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Abstract. A review of major research performed in the �eld of earthquake engineering of bridges
during the past decade is presented with a focus on computational modeling. Topics covered include
nonlinear simulation, hazard analysis, passive, active, and hybrid control of bridges, bridge damage
studies, health monitoring of bridges, bridge management, and retro�tting of bridges. Important
conclusions of interest to the bridge engineering community reported in the articles are noted.

Keywords: Bridge engineering; Bridge management; Earthquake engineering; Seismic hazard analysis;
Health monitoring; Impact; Nonlinear simulation; Retro�tting; Vibrations control.

INTRODUCTION

The purpose of this paper is to present a state-of-the-
art review of the computational research performed in
the �eld of earthquake engineering of bridges during the
past decade. The focus of the review is on bridge struc-
tures and computational modeling as opposed to bridge
components. Signi�cant and representative computa-
tional research published since 2000 primarily in the
following journals are reviewed: Earthquake Engineer-
ing and Structural Dynamics, Journal of Structural
Engineering, Journal of Bridge Engineering, Computer
Aided Civil and Infrastructure Engineering, Engineer-
ing Structures, Earthquake Spectra, and Computers
and Structures. The review in each section is roughly
presented chronologically. The decision to limit the
review to these journals is based on their positions as
key journals for computational earthquake engineering
of bridges and limited space available for an article.

ANALYSIS AND SIMULATION

Nonlinear Simulations

Finite Element (FE) computing has become an increas-
ingly powerful tool for bridge designers [1-6]. Research
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dealing with simulation methods and models involving
large numbers of bridge elements, multiple loading
situations, and complicated structures has progressed
in a number of ways with the increasing power and
availability of computers. Consolazio [7] uses neural
networks [8-17] to accelerate the convergence of a
preconditioned conjugate gradient iterative equation-
solver for FE analysis of highway bridges consisting
of steel girders and a concrete slab. Meng and
Lui [18] investigate the e�ects of earthquake induced
torsion on short span highway bridges with attention
to asymmetry due to construction errors and accidental
factors, and bridge deck rotation using vibration and
earthquake response analysis. They conclude that for
bridges with a small ratio of rotational to translational
frequency, asymmetry can signi�cantly a�ect the dy-
namic response. Linzell [19] presents results of the
comparison of multiple FE models for curved steel
bridges with experimental data obtained from nine full
scale tests along with Monte Carlo simulations and
conclude that, in general, the �nite element models
yield conservative results.

Cable-stayed bridges have received increasing at-
tention in recent years, particularly in long span
applications for reasons such as versatility and aes-
thetics [20-21]. A key issue in multi-span cable-stayed
bridges is stabilization of the central tower(s) under
extreme wind or seismic vibrations, since they cannot
be anchored to an outer �xed support. A solution to
this is the use of stabilizing cables which run from the
top of the central tower(s) to a location on the deck
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near the side towers. Ni et al. [22] investigate the e�ect
of stabilizing cables on Ting Kau Bridge, a four-span
cable-stayed bridge with central towers in Hong Kong,
through a 3D FE analysis. The authors conclude that
\the longitudinal stabilizing cables are very e�ective
in reducing the internal force in the central tower
generated by longitudinal earthquake excitation, but
insigni�cantly a�ect the seismic response in the bridge
deck and side towers".

A relatively new option for bridge members are
tubes of steel or composite materials �lled with con-
crete. Shao et al. [23] present a parametric nonlinear
beam-column method of analysis for these members
based on cyclic load tests and note that steel tubes are
preferable to composite tubes in hysteretic response,
but composite tubes have a higher durability. Concrete
Filled Tube (CFT) arch bridges have gained popularity
in China in the past two decades where more than one
hundred such bridges have been built [24]. A CFT
arch rib is, however, heavier than the corresponding
steel rib which means it attracts a larger level of earth-
quake force, especially in the out-of-plane (transverse)
direction. Wu et al. [24] investigate CFT arch bridges
by performing dynamic nonlinear 3D FE analysis of
Second Saikai Bridge, the �rst CFT arch highway
bridge in Japan, consisting of 2 CFTs with a 240-m
main span and subjected to multiple earthquakes. The
authors conclude that \because the yielding elements
of the arch rib increase, it is necessary for the analysis
to consider the combined out-of-plane and longitudinal
excitations".

