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Computational Simulation of Marangoni
Convection Under Microgravity Condition

M.H. Saidi1;�, M. Taeibi-Rahni1;2, B. Asadi1 and G. Ahmadi3

Abstract. In this work, the rising of a single bubble in a quiescent liquid under microgravity condition
was simulated. In addition to general studies of microgravity e�ects, the initiation of hydrodynamic
convection, solely due to the variations of interface curvature (surface tension force) and thus the
generation of shearing forces at the interfaces, was also studied. Then, the variation of surface tension
due to the temperature gradient (Marangoni convection), which can initiate the onset of convection even
in the absence of buoyancy, was studied. The related unsteady incompressible full Navier-Stokes equations
were solved using a �nite di�erence method with a structured staggered grid. The interface was tracked
explicitly by connected marker points via a hybrid front capturing and tracking method. A one �eld
approximation was used where one set of governing equations is only solved in the entire domain and
di�erent phases are treated as one uid with variable physical properties, while the interfacial e�ects are
accounted for by adding appropriate source terms to the governing equations. Also, a Multi-grid technique,
in the context of the projection method, improved convergences and computational sti�ness. The results
show that the bubble moves in a straight path under microgravity condition, compared to the zigzag motion
of bubbles in the presence of gravity. Also, in the absence of gravity, the variation of surface tension force
due to interface curvature or temperature gradient can still cause the upward motion of the bubble. This
phenomenon was explicitly shown in the results of this paper.

Keywords: Marangoni convection; Microgravity condition; Hybrid front capturing and tracking method;
Rising bubble; Multi-grid method.

INTRODUCTION

The variation of surface tension due to temperature
gradient can initiate the onset of convection which is
known as the common Marangoni convection. Note
that, in the absence of temperature gradient, a variable
surface tension force (not surface tension coe�cient)
may be generated due to the presence of surface
curvature gradient. The variation of surface tension
force can lead to a convective motion which is referred
to as hydrodynamic convection.

The Marangoni convection is particularly impor-
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tant in the absence of buoyancy. It plays a crucial
role in many applications, such as in crystal growth
under microgravity condition, which is of interest to
microelectronic industries. Understanding the thermo-
capillary processes, especially the process of initiation
of convection and when the ow become irregular, is
very important for the corresponding manufacturing
processes. Most earlier technological or scienti�c work
performed under microgravity conditions was con-
cerned with the improvement of the material processing
procedures, while the fundamental uid mechanics of
the process is not fully understood. Another important
application is the boiling heat transfer for enhancing
the heat exchange processes under microgravity con-
ditions. Again, the fundamentals of the micrograv-
ity boiling process are not fully understood. It is,
therefore, important to have a thorough understanding
of the process of bubble formation and motion under
low gravity conditions where buoyant rise is negligible.
Otherwise, understanding the physics of bubble motion
under microgravity conditions is of great interest to a
number of human life support applications in space.
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In this work, the isothermal rising of a single
bubble in a quiescent liquid under microgravity con-
ditions was computationally investigated. The path
of the bubble and the corresponding hydrodynamic
Marangoni convection were evaluated. Note that
the bubble was limited to a two-dimensional shape
which is a severe approximation employed to allow
reasonable resolution and computational requirements.
However, such a formulation allows us to observe the
sole e�ect of the bubble dynamics. In addition, the
non-isothermal rising of a bubble was selected and
Marangoni convection was studied in this paper.

For numerical simulation of the dynamics of large
bubbles, the capturing and tracking of the interface
is the most critical component. The computational
results of Tryggvason et al. [1] have shown that the
most accurate method for simulation of such ows
is the hybrid front capturing and tracking technique.
Although the e�orts to compute multiphase ows are as
old as Computational Fluid Dynamics (CFD), solving
the full Navier-Stokes equations in the presence of a
deforming interface has proven to be quite challenging.
Only in recent years, major progress has been achieved
with the use of the hybrid front capturing and front
tracking method and also the level set method.

In addition to the hybrid front capturing and front
tracking technique, several other techniques have been
used in the past. A summary of the relevant techniques
is provided here:

1. The oldest and still the most popular approach
is to capture the interface directly on a regular
and stationary grid. The MAC method in which
marker particles are advected for each uid particle,
and the VOF method where a marker function is
advected are the best known examples. In the
earlier implementations of these techniques, the
stress condition at the interfaces was satis�ed rather
crudely. However, a number of recent developments
including a technique to include surface tension [2]
and the use of \level sets" [3] to mark the uid inter-
face, has increased the accuracy of these techniques
and thus their applicability.

