bugeda [24] pro-

posed an enriched SPR method based on the sensitivity
analysis for better estimation of error. An extension of
SPR technique to 3D plasticity problems was presented
by Khoei and Gharehbaghi [25,26]. A modified-SPR
technique was applied by Khoei et al. [27] for simulation
of crack propagation in which the polynomial function
was replaced by singular terms of analytical solution of
crack problems in the process of recovery solution. The
technique was improved by Moslemi and Khoei [28] and
Khoei et al. [29] to estimate a more realistic error in
LEFM problems and cohesive zone models by applying
the weighting function for various sampling points.

In the present paper, an adaptive finite element
method is presented based on the weighted-SPR tech-
nique to model the damage of ductile material in 3D
problems. The Lemaitre damage model is employed
and the micro-crack closure effect is incorporated to
simulate the damage evolution. The macro-crack
initiation-propagation criterion is used based on the
distribution of damage variable. The plan of the paper
is as follows: The Lemaitre damage model and its
implementation in finite element context are described
together with the crack closure effect. The error
estimation based on weighted-SPR method is then
presented along with the adaptive mesh refinement
and data transfer process. Finally, the robustness and
accuracy of computational algorithm are demonstrated
by several numerical examples.

NONLINEAR DAMAGE MODEL

Damage in materials is mainly the process of initiation
and growth of micro-cracks and cavities. Continuum
damage mechanics discusses systematically the effects
of damage on the mechanical properties of materials
and structures as well as the influence of external
conditions and damage itself on the subsequent de-
velopment of damage. In this study, this nonlinear
interaction is investigated via the Lemaitre damage
constitutive model. In order to describe the internal
degradation of solids within the framework of the con-
tinuum mechanics theory, new variables intrinsically
connected with the internal damage process need to
be introduced in addition to the standard variables.
Variables of different mathematical nature possessing
different physical meaning have been employed in the
description of damage under various circumstances.
The damage variable used here is the relative area of
micro-cracks and intersections of cavities in any plane
oriented by its normal n as [30]:

S
D(n) = ?7 (1>

where Sg is the area of micro-cracks and intersections
and S is the total area of the cross section as shown
in Figure 1. It is assumed that micro-cracks and
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Figure 1. A damaged element presenting the areas S and Ss.

cavities are distributed uniformly in all directions. In
the isotropic case, the damage variable is adopted
as a scalar. The behavior of damaged material is
governed by the principle of strain equivalence which
states that the strain behavior of a damaged material
is represented by constitutive equations of the virgin
material (without damage) in the potential of which
the stress is simply replaced by the effective stress. By
this assumption the effective stress tensor is related to
the true stress tensor by:

1
Toff = ﬁﬂ' (2)
Consider Y be the thermodynamic variable associated
with the damage variable D as:

0 1
- —g°:D°: g, (3)

Y=_——=-
oD 2

where ‘> denoted component by component product of
tensors. This quantity is called damage energy release
rate and is expanded by using the inverse of the elastic
stress-strain law as:

1 e1—1 .
— 1 1 . t 2
_—m[( +v)o:o —v(tro)’]
¢ (24, o ()
251 _ D) 3(1+ )+ 3(1 2)((1)](,4)

where p is the hydrostatic stress and ¢ is the equivalent
von-Mises stress. In Lemaitre damage model the
evolution of damage variable is assumed to be given
by:

p={0 . Taser 5)
T1-D (%) 6511 > EPD

where r and s are material and temperature-dependant
properties, €, = 1/2/3||eP|| is equivalent plastic strain,
4 is the plastic multiplier and is equal to the rate of
equivalent plastic strain and €7, is threshold damage

where damage growth starts only at this critical value.
As can be seen in above equation, the damage rate
depends on the stress state, plastic strain growth
and instantaneous damage variable. The effect of
damage variable on mechanical behavior of material is
accounted in degradation of elastic modulus of material
and its yield surface. Based on the equivalent strain
principle, this modification can be expressed as:

D.t = (1 — D)D*, (6)

0= /2 1 ot v Ry, g

where D¢ and D.g are the elastic modulus of material
before damage and after damage, respectively, ® is
the modified yield surface, s is the deviatoric stress
tensor and R is the isotropic plastic growth function.
In a damaged medium, three distinctive regions can
be recognized (Figure 2): firstly, the region Sy where
no damage has been occurred, secondly, the region Sy
where the damage is sub-critical and only degrades
the material, and finally, the region Sc where the
damage variable is reached the critical value D¢. If the
critical damage value is satisfied within an element, the
element fractures and cracks occur.