Nielson and DesRoches [25] perform nonlinear
3D FE seismic response evaluation of single span,
multispan simply supported and continuous multispan
concrete girder bridges representative of the Southeast-
ern and Central U.S. subjected to a synthetic ground
motion for the Memphis area, and found that designing
a bridge with continuous spans or with �xed or expan-
sion steel bearings can escalate the seismic demand in
columns, abutments, and bearings depending on the
con�guration of the bridge and earthquake intensity.
Song et al. [26] propose a nonlinear inelastic analysis
model using a softening plastic-hinge approach [27-30]
for predicting the ultimate load-carrying capacity of
steel cable-stayed bridges.

California Department of Transportation (Cal-
Trans) de�nes \ordinary and standard bridges" as those
using normal weight concrete, with span lengths less
than 90 m, and located in areas with no lique�able
soil [31]. Gindy et al. [32] present a state space ap-
proach for deriving bridge displacements from acceler-
ation measurements under vehicular loads. Caracoglia
et al. [33] present a computer model for the simula-
tion of the aeroelastic loading associated with lock-in
from wind-induced vortex shedding for use in dynamic
analysis of long-span bridges.

Research on nonlinear seismic analysis of bridges
over the past decade has led to an increased under-
standing of vertical and near fault ground motion
e�ects, bridge-cable interaction in cable-stayed bridges,
bridge-train interaction under earthquake excitation,
torsional behavior of bridges, and the seismic response
of CFT arch bridges.

Impact Studies

Yuan and Harik [34] present an elastoplastic spring-
mass model for the analysis of multi-barge otillas
colliding with bridge piers taking into account pier ge-
ometry and sti�ness, and dynamic interaction between
barges. Ulker et al. [35] study portable concrete tra�c
barriers under vehicular impact and provide a set of
design guidelines. Sharma et al. [36] investigate the
feasibility of developing a bridge bumper with several
options of energy absorbing materials to minimize
the physical injuries and protect bridges by absorbing
the impact energy. Tsang and Lam [37] study the
collapse of reinforced concrete columns in bridges by
vehicle impact. Clark et al. [38] study the behavior
of roll over protective structures (ROPS) (devices
attached to heavy vehicles to provide protection during
an accidental roll over) analytically and experimen-
tally.

Hazard Analysis

Performance and probabilistic analyses are used to
assess the socioeconomic repercussions of bridge dam-
age states for use in bridge design and maintenance
decisions. Hose et al. [39] present a parametric
performance-based assessment method for RC bridges
along with sample case studies. Probability-based
assessment of bridges has been studied by Monti and
Nistic�o [40]. Fragility curves provide estimates of
the probabilities of exceeding a particular limit state
during a given level of ground motion intensity for an
individual structure or a type of structures, and have
been studied by Karim and Yamazaki [41].

Pan et al. [42] present fragility curves of Peak
Ground Accelerations (PGA) for multispan continu-
ous steel girder bridges indicative of those found in
the Northeastern United States using 3D FE models
subjected to 100 simulated seismic events. They con-
clude that \bridges in New York State have reasonably
low likelihood of collapse during expected earthquakes."
Banerjee and Shinozuka [43] present a nonlinear static
procedure for developing fragility curves and seismic
vulnerability assessment of bridges using the capacity
spectrum method for identi�cation of spectral displace-
ment.

Wilson and Holmes [44] investigate the vulnera-
bility of cable stayed bridges to seismic events during
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cantilevered construction using six 3D FE models
simulating various stages of construction of the 675 m
long Fred Hartman Bridge in Texas subjected to 12
seismic events. The authors debunk \a common
misconception that seismic loading during construction
need not be considered because of the relatively short
duration of construction." They conclude that seis-
mic vulnerability may be substantially greater for an
incomplete bridge during construction than when the
bridge is completed, especially during the �nal phases
of construction, and the use of tie down cables are
e�ective in reducing earthquake susceptibility.