2. The second class which potentially o�ers the highest
accuracy uses separate boundary �tted grids for
each phase. The steady rise of buoyant, deformable
and axisymmetric bubbles was simulated by Ryskin
and Leal [4] using this method. Using this ap-
proach, Dandy and Leal [5] also examined the
steady motion of deformable axisymmetric droplets,
while Kang and Leal [6] extended this methodology
to axisymmetric unsteady bubble motion. The
work of Leal et al. [4-6] had a major impact on
subsequent research work in this area.

3. The third class is Lagrangian methods where the
grid follows the uid. Recent examples include

two-dimensional computations of the break up of
a droplet by Oran and Boris [7].

4. The fourth category is the front tracking method
where a separate front marks the interface, but a
�xed grid which is only modi�ed near the front is
used for the uid within each phase. This technique
has been extensively developed by Glimm [8].

As mentioned earlier, in this work we used the
hybrid front capturing and front tracking method
of Tryggvason et al. [1] which is a combination of
front capturing and front tracking techniques. In this
method, a stationary regular grid is used for the uid
ow, while the interface is tracked by a separate grid
(front grid) that is embedded on the �rst one but moves
with the interface. Note that, in the hybrid front
capturing and front tracking method, all phases are
treated by a single set of governing equations, while
in the front tracking method, each phase is treated
separately. This method was developed by Unverdi
and Tryggvason [1,9]. Loth et al. [10-12] used this
method to investigate the shear ow modulation and
bubble dispersion of a bubbly mixing layer ow. Others
also used this method to examine a number of other
multiphase ow problems, e.g. the collision of two
equal size droplets [13]. Another use of this method
was the study of the breakup of accelerated droplets
where both \bag" and \shear" breakup have been
observed [14].

Multiphase ow computations involve coupled
momentum, mass and energy transfer between mov-
ing and irregularly shaped boundaries, large property
jumps between materials and computational sti�ness.
In this study, we focus on a combined Eulerian-
Lagrangian method to investigate performance im-
provement using the multi-grid technique in the con-
text of the projection method. The main emphasis was
on the interplay between the multi-grid computation
and the e�ect of the density ratios between phases. As
the density ratio increases, the single grid computation
becomes substantially more time-consuming; with the
present problems, an increase of factor 10 in density
ratio results in, approximately, a three-fold increase in
CPU time. Overall, the multi-grid technique speeds
up the computation and, furthermore, the impact
of the density ratio on the CPU time required was
substantially reduced [15-17].

IMPORTANT DIMENSIONLESS NUMBERS

The rise of a bubble in a quiescent liquid and its
associated convection depend on the liquid physical
properties, such as density, kinematic viscosity and
surface tension. The most important physical dimen-
sionless numbers in such a ow are: bubble Reynolds
number, ReB , Bond (Eotvos) number, Eo (Bo), Morton
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number, Mo, Weber number, We, Marangoni number,
Ma, and Froude number, Fr, de�ned, respectively, as:

ReB =
2UT req

�
; (1)

Eo (Bo) =
4�r2

eqg
�

; (2)

Mo =
g�4�3

�3 ; (3)

We =
2�U2

T req

�
; (4)

Ma =
@�
@T

@T
@x

L2

��
; (5)

Fr =
U2
T

2greq
: (6)

Here, req =
� 3V

4�

�1=3 and � and � are the density
and the kinematic viscosity of the liquid, respectively.
Note that the Morton number is related to the liquid
physical properties and is independent of the ow
conditions. Liquids can be categorized in di�erent
groups, namely those with high Morton numbers (Mo
> 10�2), those with intermediate Morton numbers and
those with low Morton numbers (Mo < 10�6). On
the other hand, the Bond number characterizes the
bubble size so that a functional relationship between
any parameter and the Bond number describes how
that parameter changes with the bubble volume. The
terminal rise velocity of bubble (UT ) in De�nition 1 is
a function of equivalent radius, density, kinematic vis-
cosity, gravitational acceleration and surface tension.
Note that, in most practical applications, interest is
mainly in low Morton numbers and moderate Reynolds
numbers (between 200 and 900). At lower Reynolds
numbers, however, bubbles have an approximately
spherical shape, and they rise in a rectilinear path.

Whereas, at intermediate and high Reynolds numbers,
bubbles become oblate ellipsoids and rise in an irregular
(zigzagging or spiraling) fashion. The summary of
observed path and transition criteria at normal gravity
is listed in Table 1 [18].