Finite Element Implementation

The accuracy of the overall finite element scheme de-
pends crucially on the accuracy of particular numerical
algorithm adopted. This section describes a numerical
procedure for integration of the Lemaitre damage
elasto-plastic model, presented in preceding section,

r\ So Sa (sub-critical damaged region)
(virgin region)

Sc (critical damaged region)

Figure 2. Damaged zones in a schematic model.
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based on the well-known two-step elastic predictor-
plastic corrector method [31]. At each Gauss point,
the values of state variables including the stress tensor
o, plastic strain tensor e, equivalent plastic strain
(eL,)n and damage variable D, are known at the start
of interval, and for a given strain increment Ae, the
value of variables are desired at the end of interval. At
the first stage of computational algorithm the material
behavior is assumed to be elastic; the yield surface at

the end of interval can be then evaluated as:

o= ﬁ el b+ Rl ®)

If ® <0, the assumed elastic behavior is correct and the
damage variable and plastic strain remain unchanged.
If & > 0, the plastic corrector step must be applied to
obtain the updated state variables by simultaneously
establishing four equations consisting of the plastic flow
equation, equivalent plastic strain growth equation,
damage growth equation and the yield surface equation
as:

A~y 3 Spt1

(9)

P — =P
€n+1 - En +

1= Dpy1 §||Sn+1||7
(egq)n+1 = (qu)n + A’}/v (10)
_an—l—l )
D,.1=D,+A , 11
h= Dot Ay (2 (11)

_ /3 _lIsnll 0 » _
o= \/;(1 ~ Dot — oy + R(el))nt1] = 0. (12)
The solution of these four nonlinear coupled equations
simultaneously is a costly computational task. Stein-
mann et al. [32] presented that by performing relatively
straightforward algebraic manipulations, the above
system can be reduced to a single nonlinear algebraic
equation for the plastic multiplier Ay expressed as:

o(d0) =+ (‘Y§A7>> —0, (13

where w is the integrity variable in contrast to damage
variable and is evaluated by:

Wnt1 =1=Dpi1 = w(Ay)

3G Ay
= “trial ’ (14)
qni1 — oy (R, + A7)

where q’ij}l_“ll is the von-Mises equivalent stress obtained

by the elastic predictor step. The damage energy
release rate is a function of A~y calculated by:

oy (B + 89 | Poy

Y (A~) =
(A7) e a

(15)

where p,,11 is the elastic predicted hydrostatic pressure
without damage effect. Equation 13 can be solved by
an iterative method such as Newton-Raphson method.
An initial guess is very effective in the rate of conver-
gence of the method. In this study, the following initial
guess proposed by de Souza Neto et al. [33] is employed
as:

[Q:Llfll — 0y (Rn)]wn
3G '

It was shown that the above initial guess reduces the
total number of iterations required for convergence,
as compared to the usual choice of Ay(®) = 0. By
computing the plastic multiplier, the updated state
variables can be obtained using four basic equations.