Life cycle cost analysis and design of structures
has been advanced recently as a more logical approach
for design [45-46]. Kumar et al. [47] present a proba-
bilistic approach for Life-Cycle Cost (LCC) analysis of
corroding RC bridges in seismic regions.

Code Comparison

Based on a comparative study of seismic design of
highway bridges carried out by the U.S. Federal
Highway Administration and Japan's Public Works
Research Institute, Yen et al. [48] and Park et al. [49]
examine the di�erences between US (AASHTO) and
Japanese design codes for RC bridge columns for
simple two-span bridges using a design example and
shake table tests. They found that while both codes
are based on ultimate strength design the column
designed according to US codes is smaller, more
ductile, and has a larger reinforcement ratio and a
longer period. The authors also conclude that the
Japanese design will su�er a larger amount of damage,
while the US based design will experience greater
drift and residual displacement. Further, they note
that \The AASHTO column has spiral-type transverse
reinforcement with closer spacings in contrast to the
hoop-type transverse reinforcement with larger spacings
for the JRA columns" which explains the di�erent
behaviors.

VIBRATION CONTROL

Passive Control

Systems which lessen structural response by absorbing
energy without feedback can be referred to as passive
systems. These include Friction Pendulum Bearings
(FPBs), seismic isolation using bearings or dampers
made from various materials, Tuned Mass Dampers
(TMDs), energy absorbing braces, and rocking piers.
FPB systems have been studied by Abrahamson and
Mitchell [50]. Constantinou et al. [51] present multiple
con�gurations for a so-called toggle-brace system which
combines conventional bracings with dampers. Roussis
et al. [52] examine seismic isolation systems. Poovaro-

dom et al. [53], and Chen and Kareem [54] study TMDs
and their application.

From 1983 to 2004, twelve bridges in Iceland
were base-isolated with Lead Rubber Bearings (LRBs).
Bessason and Haidason [55] describe the recorded
response of Thjorsa River Bridge in Iceland, an arch
truss bridge with an 83-m long span that is base-
isolated with LRBs, to the 2000 South Iceland earth-
quakes (M = 6:5 and 6.6). They found that while
the bridge is located rather close to the epicenter of
the earthquakes (5 km and 16 km), the base isolation
was e�ective in preventing serious damage and that
tra�c across the bridge was able to resume immediately
after the earthquake. Liao et al. [56] compare the
response of regular and LRB isolated 3-span continuous
RC box girder bridges subjected to the near and far
�eld records of the Chi Chi Taiwan earthquake and
conclude that the PGA is the most important factor in
determining the response of isolated bridges, and that
during near-�eld earthquakes the base shear reduction
from the use of bridge isolation is limited.

Choi et al. [57] investigate the use of rubber
elastomeric bearings with prestrained wires of nickel
titanium Shape Memory Alloy (SMA) as an alternative
to conventional LRBs in a 3-span continuous steel
girder bridge subjected to two di�erent earthquakes.
The results of cyclic deformation tests and nonlin-
ear modeling show that the SMA rubber bearings
perform better than the conventional bearings. The
deck and relative displacements for the SMA bearings
were greater than conventional bearings at low peak
gravitational acceleration, but were reduced at high
accelerations due to the strain hardening properties.
Andrawes and DesRoches [58] study the e�ects of
ambient temperature on SMA bearing behavior using
a nonlinear dynamic FE model of a 417-m 18-span
RC concrete box girder bridge subjected to 4 di�erent
earthquakes and conclude that the SMA bearings
perform signi�cantly better in limiting displacement at
higher ambient temperatures.

Carden et al. [59] investigate buckling-restrained
transverse braces in steel truss bridges which \consist
of a yielding steel core embedded inside a grout-�lled
tube such that it is restrained against all but the
highest modes of buckling when in compression" as
ductile end cross frames. They perform shake table
studies on an 18-m long two-girder single span bridge
model subjected to the 1940 El Centro earthquake and
conclude that buckling-restrained braces are superior
to X angle braces.

