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Prediction of Longitudinal Dispersion
Coe�cient in Natural Channels

Using Soft Computing Techniques

S. Adarsh1

Abstract. Accurate estimate of longitudinal dispersion coe�cient is essential in many hydraulic
and environmental problems such as intake designs, modeling ow in esturies and risk assessment of
injection of hazardous pollutants into river ows. Recent research works show that in the absence of
knowledge about explicit relationships concerning longitudinal dispersion coe�cient and its inuencing
parameters, data driven techniques can be used to predict it with reasonable degree of accuracy. In this
paper, the usefulness of Support Vector Machines (SVM) and Genetic Programming (GP) are examined
for predicting longitudinal dispersion coe�cient in natural channels. The hydraulic variables such as
ow depth (H), ow velocity (U) and shear velocity (u�) along with the width of channel (B) are used
as input variables to predict longitudinal dispersion coe�cient (Kx). The performance evaluation based
on multiple error criteria con�rm that GP shows remarkably good performance in capturing non-linear
relationship between the predictors and predictant in the estimation of longitudinal dispersion coe�cient
when compared with empirical approaches, the traditional Arti�cial Neural Networks (ANN) and SVM.
Hence GP can be used as an e�cient computational paradigm in the prediction of longitudinal dispersion
coe�cient in natural channels.

Keywords: Longitudinal dispersion coe�cient; Natural channels; Arti�cial neural networks; Support
vector machines; Genetic programming.

INTRODUCTION

Disposal of e�uent from industrial factories or acci-
dental disposal of contaminants into natural channels
like streams and rivers will deteriorate the quality of
water due to lack of proper mixing. Pollution of natural
water bodies has received wide attention among the re-
searchers recently, as proper water quality management
is essential for public health and for preserving natural
water bodies. When the e�uents or contaminants are
discharged into a river, it undergoes stages of mixing
during the transportation to downstream by the river
ow. The e�uent may get dispersed longitudinally,
transversely and vertically by advective and dispersive
process. Ability of river and other open channel
ows in dispersing additive materials in longitudinal
and transverse and vertical directions is described by
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the dispersion coe�cients Kx, Ky and Kz, respec-
tively. Once the cross sectional mixing is complete,
the process of longitudinal dispersion becomes the
most important mechanism [1]. Thus, to know the
fate of contaminant transport, the precise estimation
of longitudinal dispersion coe�cient is required [2,3].
Accurate estimate of longitudinal dispersion coe�cient
is required in many practical problems such as intake
designs, modeling ow in esturies and risk assess-
ment of injection of hazardous pollutants into river
ows [4,5]. Taylor introduced longitudinal dispersion
coe�cient as a measure of 1D dispersion in laminar
and turbulent pipe ows [6,7]. Elder extended the
dispersion in pipes to the mixing in an in�nitely wide
channel and concluded that vertical velocity gradient
is the main governing mechanism behind mixing [8].
Fischer attributed that the velocity heterogeneity is the
underlying mechanism behind mixing [9]. He proposed
an integral expression for determining the longitudinal
dispersion coe�cient [9].

Later on, a number of investigators have proposed
empirical equations based on experimental and �eld
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data for predicting longitudinal dispersion coe�cient,
some among them are mentioned in [1]. However such
equations are valid only in their calibrated and tested
range of ow. Tayfur and Singh [10], Torpak and
Cigizolu [11] used Arti�cial Neural Network (ANN)
as a tool for estimating longitudinal dispersion co-
e�cient. Toprak and Savci [12] applied fuzzy logic
for prediction of longitudinal dispersion coe�cient in
natural channels. Recently, Madvar et al. [13] proposed
an Adaptive Neuro-Fuzzy Inference System (ANFIS)
for the prediction of longitudinal dispersion coe�cient.
Tayfur [14] applied Genetic Algorithm (GA) to predict
longitudinal dispersion coe�cient in natural channels
in an optimization framework. ANN has some inherent
drawbacks such as slow convergence, less generalizing
performance, arriving at local minimum and over�tting
problems [15]. After a detailed investigation of di�erent
empirical approaches, Madaver et al. [13] reported that
these methods show varying degree of accuracy in
the estimation of longitudinal dispersion coe�cient in
natural channels. This opens the scope for the search
for an e�cient computational intelligence paradigm
for accurate estimation of longitudinal dispersion co-
e�cient in natural channels. In this study, Support
Vector Machines (SVM) and Genetic Programming
(GP) are applied as alternative data driven techniques
(soft computing techniques) for estimating longitudinal
dispersion coe�cient in natural channels.