A ow induced by surface tension gradients or
thermal gradients is termed Marangoni convection. For
most uids, the temperature gradient of surface tension� @�
@T

�
is negative and regions of higher temperature ex-

hibit a reduced surface tension. Therefore, Marangoni
convection, according to a Ma Number, results in a
recirculating uid ow from the warmer to the colder
regions of a liquid and small temperature gradients give
rise to relatively high uid velocities along the phase
boundary [19].

GOVERNING EQUATIONS

As noted before, in the hybrid front capturing and
front tracking technique used here, only one set of
governing equations is used for both phases, which
requires accounting for the interfacial e�ects by adding
the appropriate source terms to the governing equa-
tions [20,21]. Since the physical properties and the
ow �eld are discontinuous across the interface, all
variables must be interpreted in terms of generalized
functions. Thus, various uids can be identi�ed by a
step (Heaviside) function (H) which takes the value
of one-for-one particular uid and zero for the other.
The interface is marked by a non-zero value of the
gradient of the step function. It is most convenient
to express H in terms of an integral over the product
of one-dimensional �-functions as follows:

H(x; y; t) =
Z
A

�(x� xf )�(y � yf )dA: (7)

The density as well as any other physical properties
can be written in terms of both the constant densities
on either side of the interface and the above Heaviside

Table 1. Summary of some previous experimental results about bubble shape under normal gravity [18].

Observed Shapes and Onset of Shape Instability
Spherical Ellipsoidal Unstable

Aybers & Tapucu (1969) req < 0:42 mm req < 1:00 mm req > 1:00 mm
We > 3:7

Haberman & Morton (1954) Re < 400 400 < Re < 5000

Miksis et al. (1981) We > 3:23

Ryskin & Leal (1984) Contaminated liquids Re > 200
Pure liquids We > 3� 4

Duineveld (1994,1995) We > 4:2
req > 1:34 mm

Benjamin (1987) We > 3:271
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function as:

�(x; y; t) = �iH(x; y; t) + �o(1�H(x; y; t)): (8)

Here, �i and �o are the density at H = 1 and 0,
respectively. On the other hand, for the viscous term,
the full deformation rate tensor is implemented, while
the conservative form of the advection term is normally
used. Thus, the linear momentum equation is written
as:

D(�u)
Dt

=�rP + �g +r:�(ru+rTu)

+ �kn�(x� xf ): (9)

Note that the surface tension forces have been added as
a delta function which is non-zero only on the bubble
surface where x = xf . The interface force acting on
the marker points is spread to the nearby grid points
using the discrete Delta function de�ned as follows:

�(x� xk)

=

8<:0; otherwise
3Q

n=1

1
dp

�
1 + cos �(x�xf )

dp

�
; if

��x�xf ���dp (10)

The mass conservation law is written as:

@�
@t

+r:�u = 0: (11)

In this work, the ows of uids are both assumed to be
incompressible so that the density of a uid particle in
the ow �eld remains constant. Thus:

D�
Dt

= 0; (12)

and:

r:u = 0: (13)

The viscosity of each uid particle is also assumed to
be constant. Thus:

D�
Dt

= 0: (14)

The thermal energy equation with an interfacial source
term to account for the liberation or absorption of
latent heat is:

D(�cpT )
Dt

= r:k0(rT ) + _mfL�(x� xf );

L = L0 + (c1 � c2)Tsat: (15)

Here, T is the temperature and L0 is the latent heat
measured at the equilibrium saturation, Tsat(P ), corre-
sponding to the reference ambient system pressure [22].

NUMERICAL METHODOLOGY

In this work, the unsteady Navier-Stokes equations
are solved using the �nite di�erence method with a
staggered �xed structured grid, while the interface
(front) is tracked explicitly by connected marker points.
The interfacial source term (surface tension e�ect) is
computed at the front grid points and is interpolated
on the �xed grid. The advection of uid properties,
such as density is accounted for by following the motion
of the front. Figure 1 shows the �xed Eulerian and the
moving Lagrangian grids used.

For solving the governing equations, the following
points have to be accounted for:

� The density and the viscosity changes due to the
phase transport.

� The surface tension e�ect is only at the front.

� Accurate evaluation of velocity and the pressure
�elds at each time step.

� Accurate evaluation of the motion of the interface
itself.

Figure 1. Eulerian and Lagrangian grids in hybrid front
capturing and front tracking technique.