In summary, a good number of papers have
been published on the application of passive vibration
control systems in bridges with a focus on seismic
isolation designs, particularly LRBs, FPBs, and more
recently, SMA bearings. Only representative papers
were reviewed in this section.
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Active, Semi-Active and Hybrid Control

Systems used to control bridges requiring power and
a control algorithm can be classi�ed as active, semi-
active, or hybrid control depending on the exact
methods employed. Active control normally requires
signi�cant amounts of energy to power systems such as
hydraulic actuators to control the bridge response [60-
76]. Semi-active systems require substantially less
energy, such as Magneto-Rheological dampers (MR) or
semi-active friction or sti�ness dampers, and can be
e�ective during a power outage (they can work with
batteries). But the line between active and semi-active
control systems is becoming fuzzy as increasingly more
powerful batteries are developed. Hybrid control refers
to the combination of semi-active or active control with
passive control systems.

Xu et al. [77] propose using decentralized non-
parametric neural network control of cables with actu-
ators to inuence the response of a cable stayed bridge.
Semi-active control has been investigated by a num-
ber of other researchers [78,79]. Ruangrassamee and
Kawashima [80] investigate nonlinear and pounding
e�ects in bridges with hybrid control. Park et al. [81]
discuss active control of cable-stayed bridges using a
hierarchical fuzzy logic method [82-95] which is used
as a supervisor, called Fuzzy Supervisor Control (FSC),
for individual linear quadratic Gaussian control (LQG)
of hydraulic actuators and apply the technique to the
Bill Emerson Memorial Bridge subjected to 3 di�erent
earthquakes. Lee and Kawashima [96] study nonlinear
behavior of a hybrid system consisting of variable
dampers as a semi-active system and base isolation
in a �ve-span continuous RC bridge subjected to near
fault ground motions of the 1999 Chi-Chi, Taiwan,
earthquake, with a Linear Quadratic Regulator (LQR)
control modi�ed with a time-delay compensation.

MR dampers are dampers �lled with a uid that
respond to an applied magnetic force by reversibly
changing to a semi-solid state with controllable prop-
erties [97]. Liu et al. [98] compare energy minimiza-
tion, Lyapunov, fuzzy logic and variable structure
system fuzzy logic control algorithms for use with MR
dampers using shake table tests of a 1/12 scale model
of a highway bridge with fail-safe MR dampers and
conclude that the fuzzy logic and variable structure
system fuzzy logic algorithms are preferable due to
low energy requirements and implementation ease.
Kim and Adeli [21] present vibration control of cable-
stayed bridges under various seismic excitations using
the robust wavelet-hybrid feedback LMS (Least Mean
Squared) algorithm developed by Adeli and Kim [99].
Ok et al. [100] study semi-active control of cable-stayed
bridges with magneto-rheological dampers using fuzzy
logic as a control algorithm and applied it to the Bill
Emerson Memorial Bridge.

In summary, bridge control using active, semi-
active and hybrid systems is not widely used, however
with the continued development of more e�cient con-
trol systems, this technology could become a powerful
tool for bridge designers, especially in long span,
exible bridges.

BRIDGE DAMAGE STUDIES

Per ASCE [101] and the U.S. Department of Trans-
portation index, 26.9% (161,892 of 600,905) of bridges
in the United States are structurally de�cient or obso-
lete, leading to the increased risk of damage and the
growing importance of damage identi�cation.

Wallace et al. [102] examine over thirty highway
bridges in Taiwan primarily consisting of prestressed
RC I-girders on RC columns with or without bearings
that were damaged during the 1999 Chi-Chi, Taiwan
earthquake including twelve collapsed bridges. They
found that the damage to the bridges was predom-
inantly due to near fault e�ects. They also report
that poor structural arrangements including short piers
controlled by shear failure, insu�cient transverse or
vertical reinforcement, eccentric connections, and inad-
equate foundation performance contributed to bridge
damage.