THEORETICAL BACKGROUND

The one-dimensional (1-D) Fickian type dispersion
equation which is derived by Taylor [6] has been widely
used to obtain reasonable estimates of the rate of
longitudinal dispersion. The 1-D dispersion equation
is:�
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where Co is the concentration average in section, u is
longitudinal average velocity, t is time, x is longitudinal
direction in ow stream. Fischer [9] proposed a
triple integral expression for estimation of longitudinal
dispersion coe�cient in the following form:
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where A is the cross section area of ow, B is the
top width of water surface, h is the local depth of
ow in any transverse point, u0 is deviation of depth
averaged ow velocity from the cross sectional mean
velocity, y is the transverse location from left bank
and "t is transverse mixing coe�cient. It is noted that
Equation 2 is a basis for several empirical equations
proposed for the determination of Kx. Fischer et al. [3]

suggested the following equation for determination of
"t:

"t = 0:15Hu�; (3)

where H is the average depth of ow of the cross
section, u� is the shear velocity and is given by u� =p
gHSf in which Sf is the slope of total energy line.

Fischer et al. [9] developed the following equation to
predict Kx, which is a simpli�ed form of Equation 2:

Kx = 0:011
U2B2

Hu�
; (4)

where U is cross sectional average ow velocity.
Seo and Cheong [1] used dimensional analysis and

a non-linear multiple regression method to derive an
expression for Kx. Deng et al. [16] followed a more the-
oretical approximation of Equation 2. They developed
mathematical expressions for the lateral distribution
over the ow depth, deviation of local velocity from
mean velocity and transverse mixing coe�cient and
substituted in Equation 2. By using 81 sets of measured
data from 30 rivers in United States, Kashe�pour
and Falconer [17] developed two models for predicting
longitudinal dispersion coe�cient in rivers. These
equations were developed by considering the hydraulic
and geometric parameters by using dimensional and
regression analyses.

SUPPORT VECTOR MACHINES

Support Vector Machine (SVM) is a relatively recent
addition to the family of soft computing techniques
evolved from the concept of statistical learning theory
explored by Boser et al. [18]. SVM performs the
regression by using a set of non-linear functions that
are de�ned in a high dimensional space. SVM has
been used to solve non-linear regression problems by
risk minimization where the risk is measured using
Vapnik's accuracy intensive loss function (") [19]. SVM
uses a risk function consisting of the empirical error
and a regularization term which is derived from the
Structural Risk Minimization (SRM) principle. More
details on SRM can be found in Cortes and Vapnik [20].
Considering a set of input-output pairs [(x1, y1), (x2,
y2) � � � (xl, yl)] � 2 RN , y 2 r as training dataset, where
x is the input, y is the output, RN is the N -dimensional
vector space and r is the one dimensional vector space.
In this problem x = [B; H; U; u�] and y = [Kx].

The intension of SVM is to �t a function that can
approximately predict the value of output on supplying
a new set of predictors (input variables).

The "-intensive loss function can be described as
follows:

L"(y) = 0; for jf(x)� yj � "; (5)
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otherwise:

L"(y) = jf(x)� yj � ": (6)

This de�nes an "-tube so that if the predicted values
is within the tube, the loss is zero, otherwise the loss
is equal to the absolute value of the deviation minus ".
This concept is depicted in Figure 1.