A =

(16)

Micro-Crack Closure Effect

From the micromechanical view, the damage can be
considered as the degradation of material properties
due to the evolution of voids and micro-cracks. The
Lemaitre damage model discussed in the previous
section suffers from an important drawback, since the
effect of hydrostatic stress is captured by the damage
energy release rate Y with equal response in tension
and compression. On the other hand, the micro-
cracks which open in tensile stresses may partially close
at a compression stress state. Hence, after having
been damaged in tension, the material recovers its
stiffness partially under compression. To remedy this
problem, several decompositions are proposed, such
as the elastic energy decomposition [34], the Kelvin
decomposition of compliance tensor [35], the damage
tensor decomposition [36], or more classically based
on the stress tensor decomposition into a positive and
negative part [37-40]. In this study, the stress tensor is
decomposed into the positive and negative parts and
the effect of compressive stress tensor is considered
a fraction of the effect of tensile stress tensor. In
the process of decomposition, the stress tensor is first
mapped to the principle directions to form a diagonal
matrix with the principle stresses. This matrix is then
decomposed to tensile and compressive stress tensors
as:

oc=o0t+o". (17)

This decomposition is defined mathematically using the
Macaulay bracket { ) as:

<0’1> 0 0
ot=10 (o) 0|,
0 0 <0’3>
(—0'1> 0 0
o =— 0 (—02) 0 . (18)
0 0 (—0’3>
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The Macaulay bracket is a scalar function defined as:

a ifa>0
- = 19
{a) {0 ifa<0 (19)

By decomposition of stress tensor, each component
affects the damage energy release rate separately. The
effect of tensile component given in previous section
remains valid, but the compression component has a
more moderate effect with an experimental reduction
factor of h, which can be determined by the technique
proposed by Arnold et al. [41]. This value is called
the crack closure effect constant and has the value in
the range of [0 — 1]. At the extreme values, h = 0
implies the full crack closure and h = 1 represents the
damage model without crack closure effect. Thus, the
effect of compressive component of stress tensor can
be superposed with the effect of tensile component of
stress tensor by modifying Equation 4 as:

L (14wt ot —w(tro)]

Y ="SEa-Dp

h

“ oo ppe (L tVe e —v(mire).

(20)

By modifying the value of damage energy release
rate, the remaining parts of the procedure of original
Lemaitre model will not be changed.

ADAPTIVE FE STRATEGY

In numerical analysis of FE solution, it is essential to in-
troduce some measures of error and use adaptive mesh
refinement to keep this error within prescribed bounds
to ensure that the finite element method is effectively
used for practical analysis. To automate this process,
adaptive finite elements have been implemented to
obtain an optimal mesh. Most of the pioneering math-
ematical works, such as Babuska and Rheinboldt [18],
Zienkiewicz and Zhu [19, 20], Gago et al. [42] and Kelly
et al. [43], have been today translated into engineering
usage. Due to the localized material deterioration in
the damaged body problems, many elements will be
severely distorted producing unacceptably inaccurate
solutions and this optimization takes a more important
and necessary role. In order to obtain an optimal
mesh, in the sense of an equal solution quality, it
is desirable to design the mesh such that the error
contributions of the elements are equally distributed
over the mesh. This criterion illustrates what parts
of the discretized domain have to be refined/de-refined
and what degree of mesh fineness is needed to maintain
the solution error within the prescribed bounds. The
plastic deformation of problem necessitates transferring
all relevant variables from the old mesh to new one.

H. Moslemi and A.R. Khoei

In general, the procedure described above can be
executed in four parts: an error estimation, an adaptive
mesh refinement, an adaptive mesh generator, and the
mapping of variables.

Error Estimation Using Weighted SPR
Technique

In damage mechanics problems, the damage variable
plays an important role in predicting the crack ini-
tiation and crack growth. Thus, the error needs to
be estimated based on the damage variable D, i.e.

ep = D — D, with D denoting the exact value of

damage variable and D the damage value derived by
a finite element solution. Since the exact value of
damage variable is not available, a recovered solution
is used instead of exact one and then approximate the
error as the difference between the recovered values and
that given directly by the finite element solution, i.e.

ep = D" — D, where D* denotes the recovered value
of damage variable D. In order to obtain an improved
solution, the nodal smoothing procedure is performed
using the Weighted Superconvergent Patch Recovery
(WSPR) technique, which was originally proposed by
Moslemi and Khoei [28] to simulate the crack growth
in linear fracture mechanics. The objective of recovery
of the FE solution is to obtain the nodal values of
damage variable D such that the smoothed continues
field defined by the shape functions and nodal values is
more accurate than that of the finite element solution.
A procedure for utilizing the Gauss quadrature
values is based on the smoothing of such values by a
polynomial of order p in which the number of sample
points can be taken as greater than the number of
parameters in the polynomial. The recovered solution
of damage variable D* can be obtained as D* = Pa,
with a denoting a vector of unknowns assumed as:

a = <a/17 az, a3, a4>T7
and P the polynomial base functions given by:
P={(1zy,z).