Imbsen et al. [103] evaluate the damage to bridges
in Turkey after the 1999 Kocaeli earthquake (M = 7:4),
mainly composed of continuous decks on short simple-
span RC girders supported by elastomeric bearings
on sti� RC columns with pile foundations and small
seat width. The authors report in general good
performance for bridges in the region, with one modern
bridge collapse, which was caused by fault rupture, out
of approximately one-hundred bridges in the area of
extensive building damage. Other problems identi�ed
were damage to expansion joints due to pounding and
inadequate capacity of transverse shear keys. The
authors also note that the Bolu Viaduct which uses a
passive energy dissipation system su�ered only minor
damage.

Torkamani and Lee [104] perform linear dynamic
analysis of the 189 m tension tied arch Birmingham
Bridge with a steel deck in Pittsburgh using the
normal mode method subjected to the 1940 El Centro
Earthquake, and conclude that \steel deck tension-tied
arch bridges may be subjected to severe damage and
potential failure under high intensity seismic motions".
Chang et al. [105] studied the damage to the Chi-
Lu single-pylon cable-stayed bridge with two 120-m
spans during the 1999 Chi-Chi earthquake in Taiwan.
At the time of the earthquake, the bridge was under
construction and near completion with parts of the
deck yet to be installed. The authors report a vertical
crack in the pylon from the roadway to the level of
the lowest cables and severe damage to the deck pos-
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sibly due to unsymmetrical behavior of the incomplete
bridge.

Bolton et al. [106] study the change in the modal
properties of a 2-span continuous concrete box girder
bridge damaged during an earthquake using a linear 3D
FE model and the incremental single-input, multiple-
output force response test method [107] to estimate
the modal properties of the bridge before and after the
Hector Mine Earthquake in California (M = 7:1). Ranf
and Eberhard [108] present a strategy for prioritizing
bridge inspections after an earthquake based on con-
struction date and type of bridge using fragility curves
as opposed to distance from epicenter, and note that
movable bridges are particularly vulnerable.

Estimation of �nancial loss due to earthquake
excitation is directly linked to structural response
and damage to a bridge, which can be approximated
by the likelihood that a design parameter will be
exceeded. The work published in this area is mostly
based on collection of data and reducing and presenting
them in some form of linear or nonlinear regression
model. Some are deterministic, others are based on
the probability theory. Bradley et al. [109] propose a
log-log hyperbolic model to �t the probabilistic seismic
hazard analysis data for New Zealand regions taking
into account the probability of overloading during a
seismic event.

HEALTH MONITORING OF BRIDGES

Currently an increasing number of bridges are being
out�tted with strain gauges, deection gauges, ac-
celerometers, dynamic weight-in-motion sensors, and
temperature sensors for health monitoring purposes.
This is especially true for long span, high priority
bridges, and instrumentation already in place has
resulted in response records for these bridges under
earthquake excitations, especially in the Far East
countries of Japan, China and South Korea.

Algorithmically, the problem of health monitoring
of bridges is akin to the system identi�cation problem
which has a long history of research [110,111]. System
identi�cation can be divided into parametric system
identi�cation where the parameters of the structure
such as sti�ness and damping are identi�ed and non-
parametric system identi�cation techniques. Neural
networks have found many applications in various
disciplines of civil engineering over the past two
decades [112-136]. Huang and Loh [137] present a
neural network-based non-parametric method for non-
linear system identi�cation of bridges using the Nonlin-
ear Auto Regressive Moving Average with Exogenous
(NARMAX) approach [138] and apply it to a �ve-
span continuous pre-stressed box-girder bridge located
in Taiwan subjected to several di�erent earthquake
ground motions.

Pridham and Wilson [139,140] present a modal
parameter estimation technique for linear structures
employing stochastic subspace identi�cation, expecta-
tion maximization algorithm, and the Monte Carlo
simulation, and apply it to Quincy Bayview Bridge,
a 542-m cable-stayed bridge in Illinois. Arici and Mos-
alam [141] study modal system identi�cation of bridges
using Monte Carlo simulations, linear FE models of
2 continuous multispan bridges subjected to real and
simulated earthquake data, and applying a sensitivity
analysis, and conclude that for health monitoring
purposes \only the �rst three modal frequencies and the
1st mode shape" need be used for the particular type
of bridges studies.