SVM attempts to �nd a function f(x) which tries
to �t a given dataset keeping the deviation from the
actual output `"' as at as possible.

Consider a linear function of the following form:

f(x) = (w:x) + b; w 2 RN ; b 2 r; (7)

where w is an adjustable weight vector, and b is the
scalar threshold. Fitness means the search for a small
value of `w'. It can be represented as a minimization
problem with an objective function comprising the
Euclidian norm as follows:

Minimize:

1
2
kwk2 ; (8)

subject to:

yi � [(w:xi) + b] � "; i = 1; 2; 3 � � � l; (9)

[(w:xi) + b]� yi � "; i = 1; 2; 3 � � � l: (10)

Some allowance for errors (") may also be introduced.
Two slack parameters � and �� have been introduced to

Figure 1. The "-tube and slack variable (�) in SVM.

penalize the samples with error more than `"'. Thus the
infeasible constraints of the optimization problem are
eliminated. The modi�ed formulation takes the form:

Minimize:

1
2
kwk2 + C

lX
i=1

(�i + ��i ); (11)

Subject to:

yi � [(w:xi) + b] � "+ �i; i = 1; 2; 3 � � � l; (12)

[(w:xi) + b]� yi � "+ ��i ; i = 1; 2; 3 � � � l; (13)

�i � 0; ��i � 0; i = 1; 2; 3; � � � l: (14)

The constant 0 < C < 1 determines the trade-o�
between the atness of f(x) and the amount upto which
the deviations larger than `"' are tolerated [21]. The
above optimization problem is solved by Vapnik [22]
using Lagrange Multiplier method. The solution is
given by:

f(x) =
MX
i=1

(�i � ��i )(xi:x) + b;

where:

b = �
�

1
2

�
w:(xr + xs); (15)

where xs and xr are known as support vectors and M
is the number of support vectors.

Some Lagrange multipliers (�i, ��i ) will be zero,
which implies that these training solutions are irrele-
vant to the �nal solution (known as sparseness of the
solution). The training objects with non zero Lagrange
multipliers are called support vectors. When linear
regression is not appropriate, input data have to be
mapped into a high dimensional feature space through
non linear mapping and the linear regression needs to
be performed in the high dimensional feature space [18].
The mapping of input data onto the feature space
can be done by �. The dot product between �(xi)
and �(xj) is computed as a linear combination of the
training points. The concept of non-linear mapping is
depicted by Figure 2.

The functions which satis�es Mercer's theorem
can be used for �tting the data reported in Boser
et al. [18]. Polynomial functions, Radial Basis Func-
tion (RBF) and splines are the most commonly used
functions for data �tting using SVM. Recently, SVM
is successfully applied to many problems in water
resources and environmental problems [23-25].
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Figure 2. Concept of non-linear regression using SVM.

GENETIC PROGRAMMING

The evolutionary computational techniques may be the
better alternatives for solving regression problems as
they follow an optimization strategy with progressive
improvement towards the global optima. They start
with possible trial solutions within a decision space
and the search is guided by genetic operators and
the principle of `survival of the �ttest' [26]. Genetic
Algorithm (GA) is one of the most popular and
powerful evolutionary optimization techniques [26,27],
but it cannot be used to evolve complex models such
as equations. This limitation is overcome by Genetic
Programming (GP) introduced by Koza [28]. GP
is an automatic programming technique for evolving
computer programs to solve, or approximately solve,
problems [28]. GP, which is basically an optimization
paradigm, can also be e�ectively applied to the Genetic
Symbolic Regression (GSR). GSR involves �nding a
mathematical expression in symbolic form relating
�nite values of set of independent variables (xi) and
a set of dependent variables (yi) [29]. GP is a
member of the Evolutionary Algorithm (EA) family,
and works on Darwin's natural selection theory in
evolution. Here, a population is progressively improved
by selectively discarding the not-so-�t population and
breeding new children to form better populations. Like
other evolutionary algorithms, the solution is started
with a random population of individuals (equations or
computer programs). Each possible solution set can