Computational Simulation of Marangoni Convection 517

The procedure used for evaluation of the density
and viscosity transport and the surface tension term
is the key element in the numerical approach. In the
Volume Of Fluid (VOF) approach, an indicator func-
tion is used to identify di�erent phases of the ow. In
the hybrid front capturing and front tracking approach,
however, the interface is explicitly marked and tracked.
Knowing the location of the front, the values of the
uid property at di�erent ow locations are easily
speci�ed. However, identi�cation of the moving front
is associated with the following di�culties:

� How to best identify the front;
� How the data are transported between the �xed and

moving grids;
� How the front moves with time;
� How to satisfy the conservation laws as the front

shape changes during its motion.

In the present approach, as the front shape
changes, some grid points are added or subtracted
to maintain a proper grid for the front. Figure 2
shows a typical restructuring of the front grid. In
the hybrid front capturing and front tracking approach
when data is transferred between the two grids, it is
very important that the conservation laws are satis�ed.
To advect the discontinuous density and viscosity �elds,
and to compute surface tension forces, the bubble
surface is represented by separate computational el-
ements, referred to as the front. The front grid
is of one lower dimension than the stationary uid
grid and is advected by the uid velocity which is
interpolated from the uid grid. To inject surface
tension forces onto the �xed uid grid, a technique
that is usually called the Immersed Boundary Method
and which was introduced by Peskin, is used. In this
approach, the in�nitely thin interface is approximated
by a smooth distribution function which is used to
distribute the surface forces over the grid points close
to the surface in such a way that the total forces
are conserved. Therefore, the front is given a �nite
thickness of about three to four grid spacings and
there is no numerical di�usion of this front, since the
thickness remains constant for all time. To generate
the density and viscosity �elds from the front, a
technique introduced by Unverdi and Tryggvason [9]
is used which is based on distributing the jump in

Figure 2. Restructuring of a Lagrangian grid.

these quantities onto the �xed grid by the Peskin
technique and then solving a Laplace equation for the
�eld variable itself.

For code veri�cation purposes, the incompressible
lid-driven cavity ow was simulated. Figure 3 shows
the X-velocity component pro�le along the vertical
centerline and the Y -velocity component pro�le along
the horizontal for Re = 100, which, in comparison
with the results of Ghia et al. [23], show very good
agreement.

For a bubble under micro-gravity conditions, grid
independency studies were also performed for 98� 66,
146� 98, and 194 � 130 grids. The related results are
summarized in Figure 4. It is seen that, for the �st
course grid, the shape of the bubble is distorted, but for
the last two re�ned grids, the front shapes are roughly
the same. Thus, the 146 � 98 grid was chosen for the
sake of economy of the computations.

Figure 3. X- and Y - velocity components pro�les at the
centerline of the cavity.
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Figure 4. Grid independency study (case 2).

For a non-isothermal condition test case, the
uids consist of the same ideal gas held at a uniform
temperature (Ti); the position of the membrane was
Ri and the total mass of the gas in the enclosure
was m. Fluid B was heated adjacent to the walls by
heat ux (q) for time t0. The temporal evolution of
the membrane radius is presented in Figure 5. The
�nal state for this case is in good agreement with
the exact theoretical solution. The transient behavior
seems to evolve in three phases: First, the heated uid,
B, expands, causing a compression of uid A and,
thus, decreases the membrane radius. The pressure
in uid A rises until it exceeds that in B, upon
which the membrane begins to re-expand. Once the
heating ceases and the temperature in the enclosure
begins to homogenize, the pressure in uid B drops
further, relative to that in uid A, and the membrane
continues to expand until it reaches a steady �nal
value.

RESULTS AND DISCUSSIONS

In this work, the rising of a single bubble in a quiescent
liquid under microgravity conditions was computa-
tionally simulated. In addition to general studies of
microgravity e�ects, the initiation of hydrodynamic
convection, solely due to the variations of interface
curvature (surface tension force) and thus the gen-
eration of shearing forces at the interfaces, was also
studied. Then, the variation of surface tension due to
temperature (Marangoni convection) can initiate the
onset of convection even in the absence of buoyancy
studied. The results show that the bubble moves in a
straight path under microgravity condition compared
to the zigzag motion of bubbles in the presence of grav-
ity. The related unsteady incompressible full Navier-
Stokes equations were solved using a conventional
�nite di�erence method with a structured staggered
grid. Also, a Multigrid technique in the context
of the projection method improved convergences and
computational sti�ness. The interface was tracked
explicitly by connected marker points via a hybrid front
capturing and tracking method.