The determination of the unknown parameters a can
be made by performing a least square fit to the values
of superconvergent or sampling points. After finite
element analysis, a patch is defined for each vertex node
inside the domain by the union of elements sharing
the node. At each node of interior patch center, the
connected tetrahedral elements along with their nodes
and Gauss points are obtained. In the standard SPR
technique, all sampling points have similar properties
in the patch, which may produce significant errors in
the boundaries, particularly the edges of crack. In fact,
for elements located on the boundaries or crack edges,
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which do not have enough sampling points, we need
to use the sampling points of nearest patch. These
new sampling points induce unreal value of damage
variables in the patch and overestimate the value of
error, which results in unreasonable mesh refinement
in the boundaries of domain. Moslemi and Khoei
[28] proposed the weighted-SPR technique by using
different weighting parameters for sampling points of
the patch. It results in more realistic recovered values
at the nodal points, particularly near the crack tip and
boundaries. Hence, if we have n sampling points in the
patch with the coordinates (zk, vk, 2x), the function F
needs to be minimized in this patch as:

F(a) = Zwk[Df(Ik,ymZk) — Di(zr, yr, )]
k=1

)

= Zwk[P(Ik,ym zr)a — Di(wg, ye, 20)]%. (21)
k=1

In order to incorporate the effects of nearest sampling
points in the recovery process, the weighting parameter
is defined as wy = 1/ry, with r; denoting the distance
of sampling point from the vertex node which is under
recovery. The minimization of function F' with respect
to a results in the unknown parameters a as:

n -1, —
ac (Z w,ngpk) S [6PI Do) (22)

k=1 k=1

Once the components of the vector of unknown param-
eters a are determined, the damage variables at nodal
points inside the patch are computed by using the in-
terpolation of the shape functions. These nodal values
D* can be used to construct a continuous damage field
over the entire domain at the next step, that is, for each
element, the recovered damage variable is represented
as an interpolation of nodal values using the standard
shape functions N in finite element analysis as D* =
ND*. The recovered damage variable obtained by this
relation can be used to obtain a pointwise error in
the domain. Since the pointwise error becomes locally
infinite in critical points, such as crack tip, the error
estimator can be replaced by a global parameter using
the norm of error defined as:
~ — —_ 1/2
leoll = 110" = DI =( [ (" =D) (0" ~Dyan) .
¢ (23)

The above L, norm is defined over the whole domain
Q2. The overall error can be related to each element
error by:

m
llenl* = llenll?,
=1

with ¢ denoting an element contribution and m the

total number of elements. The distribution of error
norm across the domain indicates which portions need
refinement and which other parts need de-refinement,
or coarsening elements. Since the total error permis-
sible must be less than a certain value, it is a simple
matter to search the design field for a new solution in
which the total error satisfies this requirement. In fact,
after remeshing each element must obtain the same
error and the overall percentage error must be less than
the target percentage error, i.e.:

0 = llenll/ 1PNl < baim = llenaim /D1,

with 6., denoting the prescribed target percentage
error. Hence, the aim error at each element can be
obtained as:

1

iJaim — -B eaim‘ 24
(llenll:). \/M” | (24)

The rate of convergence of local error depends on the
order of elements. Thus, the new element size can be
evaluated as:

L [Uenllaim ],
e (i )

where h is the average element size and p is the order
of element. To obtain the nodal element size, a simple
averaging between elements joining a node is used.