be visualized as a `parse tree' comprising the terminal
set (input variables) and functions (generally operators
such as +, �, �, =, logarithmic or trigonometric). The
`�tness' is a measure of how closely a trial solution
solve the problem. The objective function { the
minimization of error between estimated and observed
value { is the �tness function. The solution set in a
population associated with the \best �t" individuals
will be reproduced more often than the less �t solution
sets. It iteratively transforms a population of computer
programs into a new generation of programs by apply-
ing analogs to naturally occurring genetic operators like
reproduction, mutation and crossover. The di�erent
genetic operations can be found in detail in [28]. The
basic procedure of GP is presented as a ow chart in
Figure 3.

In the recent years, GP is e�ectively applied to
solve a wide range of water resources problems [29-33].
GP can evolve an explicit equation or equivalent com-
puter program relating the input and output variables
which is a more understandable depiction of the cause-
e�ect process. A program-based approach is adopted
for the present study.

DATASET USED FOR MODELING

The development of mathematical model to predict
longitudinal dispersion coe�cient and its validation

Figure 3. Flow chart for Genetic Programming.
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Table 1. Statistical properties of the dataset.

Dataset Umin � Umax

(m/sec)
u�min � u�max

(m/sec)
Bmin �Bmax

(m)
Hmin �Hmax

(m)
Kxmin �Kxmax

(m2/sec)
Whole 0.034-1.74 0.0024-0.553 11.9-711.2 0.22-19.94 1.9-892

Training 0.034-1.74 0.0024-0.268 12.2-253.6 0.22-3.96 1.9-837

Testing 0.130-1.53 0.002-0.553 11.9-711.2 0.40-19.94 2.9-892

is accomplished by employing the data presented by
Tayfur and Singh [10]. Table 1 summarizes the
statistical information on the dataset. The hydraulic
variables ow depth (H), ow velocity (U) and shear
velocity (u�) along with channel width (B) are used as
input, whereas the longitudinal dispersion coe�cient
(Kx) is the target in this study.

During training, 51 sets of the whole data were
used and the remaining was used for validation. The
splitting of the dataset is made in such a way that the
same 51 data points used by Tayfur and Singh [10] is
used for training and remaining 20 for the validation to
enable a comparison with the results reported in past
based on ANN.

THE MODEL DEVELOPMENT AND THE
RESULTS

Initially four empirical models proposed by Fischer
et al. [9], Seo and Cheong [1], Deng et al. [16],
and Kashe�pour and Falconer [17] were applied to
the complete dataset. The statistical performance
evaluation measures like correlation coe�cient (R),
Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE) are computed. The values of performance

evaluation measures for validation dataset for the four
empirical models and ANN reported in the past are
presented in Table 2. These results indicate that
ANN method is found to be a successful tool for
the prediction of longitudinal dispersion coe�cient in
natural channels.

In this study an "-variant of SVM ("-SVM) is
used for support vector regression and the loss function
is �xed as 0.001. The data mining software WEKA
proposed by Witten and Frank [34] is used for devel-
oping SVM model. Initially, a polynomial kernel of
degree 2 is used to �t a non-linear model. A trial and
error approach is followed to �nd the optimal value of
kernel speci�c parameter C. The C parameter of 100 is
found to be quite successful in giving satisfactory per-
formance for validation dataset. The values of di�erent
performance evaluation measures for this model (for
both training and validation dataset) are presented in
Table 3. Table 3 shows that the RMSE value obtained
for SVM with polynomial kernel for the validation
dataset was better than those obtained by empirical
approaches presented in Table 2. But the calculated R
and RMSE values are not as good as those calculated
for the results of ANN model. Then a Radial Basis
Function (RBF) kernel is used to �t a non-linear SVM

Table 2. Relative performance of empirical approaches and ANN.