Multi-grid iteration combines classical iterative
techniques, such as the Gauss-Seidel line or point
relaxation with sub-grid re�nement procedures to yield
a method superior to the iterative techniques alone.
By iterating and transferring approximations and cor-
rections at sub-grid levels, a good initial guess and
rapid convergence at the �ne grid level can be achieved.
Multiphase ow computations involve several challeng-
ing issues. For example, the momentum, mass and
energy transfer between phases are coupled. When
the interface moves, one needs to compute the domain
shape and associated geometric information, such as
curvature and normal and projected area/volume, as
part of the solution which adds nonlinearity to the

Figure 5. Temporal evolution of the membrane radius.
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problem and can create di�culties in grid generation.
Oftentimes, there are large property jumps across the
interface, e.g. the density ratio between vapor and
water under standard sea level conditions is around
1,000, which results in multiple time and length scales
and computational sti�ness. To deal with these issues,
numerous numerical techniques have been developed,
each with its own merits and di�culties. The present
approach tracks the interface with the Lagrangian
method using massless markers while the �eld equa-
tion computations are carried out with the Eulerian
method on �xed Cartesian meshes. The pressure
equation which is a di�usion-type for low speed ows,
exhibits slower convergence rates than the convective-
di�usive ones when employing iterative matrix solvers.
Therefore, improvement on the solver of the Poisson
equation can accelerate the overall performance of the
method. The property jump between phases also
alters the convergence behavior. In this study, the
moving boundary separating two uids and the e�ect
of the property ratios between phases was used. The
multi-grid technique works on the principle that high
wave number components decay faster than low wave
number components. A component's wave number is
considered high or low, depending on the grid size. This
dependence is such that low wave number components
on a �ne mesh behave like high wave number compo-
nents on a coarse mesh. Therefore, treating the various
wave number components on di�erent grids makes it
possible to accelerate the convergence rate.

Figure 6 shows typical bubble shapes in time
for di�erent density ratios; 10, 100. The initial
bubble starts to rise due to the e�ect of buoyancy in
the cylinder, and it eventually deforms to a steady-
state shape. Figure 7 shows the number of �ne grid
iterations required to reach a residual level of 10�6

Figure 6. Bubble shapes evolution for di�erent density
ratios 10 (left) and 100 (right).

Figure 7. Residual history for di�erent levels.

at the very �rst time step, which requires the largest
number of iterations to converge among all time steps,
since it starts to iterate from initial conditions; one
level represents the iteration history for a single grid
computation. As demonstrated, the convergence rate
improves dramatically when the level of the multi-grid
is increased.

Di�erent cases studied (for isothermal rising) are
listed in Table 2. The selected simulation conditions
are such that the bubble motion is under low or
zero gravity. Di�erent cases have been introduced in
order to study both the buoyancy and hydrodynamic
convection e�ects. According to Table 1, the bubble
shape varies from spherical to ellipsoidal (or equivalent
shape in 2 dimensions), for di�erent Reynolds and
Bond numbers. Also, depending on these shapes, the
bubble follows a straight line or zigzag curve while
moving upward.

The evolutions of the pressure and density �elds
are shown in Figure 8. The unsteady motion of the
bubble is clearly shown in this �gure.

Figure 6 shows the bubble shape evolution from
circular at the initial stage to elliptical at later times,
while following a straight path. Note that in cases 1,
and 3, in the absence of gravity, the motion is only due
to the curvature induced lift force given as:

Lift = �kn�(X �Xf ): (16)

This lift force is due to the surface tension coe�cient
and interfacial curvature. However, for the initial
cylindrical bubble, the value of this force is zero and,
thus, its onset is due to an initial disturbance. It should
be noted that a similar phenomenon, entitled \parasitic
currents", has been reported especially for gas-liquid
interfaces. Parasitic currents are unphysical currents
generated in using implementations of the Continuum
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Table 2. Di�erent test cases considered in this study.

Case
No.