Data Transfer Operator

In the nonlinear FE analysis, the new mesh must
be used starting from the end of previous load step
since the solution is history-dependent in nonlinear
problems.  Thus, the state and internal variables
need to be mapped from the old finite element mesh
to the new one. The process of data transfer can
be carried out in three steps [44,45]. In the first
step the continuous internal variables are obtained by
projecting the Gauss point components to the nodal
values using the 3D weighted-SPR method. In the
second step, the nodal values of internal variables of
old mesh are transferred to the nodes of new mesh. For
this purpose, we must first determine which element
in the old mesh contains the nodal point in the new
finite element mesh. The nodal components in the old
mesh are then transferred to the nodes of new mesh
by applying the old shape functions of old elements
and the global coordinates of the new nodes. The
components of internal variables at the Gauss points
of new mesh are finally obtained by interpolation using
the shape functions of elements of the new mesh. These
three steps are illustrated schematically in Figure 3.
Consider that a state array A% =

(udld, eod (ep)old gold Dold)  denote the

o ey values
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Old mesh New mesh
® Old nodal point ® New nodal point
B Old Gauss point ®m New Gauss point
Step 1 Step 2 Step 3
Transferring from Gauss points Transferring from old nodal Transferring from nodal points
to nodal points in old mesh points to new nodal points to Gauss points in new mesh

Figure 3. Three-step procedure of the transfer operator.

of displacement, strain tensor, plastic strain tensor,
stress tensor and damage variable at time ¢, for the
mesh M. Also assume that the estimated error of
the solution A‘,’le respects the prescribed criteria,
while these are violated by the solution Af}il. In
this case, a new mesh My, is generated and a new
solution A% is computed by evaluating the stress
tensor o2V and the damage variable D2V for a new

mesh My at time step ¢,. In this way, the state

~new

J— new new 3
array A, = (oW D2V} is constructed, where A

is used to denote a reduced state array. It must be

noted that the state array A characterizes the history
of the material and provides sufficient information for
computation of a new solution A}%]. The aim is to
transfer the internal variables ((0,,)29, (D,,)%4) stored
at the Gauss points of the old mesh M, to the Gauss
points of new mesh M. The transfer operator 7;

between meshes M; and My can be defined as:
(o)™, (DW)EY) = Til(an)a", (Dn)a]. (26)

The variables ((0,)24,(D,)2d) specified at Gauss
points of the mesh M, are transferred by the operator
71 to each point of the domain €, in order to specify
the variables ((,)EY, (Dn)E™) at the Gauss points of
new mesh M. The operator 7; can be constructed
by a least-squares method, or a suitable projection
technique.

In order to obtain the continuous values of stress

—~0

tensor and damage variable A, = ((o,)°4, Do),
the Gauss point components (o,)29 and (D,)2¢ are
projected to nodal points to evaluate the components
(0,) and (D). In this study, the projection of the
Gauss point components to the nodal points is carried
out using the weighted-SPR technique, as described in
previous section. The nodal components of the stress
tensor (0,)% and the damage variable (D,,)% for the
mesh M) are then transferred to the nodes of the
new mesh My resulting in components (o,)3" and
(D). The components of stress tensor and damage
variable at the Gauss points of the new mesh My, i.e.

(0n)EY and (Dy)E", are finally obtained by using the

interpolation of the shape functions of the new finite
elements. In this procedure, the local coordinates are
used to interpolate the variables from the nodes of mesh
My, to the nodes of mesh My, In the case of linear
four-noded tetrahedral element, the local coordinates
are obtained by solving a linear system of algebraic
equations. In the case of higher order elements, the
problem becomes nonlinear and the Newton-Raphson
iterative scheme is implemented to obtain the local
coordinates.

