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Tuned Genetic Algorithms for Finding
p-Medians of a Weighted Graph

A. Kaveh1;�, M. Shahrouzi2;3 and Y. Naserifar3

Abstract. There are various engineering applications dealing with the prototype problem of �nding the
best p-medians in a weighted graph. However, the heuristic developments are still of concern due to their
complexity. This paper utilizes genetic algorithm as a well-known reliable evolutionary search for such
a purpose. Problem formulation is studied, introducing a characteristic graph and specialized genotype
representation called \Direct Index Coding". The genetic operators are also modi�ed due to problem
requirements, and further tuned using a simulated annealing approach. Such an enhanced evolutionary
search tool is then applied to a number of examples to show its e�ectiveness regarding the exact results,
and to compare e�ciency between tuned and non-tuned GA.

Keywords: Genetic algorithm; p-median problem; Direct index coding; Simulated annealing; Parameter
tuning.

INTRODUCTION

Many real world problems deal with optimal locating
of a predetermined number of client nodes to serve
other customer nodes in a given network. In other
words, the common location �nding of facilities such as
emergency services, stores and shopping city centers,
airports, universities and educational centers are all
examples of such a layout optimization called P-Median
Problem (PMP) [1]. It has already been further
extended to some other engineering applications, such
as domain decomposition, mesh generation and parallel
computing [2-4].

The location �nding models fall in an interesting
�eld of operational research. These can be categorized
in many ways, e.g. mini-max (center �nding) or
mini-sum problems. The latter is the case in this
research; to locate p server nodes among N nodes of
a given network, and allocate other customer nodes to

1. Centre of Excellence for Fundamental Studies in Structural
Engineering, Iran University of Science and Technology,
Tehran, P.O. Box 16846-13114, Iran.

2. Department of Civil Engineering, Tarbiat Moallem Univer-
sity, Tehran, P.O. Box 15614, Iran.

3. Department of Engineering, Building and Housing Research
Center, Tehran, P.O. Box 13145-1696, Iran.

*. Corresponding author. E-mail: alikaveh@iust.ac.ir

Received 2 February 2010; received in revised form 20 May 2010;
accepted 3 July 2010

them. Here, we consider the case where medians are
associated with nodes of a network graph.

PMP is proven to be an NP-hard problem [5,6],
that is no algorithm is known to practically solve its
variants in polynomial time, as the size of the problem
increases. Several approximate solutions are already
employed in literature [7]. Consequently, heuristic and
meta-heuristic search methods are of concern to many
researchers [8-10]. Meta-heuristics usually can quickly
reveal a near optimal solution without proof of its opti-
mality. A survey of applied meta-heuristic methods for
PMP is available in literature [11]. Novel utilizations
of meta-heuristics, such as ACO or GA have also been
investigated in engineering applications [2,12].

The most important issue in the meta-heuristic
search is the balance between exploration and exploita-
tion. This can be achieved using parameter tuning
techniques, either via adaptive methods or by extensive
hyper-optimization [13,14].

The genetic algorithm is a well-known meta-
heuristic in which the explorative and exploitative
agents are distinctly distinguished [15,16]. Such a
feature has made it ideal for parameter tuning. In this
article, an integer coded GA is tuned using a simulated
annealing approach [17,18].

The outline of the paper is as follows. First, the
problem formulation is described and a brief review of
the exact method is given. Genetic operators are also



Tuned Genetic Algorithms for Finding p-Medians 351

utilized for the PMP. The method is then applied to a
number of examples and the results are compared with
those of exact and pure GA, discussing e�ciency and
e�ectiveness.

PROBLEM FORMULATION AND ITS
CHARACTERISTIC GRAPH

A graph G, denoted by G = (N;E), consists of a non-
empty set, N , of elements called nodes (vertices) and
a set, E, of elements called edges (arcs), together with
a relation of incidence, which associates each member
with a pair of nodes called its \ends". In a simple
undirected graph, only one edge can be de�ned between
a pair of nodes without considering priority, choice of
which node is the �rst end of that edge. In some cases,
some weight values are associated to the graph nodes,
known as a \weighted graph".