Method Equation R RMSE MAE

Fischer [9] Kx = 0:011U
2B2

Hu� 0.625 2972.71 1288.83

Seo and Cheong [1] Kx = 5:92
�
U
u�

�1:43 �B
H

�0:62 Hu� 0.684 818.59 367.69

Deng et al. [16]
Kx = 0:15

8"t

� U
u�
�2 �B

H

�1:67 Hu�
where "t = 0:145 + 1

3520

�
U
u�

� �B
H

�1:38 0.663 621.29 262.33

Kashe�pur and Falconer [17] Kx = 7:248 + 1:775
�B
H

�0:62
�
U
u�

�1:572
HU 0.761 525.59 3214.08

ANN [10] | 0.831 192.91 1851.00
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Table 3. Performance evaluation of SVM and GP models.

Performance Training Testing

Evaluation

Criteria

SVM
Polynomial Kernel

(C=100, d=2)

SVM
RBF Kernel

(C=100, =3:5)
GP

SVM
Polynomial Kernel

(C=100, d=2)

SVM
RBF Kernel

(C=100, =3:5)
GP

R 0.965 0.997 0.963 0.678 0.874 0.945

RMSE 38.59 11.30 41.64 461.40 106.09 60.44

MAE 20.93 4.33 24.71 174.99 79.27 54.42

model for the dataset. The combination of control
parameters such as C = 100 and � = 3:5 gives very
good training performance. The di�erent performance
evaluation measures for RBF Kernel-based SVM is also
(For both training and validation stages) summarized
in Table 3.

DISCIPULUS software proposed by Francone [35]
is used for performing the GP-based modeling. The
initial control parameters used for the problem are
population size (500), crossover probability (0.95) and
mutation probability (0.5). The basic arithmetical
functions (such as addition, multiplication, subtraction
and division (+, �, �, =) constitute the function
set. The �tness function is selected as the root mean
square error between the measure and predicted values
of longitudinal dispersion coe�cient. Based on the
predicted values, three performance criteria namely
R, RMSE and MAE are calculated and presented in
Table 3. Table 3 shows that the GP-based model is
better than both the ANN and SVM models. From
Table 3, it can be seen that the performance evaluation
measures of SVM (RBF Kernel) is better than those of
GP. But the RBF Kernel shows inferior performance for
the validation dataset. Thus it can be inferred that GP
is able to capture the trend in a better way and it can
be more generalized than SVM. The observed values,
values predicted by ANN, RBF-based SVM and GP
models for the testing dataset are presented in Table 4.

The statistical properties such as maximum value,
minimum value, average value, average deviation, stan-
dard deviation, coe�cient of skewness, coe�cient of
variation etc. are computed for observed data for
validation and the values predicted, using di�erent
models, are presented in Table 5.

Table 5 shows that skewness and coe�cient of
variation is the highest for SVM model; also both the
extreme values are deviated largely from the observed
extremes. This indicates that SVM is only fairly
accurate in predictions. But the GP model results are
better when compared with that of SVM.

The scatter plot of Kx between observed data
and the prediction of the best SVM model for only
testing data group is presented in Figure 4. The 5%
error bar lines are plotted along with in this scatter
plot. Such a plot can be used to indicate the range

Table 4. The predicted and observed values of
longitudinal dispersion by di�erent models.

Sl No Observed Kx ANNa SVMb GPb

1 20.90 26.80 28.12 17.14

2 37.80 27.10 63.86 33.39

3 41.40 31.40 167.09 47.53

4 53.30 43.00 93.18 89.81

5 88.90 77.60 141.13 105.54

6 2.900 39.20 130.824 51.45

7 44.00 26.50 30.171 25.98

8 308.9 346.6 401.642 320.75

9 12.80 21.90 35.37 7.050

10 13.90 45.20 137.65 51.43

11 65.00 77.20 28.77 83.68

12 237.2 838.0 152.42 583.14

13 457.7 838.0 153.09 379.58

14 374.1 838.0 152.42 518.00

15 41.80 59.70 132.08 169.74

16 10.70 26.90 24.92 24.17

17 36.90 76.60 66.91 70.28

18 15.50 25.30 42.32 14.60

19 30.20 31.70 93.97 18.49

20 892.0 763.4 971.16 1017.31
a: Tayfur and Singh [10].
b: Present study.