NUMERICAL SIMULATION RESULTS

In order to illustrate the accuracy and robustness of
the proposed adaptive finite element method in three-
dimensional damage mechanics, several problems are
simulated numerically. Two benchmark examples are
chosen to evaluate the performance of adaptive FE
strategy for the crack initiation in a cylindrical pre-
notched bar and a finite crack in the 3D rectangular
specimen. In order to tackle 3D damage mechan-
ics problems the proposed adaptive FE method is
implemented in the computer software SUT-DAM,
which was designed by the senior author in [46-48] for
adaptive mesh refinement of large plasticity deforma-
tions and has been extended to adaptive analysis of
damage growth simulation. The ten-noded tetrahedral
elements are employed for the finite element meshes,
and the numerical integration is carried out using four
Gauss-Legendre quadrature points. The projection of
the values of Gauss points to nodal points is carried
out by using the 3D weighted-SPR method. The stress
tensor and damage variable are mapped from the old
mesh to new one during the data transfer process. The
Lemaitre coupled plasticity-damage model is used in
conjunction with the micro-crack closure effect to pre-
dict the damage growth in specimens. In order to solve
the nonlinear equation systems, the global stiffness
matrix is formed at the first iteration of each loading
increment, and remains unchanged during iterations
afterwards, i.e. the modified Newton-Raphson iterative
procedure is employed. In all examples, the results are
compared with those reported by previous researches.
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Crack Initiation in a Cylindrical Pre-notched
Bar

The first example is of a classical tensile test of a
cylindrical pre-notched bar which has been extensively
used by various researchers [49-52]. The geometry
and boundary conditions of the specimen are shown
in Figure 4. On the virtue of symmetry, only one-
eighth of the problem is modeled. The specimen is
subjected to the tensile prescribed displacement at the
top edge. The bar is constructed by a low carbon steel
in a rolled state with the following material properties:
E = 210 GPa and v = 0.3. The strain hardening
is considered to be isotropic and its curve has an
exponential form governed by:

oy =620+3300[1 —exp(—0.4¢7, )] (MPa), (27)

where 7 is the equivalent plastic strain. The param-
eters of Lemaitre model were calibrated by Benallal
et al. [53] for this specimen given as s = 1.0 and
r = 3.5 MPa. This specimen was also simulated by
de Souza Neto et al. [33] using 2D FE modeling to
validate the performance of their constitutive model
in damage mechanics. The vertical displacement is
applied incrementally in 600 increments of 0.001 mm.
The damage evolution is predicted by Lemaitre model
until its value reaches to the critical damage value of
De =0.99.

In Figure 5, the distribution of damage contours
are shown at three stages and compared with those
reported by de Souza Neto et al. [33] in two-dimensional
modeling. It can be seen that the predicted damage
contours are in good agreement with those obtained
in [33]. It is interesting to note that the location of
maximum damage is not fixed in the model and moves
at different stages of loading. It can be observed that
the maximum damage occurs in the outer part of the
specimen at the first stages of loading, however, it
moves toward the center of the bar by increasing the
load. This can be justified by the fact that at early

Prescribed displacement

. IR

Constrained in
out-of-plane
direction

16 mm

S~ r=4mm
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Figure 4. The cylindrical notched specimen; the
geometry and boundary conditions.
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Figure 5. The distribution of damage contours at various
load steps. A comparison between the present 3D model
and 2D result reported by de Souza Neto et al. [33].

stages of loading the hydrostatic stress is low and the
damage evolution is affected by the plastic low. Thus,
the damage grows in outer layers where the maximum
equivalent plastic strain occurs. However, by increasing
the load, the hydrostatic stress increases and its effect
becomes dominant. Hence, the damage critical point
moves toward the center of the bar where the maximum
value of hydrostatic stress occurs. This phenomenon is
also observed experimentally by Hancock and Macken-
zie [54] where the failure of the bar initiates from the
center of the bar. A comparison of the damage variable
evolution at the centre of the specimen between the
present study and 2D results reported by de Souza Neto
et al. [33] is shown in Figure 6. The rate of damage
growth is proportional to the damage value itself. In
Figure 7, the variation of reaction force is plotted with
the prescribed displacement. In order to control the
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Figure 6. The damage variable evolution at the centre of
specimen. A comparison between the present 3D model
and 2D result reported by de Souza Neto et al. [33].
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Figure 7. The force-displacement diagram for the
cylindrical notched specimen. A comparison between the
present 3D model and 2D result reported by de Souza
Neto et al. [33].

error of the solution, an adaptive FE mesh refinement is
carried out to generate the optimal mesh. The weighted
superconvergent patch recovery technique is used with
the aim error of 5%. This process is carried out at
two steps of 50 and 360, as shown in Figure 8 This
figure clearly presents the distribution of elements on
the specimen with the growth of damage. In Figure 9,
the effect of adaptive strategy can be observed on
the estimated error. Obviously, the adaptive mesh
refinements result in a reduced estimated error and
converge to the prescribed target error.