Consider a weighted undirected graph, G =
(N;E). The p-median problem is to �nd a subset,
Np = fi1; � � � ; ipg, of the total set of N nodes, so that
the following cumulative cost is minimized:

Minimize:

�0 =
X
j2N

X
i2Np

vjd(i; j); (1)

where d(i; j) denotes the shortest distance from node i
to node j, and vi shows the weight of node i. Such a
distance from each node to itself is taken as zero. For
an undirected graph (in which d(i; j) = d(j; i)), the
transmission of node i is de�ned as �0(i):

�0(i) =
X
j2N

vjd(i; j): (2)

Number �0(i) is a summation of the entries of row i
of the matrix; obtained by multiplying every column j
of the distance matrix [d(i; j)] by vj . Node �i0 2 N for
which �0(�i0) becomes minimum is the median of the
undirected graph. Now, let Np be a subset of N with
p nodes, then, each Np will have its own transmissions,
similar to Equation 2, as follows:

�0(Np) =
X
j2N

vjd(Np; j); (3)

in which:

d(Np; j) = min
i0 2 Np
j 2 N

d(i0; j): (4)

Let i0 be the node of Np that produces the minimum
in Equation 3 then we say that node j is allocated to
i0. The optimization task is to �nd the subset with
p elements, �Np0 2 N , such that �o( �Npo) becomes

minimum. Then, �Np0 will be a set containing the p-
medians.

Let allocation matrix [�ij ] be de�ned with each
entry, �ij , of 1, if node j is allocated to median node
i, and 0 otherwise. The alternate integer programming
formulation for the PMP will be:

Minimize:

� =
nX
i=1

nX
j=1

Wij�ij : (5)

Subject to:

nX
i=1

�ij = 1 for j = 1; 2; � � � ; n; (6)

nX
i=1

�ii = p; (7)

�ij � �ii for all i; j = 1; 2; � � � ; n; (8)

�ij = 0 or 1: (9)

In the above relationships, [Wij ] is assumed to be the
weighted distance matrix, i.e. it is the distance matrix
with every column j multiplied by vj . Equation 6
ensures that any given node j is allocated to one and
only one median i. Equation 7 ensures that there
are only p medians, and Equation 8 guarantees that
allocations are made only to the median nodes.

A p-median problem framework can be repre-
sented using a string with p cells, when each cell
is to be �lled with non-replicate node numbers in
the integer range f1; 2; � � � ; Ng. Alternatively, such a
framework addresses a bi-partite characteristic graph
with p vertices in its 1st part, which are to be connected
with p out of N vertices in the second part (Figure 1b).
This way, any p-edge matching of this characteristic
graph represents the corresponding evaluated string as
a solution candidate of the problem (Figure 2).

Any movement of the graph nodes can neither
disturb its adjacency nor transform it to a new graph.
Similarly, any substitution in arrangement of the �lled
cells or any permutation of a set of p nodes will not
generate a new solution. Thus, the order of the node
numbers in such a p-cell string has no importance for
the PMP, and permutation in it is allowed.

EXACT ALGORITHM FOR PMP

Cardinality of the PMP search space, i.e.
�
N
p

�
,

depends on factorials of N and p. Consequently,
searching all these possible combinations will be an
extensive time-consuming or even impractical task for
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Figure 1. Representation framework of PMP with (a) a
p-cell string/chromosome; and (b) a complete bipartite
characteristic graph (p = 4).

Figure 2. A candidate solution of a sample PMP;
represented with an evaluated string and its corresponding
matching graph.

larger problem sizes. It is proven that �nding the
medians of a planar graph is an NP-hard problem [5,6].
For the sake of simplicity, the Floyd-Warshall algo-
rithm, given via the following steps [19], is given here.
However, more e�cient methods may also be found in
literature [20-22]:

1. Construct all alternative combinations of
�
N
p

�
as

candidate median lists.

2. Allocate other graph nodes to their corresponding
medians in every such median list.

3. Compute cost of every median list.

4. Among all possible median lists, identify the one
having the least cost as the solution of the PMP and
report allocated nodes to these optimum p-medians.

GENETIC SEARCH UTILIZATION FOR
PMP

As a well-proven evolutionary search, a Genetic Algo-
rithm (GA) was systematically introduced and studied
by Holland in 1975 [15]. GA works in the search space
of coded variables called \genotypes" instead of corre-
sponding physical ones, i.e. phenotypes. Such a feature
has made it a general search tool for various problem
�elds, as it enables genotypic jumping over di�erent
local search islands seeking the global optimum. Hence,
the encoding scheme plays a crucial role in the genetic
search.