of standard deviation and to determine whether the
di�erences are statistically signi�cant [36]. A similar
plot for the best GP model for the testing dataset is
presented in Figure 5. From the plots also it can be
inferred that for the GP model more data points in
the prediction dataset falls within the 95% con�dence
interval when compared with those obtained by SVM.

DISCUSSION

The di�erent performance evaluation criteria calcu-
lated for the testing data based on ANN model results
by Tayfur and Singh [10] established that ANN-based
modeling is superior to the existing theoretical and em-
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Table 5. Statistical properties of values predicted by di�erent models.

Statistical Properties Observed Data ANN SVM GP

Maximum value 892 838 971.16 1017.31

Minimum value 2.90 21.9 24.92 7.05

Average value 139.29 213.01 152.35 181.45

Average deviation 157.34 255.89 108.37 191.15

Standard deviation 221.71 319.13 210.73 261.83

Coe�cient of skewness 2.46 1.48 3.45 2.14

Coe�cient of variation (%) 62.83 66.74 72.30 69.30

Figure 4. The 5% error bar for SVM model (RBF
Kernel).

Figure 5. The 5% error bar for GP model.

pirical equations. However, ANN modeling involves the
tedious process of optimal setting of a larger number
of control parameters such as number of hidden layers,
learning rate, momentum rate, number of iterations,
transfer function and weight initialization. The results

show that SVM modeling with RBF kernel show better
prediction of longitudinal dispersion coe�cient than
those with ANN modeling.

The results of GP-based modeling for testing
dataset show that it captures the non linearity of the
dataset quite well. It gives a correlation coe�cient
value of 0.945 for testing dataset and the RMSE value
of 60.44 and MAE of 54.42 which is the lowest when
compared with the results by empirical equations,
ANN and SVM. The di�erent performance evaluation
measures show that SVM predicts the values of Kx
very well for the training dataset but the prediction
accuracy is not as good as that of GP (Table 3).

This establishes the better generalization capa-
bility of GP when compared with SVM. Moreover the
GP-based modeling follows a progressive improvement
towards the global optima (i.e., minimum error) and
give the output in the form of a computer program
which is quite useful for the modeler to apply for a new
set of input data for predicting the longitudinal disper-
sion coe�cient. Thus the present study establishes the
potential of GP in accurate prediction of longitudinal
dispersion coe�cient in natural channels. The sensitiv-
ity analysis with a modi�ed procedure establishes that
the bed width of the channel as the most signi�cant
parameter which a�ects the longitudinal dispersion and
the results are on the expected lines.

CONCLUSION

In this paper the application of two relatively recent
soft computing techniques - SVM and GP are investi-
gated for the prediction of longitudinal dispersion coef-
�cient in natural channels. SVM predicts longitudinal
dispersion coe�cient quite well when compared with
the empirical approaches and ANN. Also it demands
the optimal selection of only a few number of control
parameters when compared with ANN. Performance
evaluation based on multiple error criteria show that
the two error criteria (RMSE and MAE) are the least
and correlation coe�cient (R) is the highest for the GP-
based modeling than any other model considered in this
study. The GP-based modeling is found to be superior
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in terms of quality and it gives the output in the form
of computer programs which enables the user to apply
for a new set of input data to predict the longitudinal
dispersion coe�cient. Thus GP can be recommended
as a robust soft computing paradigm to predict the
longitudinal dispersion coe�cient in natural channels.

REFERENCES

1. Seo, I.W. and Cheong, T.S. \Predicting longitudinal
dispersion coe�cient in natural streams", Journal
of Hydraulic Engineering, ASCE, 124(1), pp. 25-32
(1998).