A Finite Crack in a 3D Rectangular Specimen

The second example illustrates the damage growth
in mode-I loading condition of a three-dimensional

H. Moslemi and A.R. Khoei

() (b) (c)

Figure 8. Adaptive mesh refinement technique for the
cylindrical notched specimen. a) Initial FE mesh; b)
adapted mesh at u = 0.05 mm; and c) adapted mesh at
u = 0.36 mm.
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Figure 9. The variation of estimated error with
prescribed displacement during adaptive mesh refinement.
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Figure 10. A 3D rectangular specimen with finite crack;
the geometry and boundary conditions.

rectangular specimen of 20 x 10 x 2 cm with a finite
crack, as shown in Figure 10. This example is chosen
to validate the accuracy of proposed adaptive FE
algorithm for a benchmark problem. The 3D specimen
is subjected to the prescribed displacement until the
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damage variable reaches to the critical value Do =
0.95. This condition was attained for a prescribe
displacement of v = 1.1 mm. This example was
proposed by Chung et al. [55] to verify the ability
of their two-step parallel computing technique. The
model is made by an aluminum alloy with the material
properties given in Table 1. The strain hardening
of material is governed by the following exponential
function, i.e.:

oy = hiel, + (h1 — ho) exp(—me?, ) /m. (28)

In Figure 11, the distribution of damage contours are
shown at various load steps and compared with those
reported by Chung et al. [55]. Complete agreement
can be observed between two numerical simulations.
Obviously, the critical damage point is obtained at the
crack tip and the crack growth is expected to initiate
from this point. The distribution of damage is also
symmetric around the crack tip. The magnitude of

Table 1. Mechanical properties and material constants of
aluminum alloy.

Material Constant Parameter Value
Young modulus E 72.4 GPa
Poisson ratio v 0.32
Hardening constant m 25
Initial hardness constant ho 1150 MPa
Ultimate hardness constant ha 1670 MPa
Damage constant 1 s 1.0
Damage constant 2 r 1.5 MPa
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Figure 11. a) A comparison of final damage contours
between the present model and that reported by Chung et
al. [565]; and (b-d) damage contours near the crack tip at
various load steps.

maximum damage obtained by the present simulation
and that reported by Chung et al. [55] are plotted in
Figure 12. The discrepancy between two numerical
simulations can be related to the different damage
models used in these simulations, and the calibration
performed for obtaining the parameters of two damage
models. In Figure 13, the initial FE mesh is shown
together with the adaptive mesh refinements obtained
using the weighted-SPR technique for the damage
modeling. It must be noted that the finest adapted
FE mesh used in present simulation has 30000 degrees-
of-freedom, while the finite element mesh used in
reference [55] was taken more than one million DOFs
to achieve an acceptable result. The process of error
estimation is carried out in this example at two stages
and the results are plotted in Figure 14. Obviously,
the adaptive mesh refinement procedure reduces the
estimated error considerably.

0.40

—&— Current study
0.35] | —=— Chung et al. [55]

0.30.

Maximum damage

0.0 02 04 06 08 10 12 14
Displacement (mm)

Figure 12. The evolution of damage variable at crack tip
for the 3D tensile specimen; a comparison between the
present model and that reported by Chung et al. [55].