Binary coding was the �rst to be employed in the
standard GA due to its simplicity and minimal choice
of allele variation for every gene, that is only 2 options
(say 0 and 1). However, it is not the most suitable
coding for many real-world phenomena which are not
of binary type. In such cases including PMP, binary
representation can disa�ect optimization in a number
of ways:

- Resulting in larger genotypic search space than
needed.

- Hamming cli�s e�ect.

- Hidden mutation in binary crossover.

- Uncontrolled mutation range in the decoded phe-
notype that randomly varies with the location of a
mutated bit in the corresponding genotype.

Detailed reasoning for such e�ects is already available
in literature [23]. As a solution, Direct Index Coding
(DIC) is utilized to suit for cases when the range
of allele variation is a list of property indices as the
alphabet for the allele assignment [23]. Since the PMP
falls in such a category, DIC has been used for the
current problem.

According to this type of coding, the chromosome
will be identical to the pre-mentioned string with
p-genes. An evaluated genotype will be a p-gene
chromosome in which any gene-value (allele) is a node
number chosen from a list of integer indices between 1
and N (Figure 2).

The number of medians in PMP is �xed to p,
hence no duplicate alleles in a chromosome are permit-
ted. Thus, the genetic operators should be modi�ed in
order to e�ciently satisfy the PMP requirements. The
specialized GA operators are developed in the current
research as follows.
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Initiation

In order to get most bene�t from GA exploration
capabilities, it is desired to start the 1st population
with randomly initiated individuals with no occurrence
of replicate alleles in each chromosome. Suppose the
number of chromosomes in every generation is set
to PopSize. The above requirements can be simply
satis�ed, generating PopSize number of permutated
strings of indices between 1 and N . Then, the �rst p
indices of each string are selected as the corresponding
chromosome of the 1st generation.

Crossover

The role of crossover is to search all available exchanges
between genes of the population, that is exploiting
the corresponding local search island. Although each
chromosome of the previous generation is a permitted
genotype, the simple crossover between 2 parents
may generate ill-chromosomes with duplicate alleles
(Figure 3). In order to avoid such a malfunction, as
soon as every 2 chromosomes are selected as candidate
parents, one of them is permuted so that any pair of
their genes with the same allele takes the same place
order. This way, no duplicate alleles will arise in the
resulted children (Figure 4).

Mutation

Crossover by itself only exploits a subset of the whole-
search space related to the property of the current

Figure 3. One-point crossover on sample pair of correct
parent chromosomes can result in incorrect chromosomes;
each one with duplicate gene values.

Figure 4. Modifying parent chromosomes via crossover
has insured generating correct children.

population. Another operator will be then necessary
to explore other search regions toward the one con-
taining the global optimum. The allele of any gene
in a chromosome should have random chance of being
exchanged with other permitted values in the range
with the predetermined probability threshold of Pm.
If the candidate list for allele mutation is taken as
f1; 2; � � � ; Ng, duplicate values may be entered to the
same chromosome (Figure 5). Once a mutation is
ordered, the corresponding allele range is thus modi�ed
by omitting other current alleles of that chromosome
from it. This way, allele duplication is completely
avoided during mutation (Figure 6).

SIMULATED ANNEALING APPROACH
FOR TUNING THE SEARCH

Another important issue in implementation of a ge-
netic algorithm is parameter tuning to provide proper
balance between exploitation and exploration. Lack of
such a balance may lead either to ine�ciency or even
to premature convergence toward local optima. In the
earlier generations, it is desired to diversify in order
to capture more representatives of the whole search
space regions. This can be achieved using a lower
ratio of exploitative to explorative operators, i.e. a
crossover threshold with respect to mutation. In the
last iterations, however, less mutation probability is
required to allow proper search intensi�cation.

A number of attempts have already been re-
ported regarding this issue including extensive multi-
parameter hyper optimization [17,18]. Here, a Simu-
lated Annealing (SA) approach is employed as a single-
stage modi�er. In SA methodology, the probabil-
ity threshold of diversi�cation is gradually decreased
according to the following relation, as an arti�cial
temperature, T , increases with iteration counter, k:
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Figure 5. Example of simple mutation which has generated an incorrect chromosome with duplicate gene values.