2. Li, Z.H., Huang, J. and Li, J. \Preliminary study
on longitudinal dispersion coe�cient for three gorges
reservoir", in Proceedings of the Seventh International
Symposium Environmental Hydraulics, Hong Kong,
China (Dec. 16-18, 1998).

3. Fischer, B.H., List, E.J., Koh, R.C., Imberger, J. and
Brookes, N.H., Mixing in Inland and Coastal Waters,
Academic, New York (1979).

4. Seo, I.W. and Baek, K.O. \Estimation of longitudinal
dispersion coe�cient using velocity pro�les in natural
streams", Journal of Hydraulic Engineering, ASCE,
130(3), pp. 227-236 (2004).

5. Sedighnezhad, H., Salehi, H. and Mohein, D. \Com-
parison of di�erent transport and dispersion of sed-
iments in Mard intake by FASTER model", in Pro-
ceedings of the Seventh International Symposium River
Engineering, Ahwaz, Iran, pp. 45-54 (Oct. 16-18,
2007).

6. Taylor, G.I. \Dispersion of soluble matter in solvent
owing slowly through a tube", Proc. Royal Society of
London, Sec A, 219, pp. 186-203 (1953).

7. Taylor, G.I. \Dispersion of matter in turbulent ow
through a pipe", Proc. Royal Society of London, Sec
A, 223, pp. 446-468 (1954).

8. Elder, J.W. \The dispersion of a marked uid in
turbulent shear ow", Journal of Fluid Mechanics,
Cambridge University Press, 5(4), pp. 544-560 (1959).

9. Fischer, B.H. \The mechanics of dispersion in natural
streams", Journal of Hydraulic Division, ASCE, 93(6),
pp. 187-216 (1967).

10. Tayfur, G. and Singh, V.P. \Predicting longitudinal
dispersion coe�cient in natural streams by arti�cial
neural network", Journal of Hydraulic Engineering,
ASCE, 131(11), pp. 991-1000 (2005).

11. Toprak, Z.F. and Cigizoglu, H.K. \Predicting longi-
tudinal dispersion coe�cient in natural streams by
arti�cial intelligence methods", Hydrological Processes,
Wiley, 22, pp. 4106-4129 (2008).

12. Toprak, Z.F. and Savci M.E. \Longitudinal dispersion
modeling in natural channels by fuzzy logic", CLEAN-
Soil, Air, Water, Wiely, 35(6), pp. 626-637 (2007).

13. Madvar, H.R., Ayyoubzadeh, S.A., Khadangi, E. and
Ebadzadeh, M.M. \An expert system for predicting

longitudinal dispersion coe�cient in natural streams
by using ANFIS", Expert Systems with Applications,
Elsevier, 36, pp. 8589-8596 (2009).

14. Tayfur, G. \GA optimized model predicts longitudinal
dispersion coe�cient in natural channels", Hydrology
Research, 40(1), pp. 60-78 (2009).

15. Samui, P. \Prediction of friction capacity of driven
piles in clay using the support vector machine", Cana-
dian Geotechnical Journal, 45, pp. 288-295 (2008).

16. Deng, Z.Q., Singh, V.P. and Bengstsson, L. \Longitu-
dinal dispersion coe�cient in straight rivers", Journal
of Hydraulic Engineering, ASCE, 127(11), pp. 919-927
(2001).

17. Kashe�pour, M.S. and Falconer, R.A. \Longitudinal
dispersion coe�cient in natural channels", Water Re-
search, Elsevier, 36(6), pp. 1596-1608 (2002).

18. Boser, B.E., Guyon, I.M. and Vapnik, V.N. \A training
algorithm for optimal margin classi�ers", 5th Annual
ACM Workshop on Colt, D. Haussler, Ed., Pittsburgh,
PA: ACM Press, pp. 144-152 (1992).