Bozdag et al. [142] perform vibration analysis
of New Galata Bridge, a 480-m long bascule bridge
with a movable central span of 75 m using data from
strain gauges and accelerometers, and a dynamic FE
analysis, and discovered that \the �rst several natural
frequencies of aps are in the earthquake frequency
range, especially at the unlocked situation" which could
cause failure of the bridge. Nagayama et al. [143]
present a method of modal identi�cation using natu-
ral excitation technique, eigensystem realization algo-
rithm, and inverse analysis of structural properties, and
apply it to Hakucho Bridge, a 1380-m steel box girder
suspension bridge in Japan, using data from ambient
vibrations to identify modes and changes in the struc-
ture. C�elebi [144] presents an overview of the real-time
structural health monitoring system implemented on
the cable-stayed Bill Emerson Memorial Bridge using
a broadband network and accelerometers.

With a focus on the use of a smaller number of
sensors, Zhou et al. [145] evaluate di�erent vibration-
based damage detection methods for bridges based on
changes in the fundamental mode shape, curvature,
and exibility using 3D dynamic FE models and exper-
imental results on a half-scale model of a single span
concrete slab on steel girder bridge deck monitored
with accelerometers and strain gauges and conclude
that methods based on changes in the mode shape and
exibility methods performed better than other meth-
ods in the absence of experimental data. However the
accuracy for all techniques was signi�cantly reduced
if the damage was located near the supports. Zhu
et al. [146] discuss identi�cation of utter derivatives
of a long-span self-anchored suspension bridge using
wind tunnel studies and computational uid dynam-
ics. Mondal and DeWolf [147] describe a computer-
based remote monitoring system for the temperature
monitoring of an eleven span segmental, post-tensioned
concrete box-girder bridge.

Siringoringo and Fujino [148] present parametric
system identi�cation of long cable-stayed bridges in
the Tokyo Bay area with main span lengths in the
range 455-570 m using accelerograms from the 2004
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Niigata earthquake. He et al. [149] identify the modal
parameters through wind-induced vibration response of
Vincent Thomas Bridge, a suspension bridge located
in San Pedro near Los Angeles, California, using the
data-driven stochastic subspace identi�cation method.
Carden and Brownjohn [150] apply \covariance-driven
stochastic subspace identi�cation" and fuzzy cluster-
ing algorithm [151,152] to data obtained from a 3-
span post-tensioned concrete box girder bridge with a
main span of 30 m. Belli et al. [153] present model
based evaluation of reinforced concrete bridge decks
with defects using ground penetrating radar and a
computational scheme for interpretation of scanned
images.

Ren et al. [154] study wavelet packet [155,156]
energy changes to assess the integrity of shear con-
nectors in slab on girder bridges using a 1:3 scaled
model of a single span RC bridge. Ni et al. [157]
study damage identi�cation of Ting Kau cable-stayed
bridge by de�ning a relative exibility change index.
Soyoz and Feng [158] report wireless vibration mon-
itoring of a three-span 111-m long concrete bridge
instrumented with 13 acceleration sensors, with the
goal of identifying changes in the bridge structure over
a �ve-year period. Cruz and Salgado [159] evaluate six
damage detection methods for vibration monitoring of
reinforced concrete bridges.

Research in this area needs to be developed
further for reliable real time health monitoring and
remote damage identi�cation of bridges.

BRIDGE MANAGEMENT

There are around 600,000 bridges in the U.S. [160]
which are managed by states and counties depending
on their jurisdictions. Commercial bridge management
systems such as Pontis [161] are used by di�erent
highway agencies with limited success. Research on
development of e�ective bridge management systems
has been reported by a number of researchers.

Sirca and Adeli [162] and Waheed and Adeli [163]
present a methodology and an intelligent decision
support system to help bridge engineers convert a
Working Stress Design (WSD)-based bridge rating to
the Load Factor Design (LFD)-based rating with little
human e�ort using Case-Based Reasoning (CBR) [164].
Hammad et al. [165] describe a mobile model-based
bridge lifecycle management system developed in Java
that links data about the entire lifecycle stages of a
bridge including design, construction, inspection, and
maintenance to a 4D virtual model of the bridge.
Elbehairy et al. [166] present a bridge repair man-
agement system that attempts to minimize the life-
cycle cost of repair of seven bridge components: deck,
superstructure, substructure, bearings, joints, overlay,
and �nishing by integrating both project-level and

network-level decisions. They use genetic algorithms
as their optimization approach [165-172].