Figure 6. Modi�ed mutation range has insured production of correct mutated chromosome.

fe(k) = e
��E

CBT (k)) ; (10)

in which the term �E denotes changes in objective
function due to perturbing the design variable vector,
and the arti�cial Boltzman constant, CB , is a control
parameter. k stands as counter to the search iterations.

Using the same approach, fe is taken as an enve-
lope function which modi�es the desired parameter(s)
of the current genetic search and is determined in any
kth generation as:

fe(k)=

(
1; for: k = 1
e
�1
CBT ; whereas: T = N

k�1�1:0; for: k>1 (11)

The envelope function starts at unity, and the Boltz-
man coe�cient, CB , is decided for each case.

Such an envelope function is used to gradually
decrease Pm and increase Pc as depicted in Figure 7 for
a sample Boltzman constant. Pm stands for mutation

probability and Pc is the crossover probability. This
way, the GA will diversify in the earlier generations to
capture more representatives of the whole search space,
while suitable search intensi�cation is adjusted, as the
optimization gets closer to its end.

NUMERICAL EXAMPLES

In this section, some numerical examples are studied
to show the e�ectiveness and e�ciency of the proposed
method. The elitism strategy is also employed to save
the best individual of every previous generation and
replace it with the worst one of the current population.
Tournament selection is used, not to omit the chance
of less �t, but probably to select good parents during
reproduction. Modi�ed one-point crossover and mu-
tation are utilized for the current PMP on undirected
graphs.

The control parameters for the pure GA are
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Figure 7. Tuning curves for Hybrid GA. (a) The
envelope function; (b) mutation probability; and c)
crossover probability.

Table 1. Control parameters of the GA.

Method PopSize Pm Pc
Number of
Generations

GA 30 0.1 0.9 100000

selected after a number of trials and given in Table 1.
For the proposed Hybrid GA and SA, the Boltzman
coe�cient is taken as 0.25 and other controlling pa-
rameters are set as in Table 2.

For every case, the best and average results are
reported out of a number of (10) consequent runs. The
thresholds of crossover rate, Pc, and mutation rate,
Pm, are tuned using the SA approach as mentioned
in Figure 7.

Four di�erent p values: 2, 5, 10 and 20 for
constant N are treated as distinct p-median problems.
GA results are also compared to the exact algorithm
when converged in a reasonable time. For the sake of
conciseness, only more important results are briefed in
Tables 3 to 6.

Example 1-1

It is a classic sample for PMP with 8 nodes [14,16].
The graph and its nodal/edges' weights are depicted
in Figure 8. Assume that the median list f1; 3; 7g
be a solution for 3-median �nding in this problem.
Figure 9a shows both the corresponding chromosome
and its characteristic graph. Assume that according
to Figure 9b, nodes f2; 4g are associated with node 1,

Figure 8. Example 1 with weights of its vertices and
edges.

Table 2. Control parameters for the Hybrid GA and SA.

Method PopSize Boltzman
Coe�. Cb

Initial
Pm

Initial
Pc

Target Limit
on Pm

Target Limit
on Pc

Number of
Generations

GA+SA 30 0.25 0.1 0 0 0.9 100000
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Table 3. Algorithms results for Example 2 with 45 nodes.

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 21 26 104 0.03 104 453 0.05

GA 21 26 104 0.02 104 444 0.05

Exact 20 25 104 0.06 104 990 0.06

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 11 14 17 30 34 63 0.08 63 16479 0.75

GA 11 14 17 34 39 63 0.12 63 7845 0.70

Exact 3 16 29 32 35 63 12300 63 1221759 50

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA
2 6 13 17
19 24 30
36 41 43

38 0.67 38 77898 6.12

GA
2 7 13 18
19 24 30
35 41 44

38 0.48 38 72756 8.26

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA

1 4 7 8
11 14 15 17
18 20 22 23
25 26 28 31
32 39 42 45

25 0.02 25 39 0.03

GA

2 4 5 8
9 11 16 18
19 21 22 23
31 32 35 38
39 43 44 45

25 0.02 25 33 0.04

Figure 9. a) A chromosome as a sample 3-median list
and its corresponding characteristic graph for Example 1.
b) Sample node allocation to the median nodes.

while no node is associated with 7. The remainder is
associated to node 3.