19. Vapnik, V.N., The Nature of Statistical Learning The-
ory, Springer, New York (1995).

20. Cortes, C. and Vapnik, V.N. \Support vector net-
works", Machine Learning, Springer, 20, pp. 273-297
(1995).

21. Smola, A.J. and Scholkopf, B. \A tutorial on support
vector regression", Statistics and Computing, Springer,
14, Doi: 10.1023/B:STCO.0000035301.49549.88, pp.
199-222 (2004).

22. Vapnik, V.N., Statistical Learning Theory, Wiley, New
York (1998).

23. Pal, M. and Goel, A. \Prediction of the end-depth
ratio and discharge in semi-circular and circular shaped
channels using support vector machines", Flow Mea-
surement and Instrumentation, Elsevier, 17, pp. 49-57
(2006).

24. Rajasekharan, S., Gayathri, S. and Lee, T.L. \Support
vector regression methodology for storm surge predic-
tions", Ocean Engineering, Elsevier, 35, pp. 1578-1587
(2008).

25. Goel, A. and Pal, M. \Application of support vector
machines in scour prediction on grade control struc-
tures", Engineering Applications of Arti�cial Intelli-
gence, Elsevier, 22(2), pp. 216-223 (2009).

26. Holland, J.H., Adaptation in Natural and Arti�cial
Systems, Ann Arbour Science Press, Ann Arbour, USA
(1975).

27. Goldberg, D.E., Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley
(1989).

28. Koza, J.R., Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection,
MIT Press, Cambridge, MA, USA (1992).

29. Khu, S.T., Liong, S.Y., Babovic, V., Madsen, H. and
Muttil, N. \Genetic programming and its application



Prediction of Longitudinal Dispersion Coe�cient 371

in real time runo� forecasting", Journal of American
Water Resource Association, Wiley, 37(2), pp. 439-451
(2001).

30. Savic, D.A., Walters, A. and Davidson, J.W. \A
genetic programming approach to rainfall runo� mod-
eling", Water Resource Management, Springer, 13, pp.
219-231 (1999)

31. Babovic, V. \Data mining and knowledge discovery
in sediment transport", Computer Aided Civil and
Infrastructural Engineering, Wiley, 15(5), pp. 383-389
(2000)

32. Whigham, P.A. and Crapper, P.F. \Modelling rainfall-
runo� using genetic programming", Mathematical and
Computer Modeling, Elsevier, 33, pp. 707-721 (2001).

33. Azmathullah, H.Md., Ghani, A.A.B., Zakaria, N.A.,
Lai., S.H., Chang, C.K., Leow, C.S. and Abuhasan,
Z. \Genetic programming to predict sky-jump bucket
spillway scour", Journal of Hydrodynamics, Elsevier,
13(4), pp. 477-484 (2008).

34. Witten I.H. and Frank, E., Data Mining, Morgan
Kaufmann, San Francisco (2000)

35. Francone, F.D., Discipulus Owner's Manual, version
3.0 DRAFT, Machine Learning Technologies Inc. Lit-
tleton, CO, USA (1998).

36. Samui, P. and Sitharam, T.G. \Lest square support
vector machines applied to settlement of shallow foun-
dations on cohesionless soils", International Journal
for Numerical and Analytical Methods in Geomechan-
ics, Wiley, Doi: 10.1002/nag.731 (2008).

BIOGRAPHY

Sankaran Adarsh completed the graduation in Civil
Engineering from TKM College of engineering Kol-
lam, Kerala, India in 2003, and masters degree in
Water Resources Engineering from Indian Institute of
Technology Bombay (IITB), India, in 2009. He is
presently working as a lecturer in the Department of
Civil Engineering TKM College of Engineering Kollam,
Kerala, India and having more than 6 years experi-
ence in teaching and consultancy. He has published
research articles in four international journals and two
conferences. His area of interests are Optimization
of Hydrosystems using Stochastic Search Algorithms,
Predictive Modeling in Water Resources and Hydrology
using Soft Computing Techniques and Hydroclimatol-
ogy.