RETROFITTING

Steel truss and RC bridges have been popular bridge
options for decades, though some of the older designs
fail to meet current code requirements for seismic loads.
In order to rectify the de�ciencies the bridge may
need to be retro�tted as an alternative to complete
replacement. Many di�erent retro�t systems have
been developed and evaluated such as structural fuse
systems [173-174], ductile end frames [175], jackets
comprised of steel or composite materials [176-178],
base isolation as described in the control section of
this paper, link slabs [179], SMA restrainers [180] and
ground-level beams [181].

Paultre et al. [182] study the e�ects of retro�ts
to Beauharnois Bridge, a suspension bridge in Canada
with a main span of 177 m. The retro�ts included
replacing the bridge deck with an orthotropic slab on
steel trusses, and adding cable stays which change the
bridge to a hybrid cable-stayed-suspension structure.
Ingham [183] describes the seismic retro�t of the his-
toric Million Dollar Bridge in Alaska that was damaged
during the 1964 Prince William Sound earthquake.
The retro�t consisted of replacement of a damaged pier
and seismic isolation using FPBs. Zanardo et al. [184]
study the application of FRP retro�t techniques for
short RC arch bridges using FE models subjected
to both single and multiple accelerograms applied at
di�erent piers. They report that using FRP with
concrete overlays to increase section thickness is \the
most workable solution" to retro�t such bridges.

Murphy and Collins [185] propose the retro�t of
suspension bridges with friction and hysteretic dampers
along the suspended span through the simulation of the
FE model of a suspension bridge with a 655 m main
span subjected to six synthetic earthquakes typical of
those occurring in Central and Eastern U.S. Uang et
al. [186] investigate the shear links and orthotropic deck
used in the retro�tting of the same bridge employing
large scale cyclic tests and nonlinear FE analysis and
found that \for capacity design, the overstrength factor
(1.25) as speci�ed in the AISC Seismic Provisions is
signi�cantly lower than that measured (1.83 to 1.94)
and is, thus, non-conservative for the links tested."

A common problem with older bridge columns is
lack of con�nement and resistance to spalling when
subjected to shear forces typically developed during
major seismic events. Solutions to this problem involve
retro�tting these columns with concrete or steel jack-
ets. Haroun and Elsanadedy [187] study behavior of
cyclically loaded squat RC bridge columns retro�tted
with jackets made of di�erent composite materials,
and conclude that composite jackets are e�ective and
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do not modify the load distribution and reaction of
the structure, an advantage over conventional steel
jackets. Cheng et al. [188] investigate the use of carbon
FRP composite jackets as a retro�t method for hollow
columns using full scale tests and conclude that carbon
FRP jackets are an e�ective repair and retro�t method
for hollow sections.

CONCLUDING COMMENTS

Notable advances in the �eld of earthquake engineering
of bridges have been made in the past decade, especially
in the form of improved bracing systems, connections,
passive energy dissipation systems such as base isola-
tion, active and hybrid control systems, and retro�tting
of existing bridges incorporating recently developed
materials such as composites and SMA. Enhanced
models of di�erent types of bridges, components and
their interactions using �nite element and nonlinear
analyses are continuously being developed to better
simulate actual behavior and component interaction.
Innovations in e�cient component and system design
and bridge management systems have led to lower cost
and safer structures.

Due to the increased use of health monitoring
systems and the huge amount of data they produce
research will continue on development of more e�ective
approaches for automated real-time damage detection
and health monitoring of bridges. Research on semi-
active and hybrid control of structures, so-called smart
structures, has the potential to yield more e�cient
bridge structures. Newer computing paradigms and
technologies, such as case-based reasoning, genetic
algorithms, and wavelet signal processing will �nd
additional applications in bridge engineering.
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