Example 1-2

It is the same as Example 1-1, but solved for 2-
medians. For this example, the symmetric shortest
distance matrix is given as below:266666666664

0 4 3 2 6 5 8 6
4 0 2 3 4 4 7 5
3 2 0 1 3 2 5 3
2 3 1 0 4 3 6 4
6 4 3 4 0 5 8 6
5 4 2 3 5 0 3 1
8 7 5 6 8 3 0 3
6 5 3 4 6 1 3 0

377777777775
:
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Table 4. Algorithms results for Example 3 with 95 nodes.

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 23 70 334 0.03 334 2409 0.21

GA 23 70 334 0.05 334 1815 0.15

Exact 23 70 334 0.33 334 4465 0.22

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 8 27 44 73 78 201 0.27 201.2 67533 4.60

GA 8 27 44 73 78 201 0.23 201.1 44937 3.34

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA
9 12 29 32
47 50 64
77 80 83

134 15.94 135.4 162525 16.15

GA
7 14 26 29
47 50 64
77 80 83

134 2.46 134.3 241956 31.78

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA

4 7 15 16
18 25 27 34
36 43 50 53
57 65 69 72
76 84 88 91

82 82.81 83.1 244893 51.11

GA

4 7 15 16
18 25 27 34
36 43 50 54
57 62 69 75
76 81 88 94

82 96.03 83 384018 122.81

Nodal cost vector, V , is as follows:

V =
�
3 1 2 3 1 0 4 1

�
;

and the weighted distance matrix, W , will be:

W =

266666666664

0 4 6 6 6 0 32 6
12 0 4 9 4 0 28 5
9 2 0 3 3 0 20 3
6 3 2 0 4 0 24 4
18 4 6 12 0 0 32 6
15 4 4 9 5 0 3 1
24 7 10 18 8 0 3 3
18 5 6 12 6 0 12 0

377777777775
:

The whole alternatives for 2-medians are listed as:

(1 2); (1 3); (1 4); (1 5); (1 6); (1 7); (1 8);

(2 3); (2 4); (2 5); (2 6); (2 7); (2 8);

(3 4); (3 5); (3 6); (3 7); (3 8);

(4 5); (4 6); (4 7); (4 8);

(5 6); (5 7); (5 8);

(6 7); (6 8);

(7 8):

With corresponding costs of:

Cost = [47; 31; 37; 54; 32; 25; 34; 38; 40; 58; 42; 32; 41;

34; 37; 30; 20; 29; 39; 28;18; 27; 45; 43; 52; 38;

49; 47]:

The solution will be (4, 7) for p = 2, leading to the
least cost. Due to the tiny size of such an illustrative
problem, the same result could be achieved by all of
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Table 5. Algorithms results for Example 4 with 190 nodes.

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 90 101 1040 0.17 1041.2 27429 1.99

GA 90 101 1040 0.05 1040.2 266838 16.55

Exact 90 101 1040 0.66 1040 17955 0.80

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 31 43 78 135 165 600 0.56 601.3 49293 5.42

GA 26 56 113 128 160 600 0.34 600.9 12531 1.41

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 25 33 49 62 78
113 140 148 156 164

404 3.09 404.3 125355 23.69

GA 25 33 49 58 62
113 129 142 158 166

404 6.54 404.3 282939 54.26

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA

22 25 29
33 36 39
47 51 77
83 92 105

115 126 139
142 152 169

176 185

268 246.53 269.7 530982 165.41

GA

6 16 22 31
49 53 59 65

77 82 104 114
126 138 142 152
155 160 169 185

268 592.24 270.9 961323 396.16

the exact, GA and Hybrid GA methods in fractions of
a second.

� =

266666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

377777777775
:

Example 2

In this example, a 45 node graph is treated with the
algorithms (Figure 10). The nodal weights are taken
as unity and the weighted distance matrix is computed,
according to [12].

Results for di�erent p values of f2; 5; 10 and
20g are obtained and summarized in Table 3. For

Figure 10. Graph model of Example 2 with 45 nodes.

p = 2, the GA and Hybrid GA both converged to
the median list with the same optimum cost of the
exact solution. The matter shows the e�ectiveness
of the proposed meta-heuristic search. Besides, the
di�erence in required computational time has been
highly increased for p = 5. For larger problem
sizes, results of the proposed exact methods were not
captured in the same practical time, due to the NP-
hard nature of the problem.