Figure 13. Adaptive mesh refinement model for the 3D
tensile specimen. a) Initial FE mesh; b) adapted mesh at
u = 0.4 mm; and c) adapted mesh at u = 0.8 mm.
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A Knee-Lever with a Corner Crack

The last example is of a knee-lever connection, which is
extensively used for machine systems. The component
has an initial crack in the symmetric plane and oriented
perpendicular to the adjacent surfaces. The crack edge
has a circular shape with a radius of 5 mm. The
connection is loaded by the prescribed displacement in
two edge holes simultaneously and restrained at the
middle hole. The geometry and boundary conditions
of this component are shown in Figure 15. In Figure 16
the location of corner crack is shown in the three-
dimensional view. The connection is made of the
aluminum alloy AlZnMgCu 1.5 which is a proper choice
in lightweight structures for its high ratio of strength
to density. The elasticity modulus of specimen is
E = 32.5 GPa and the Poisson ratio is v = 0.3. The

210 140

R30

/ 140

R40 210

Figure 15. A knee-lever with a corner crack; the
geometry and boundary conditions (all dimensions in
mm).
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Figure 16. A knee-lever with a corner crack; the crack
geometry.

initial yield stress is assumed to be ogyo = 350 MPa
and the material hardening is governed by a linear
hardening of H = 820 MPa. Schollmann et al. [56]
simulated this component to illustrate the capabilities
of their software in handling complex structures and
crack under fatigue loading. To emphasize on three-
dimensional behavior of component, the thickness of
the specimen is increased here from 15 mm to 40 mm.

Based on the Lemaitre damage model with no
micro-crack closure effect, the maximum damage oc-
curs at loading points of edge holes because of high
compression stresses at these regions. However, by
introducing this effect to the model, the critical damage
transmits to the crack tip region, as demonstrated in
Figure 17. As can be observed from this figure, the
crack tip in the thickness direction illustrates the higher
damage than the crack tip in the upper surface of
the component. Thus, the crack first grows in the
thickness direction and then penetrates in the depth of
component. This observation can be verified with that
reported by Schollmann et al. [56]. Figure 18 displays
the reaction force versus prescribed displacement for
the knee-lever connection. In Figure 19 the maximum
damage variable evolution at different displacements
is plotted. It can be observed that the damage
growth starts at prescribed displacement of 1 mm and
rapidly reaches to its critical value at displacement of
2 mm, however, the crack tip region reaches the critical
damage at displacement of 9 mm. Furthermore, the
critical damage point is obtained at the front crack
tip during loading steps, since both the hydrostatic
stress and effective plastic strain are concentrated on
this point. During the damage growth process, two

Damage

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 17. The damage contour for a knee-lever with a
corner crack.
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Figure 18. The force-displacement curve for a knee-lever
with a corner crack.
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Figure 19. The evolution of damage variable at crack tip.
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Figure 20. The adaptive mesh refinement strategy for a
knee-lever with a corner crack. a) Initial FE mesh, b)
adapted mesh at v = 1.15 mm, c) adapted mesh at

v =6.10 mm.

successive mesh refinements with the aim error of 5%
are performed. In Figure 20, the initial and adapted
FE meshes are shown at « = 1.15 and 6.10 mm.
The adaptive mesh refinement is performed at the
start of damage growth and when the estimated error
exceeds 10%. The effect of adaptive mesh refinement
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Figure 21. The variation of estimated error with
prescribed displacement during adaptive mesh refinement.

is obvious in the variation of estimated error at the
damage growth process, as shown in Figure 21.

CONCLUSION

In the present paper, an adaptive finite element method
was presented for the three-dimensional analysis of
damage growth and crack initiation. The formulation
takes into account the micro-crack closure effect on
damage evolution, to distinguish between the tensile
and compressive stresses. The constitutive modeling
was implemented within the framework of continuum
damage mechanics. A simplified version of Lemaitre
damage model was employed to estimate the damage
evolution. The adaptive finite element technique was
implemented through the following three stages: an
error estimation, adaptive mesh refinement and data
transferring. The error estimation procedure was
used based on the Zienkiewicz-Zhu error estimator
and a weighted superconvergent patch recovery tech-
nique was employed. The accuracy and robustness
of proposed computational algorithm in 3D damage
mechanics were presented by three numerical examples.
The results clearly show the ability of the model in
capturing the damage growth and crack initiation in
two benchmark examples and a complex 3D problem.
In a later work, we will show how the proposed
technique can be used in a 3D automatic simulation of
crack propagation in the fracture of ductile materials.
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