Tuned Genetic Algorithms for Finding p-Medians 359

Table 6. Algorithms results for Example 5 with 760 nodes.

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 183 583 6354 0.61 6354 8745 1.88
GA 178 368 6354 0.08 6354 9165 1.58

Exact 178 368 6354 37.05 6354 288420 34.71

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA 65 277 445 485 585 3774 10.73 3774 124353 40.58
GA 104 266 386 646 656 3774 12.23 3774 348330 115.69

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA
55 88 266 278
394 468 544
584 658 696

2479 199.40 2494.3 248802 149.88

GA
55 88 266 278
394 468 524
584 658 696

2479 263.28 2488.6 468939 294.80

Method Median List
Best
Cost

Best
Time (s)

Average
Cost

Average Number of
Fitness Evaluations

Average
Time (s)

GA+SA

50 63 77 174
184 189 240
247 253 357
366 389 488
494 521 581
648 683 710

717

1632 703.91 1639.5 540972 608.92

GA

29 56 63 149
174 240 253
267 357 365
391 438 493
520 528 581
648 683 717

730

1637 1640 1646 1394229 1696.89

Example 3

Figure 11 shows the 95 node graph as the next
example [12]. Again, the nodal weights are taken as
unity. Results for di�erent p values are summarized
in Table 4. For the small p of 2, all the tree methods
converged to the same exact solution. However, for
larger p values, the superiority of Hybrid GA over GA
is further declared in the resulted computational time.

Example 4

The 190 node graph of this example [12] is shown in
Figure 12. Table 5 summarizes the best and average
obtained results for di�erent numbers of medians. In
this example, the Hybrid GA could improve not only
the computational time, but also the average cost with
respect to pure GA. Figure 11. Example 3 with 95 nodes.
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Figure 12. Example 4 with 190 nodes and nodal weights of unity.

Figure 13. A graph with 760 nodes as the model of
Example 5.

Example 5

This 760 node example is also treated to study the
capability of algorithms working on larger size prob-
lems [12]. As shown in Figure 13, the corresponding
graph has 4 inner holes. Again, the nodal weights
are taken as unity. Results for di�erent p values are
summarized in Table 6.

DISCUSSION AND CONCLUSION

As can be realized from the results, when the number
of nodes and medians decrease, the probability of
capturing the global optimum increases. For larger size
problems, the result of Hybrid GA is generally better
than GA.

Figures 14 and 15 show a smoother and more
stable convergence of Hybrid GA than pure GA.
Figure 14 also illustrates the probability of premature
convergence for the pure GA, despite the proposed
Hybrid GA.

According to the results in Figures 16 and 17,
the Hybrid GA is more e�cient than GA for various
p values. Comparison of the best CPU time for
di�erent examples in Figure 18 con�rms the superiority
of the developed Hybrid GA over the pure GA. It

Figure 14. Sample convergence curves of GA and Hybrid
GA+SA for P = 5 and N = 760.

Figure 15. Sample convergence curves of GA and Hybrid
GA+SA for P = 20 and N = 760.

also shows that t5he pure GA is more sensitive to the
number of nodes as a factor of search space cardinal-
ity. The conclusion stays reliable when considering
average required time, even with smoother curves in
Figure 19.

Generally, it is noted that the proposed exact
solution for larger size NP-hard PMP's may not be
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Figure 16. Comparison of algorithms e�ciency of best
achieved results for various number of medians in
760-node example.

Figure 17. Comparison of algorithms e�ciency in
average number of �tness evaluations or various number of
medians in 760-node example.

Figure 18. Comparison of algorithms e�ciency for best
achieved results and various number of nodes
(N = f45; 95; 190; 760g).

achievable via practical time. Use of a meta-heuristic
and stochastic search is of concern not only for quicker
convergence, but also for jumping over the local op-
tima, in order to provide search e�ectiveness and a
better quality of results. However, the application of

Figure 19. Comparison of algorithms e�ciency in
average CPU time results for various number of nodes.

standard GA is not recommended due to its higher
sensitivity to the problem size. Instead, the developed
Hybrid GA can provide a proper balance between
e�ectiveness and e�ciency of such a combinatorial
optimization task due to the proposed tuning of ex-
ploitative and explorative operators.
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