Surface
Tension
(N/m)

Gravity
(m/s2)

Reynolds
Number
(ReB)

Bond Number
(Eo)

Morton
Number

(Mo)

Weber Number
(We)

Froude
Number

(Fr)
1 0.2 0 800 0 0 800 1
2 0.2 0.06 800 0.048 7:5� 10�8 800 16666

3 0.5 0 2000 0 0 320 1
4 0 0 800 0 - 1 1

Figure 8. Density (left) and pressure (right) shadowgraphs of bubble motion in a quiescent liquid under zero gravity
condition (case 3).
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Surface Force (CSF) technique to model surface tension
forces in multi-phase computational uid dynamics
problems. However, this phenomenon has a limited
magnitude regarding uid properties [24]. Also, in
our computational methodology, the CSF scheme has
not been used. Then, it seems that some parts
of this hydrodynamic convection can exist physically.
Equation 16 shows that changes in the curvature or
in the surface tension coe�cient can initiate bubble
motion, even in the absence of gravity. Here, the
surface tension coe�cient is constant (since there is no
temperature gradient). Thus, the only driving force for
the bubble motion is the variation in the shape of the
interface and initial disturbance. Figure 9 shows the
evolution of the shape of the bubble with time.

The results for case 2 are shown in Figure 10. As
shown in this �gure, when gravity is low, the buoyancy
and the hydrodynamic forces tend to move the bubble.
The resulting lift force is given as:

Lift = �g + �kn�(X �Xf ): (17)

As expected from this �gure, the bubble movement is
faster here, compared to case 1.

Figure 11 shows the results related to case 3,
where the surface tension coe�cient is higher, but
still, gravity is set to zero. Note from this �gure that
the bubble has higher upward velocity in comparison
with the results of case 1 where the surface tension
coe�cient was lower. The driving force for the bubble
motion in this case is the hydrodynamic convection
e�ect caused by the changes in the bubble curvature.
This force is larger than the driving force of case 1 due
to a higher surface tension coe�cient.

Figure 12 shows the results of case 4 where both
surface tension and gravity are zero. According to
Equation 17, the lift force is zero and, thus, there is

Figure 9. Bubble evolution (case 1).

Figure 10. Bubble evolution (case 2).

Figure 11. Bubble evolution (case 3).

Figure 12. Bubble evolution (case 4).
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no bubble motion with time which is consistent with
the results of Figure 12.

In Figure 13, cases 1, 3 and 4 are compared for
t = 1 second. Note that in the absence of gravity,
the higher the surface tension coe�cient is, the higher
is the upward lift force that leads to a higher bubble
velocity. Also, as shown in this �gure, higher surface
tension coe�cient causes a higher upward motion of
the bubble.

The results of case 1, at longer times, are shown
in Figure 14. The important point in this �gure is
that the bubble has a downward motion at t = 2
seconds. Here, the change in the direction of motion
is due to the change in the sign of the lift force caused
by changes in the bubble curvature (hydrodynamic
convection e�ect).

Figure 13. The comparison of Marangoni force (cases 1,
2 and 4) at t = 1 sec.

Figure 14. Bubble evolution (case 1) showing negative
lift at t = 2 second.

The evolutions of the temperature �elds are
shown in Figure 15 under zero gravity conditions. The
unsteady motion of the bubble is clearly shown in this
�gure. Also, Isotherms (right) and Flow �eld (left) for
a bubble under micro gravity are shown in Figure 16.
Another characteristic feature of Marangoni convection
becomes obvious from the numerical simulation with
an existing temperature gradient, i.e. this convection
tends to reduce its driving temperature di�erence.
With the growing intensity of the Marangoni convec-
tion, i.e. growing Marangoni number, the tempera-
ture gradient along the interface is more and more
reduced. As shown in Figures 15 and 16, the number

Figure 15. Temperature shadowgraphs of bubble motion
in a quiescent liquid under zero gravity condition (initial
temperature = 96, wall temperature = 110).

Figure 16. Isotherms (right) and ow �eld (left) for a
bubble under micro gravity.
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of isotherms touching the bubble surface decreases
with the increasing intensity of the ow. Even for
the smallest temperature di�erences along the bubble
interface, i.e. small Marangoni numbers, a uid motion
with a typical toroidal vortex can be observed. In
contrast to buoyancy convection, no critical Marangoni
number has to be reached for the onset of uid ow.
With a growing Marangoni number, the isotherms are
displaced from the bubble towards the rigid surfaces,
leading to an increased heat transfer there.

CONCLUSIONS

In this work, large bubble motion in a quiescent liquid
is computationally simulated by a hybrid front captur-
ing and front tracking method. The main conclusions
are as follows:

� For all cases studied here (for the values of the
dimensionless numbers studied), the bubble moves
in a straight path, which is in contrast with the
bubble motion under normal gravity conditions.

� At microgravity conditions, the driving force for the
bubble motion (isothermal) is the variation in the
bubble surface curvature. Both the buoyancy and
hydrodynamic convection e�ects create positive lift
and thus tend to move the bubble upward. However,
this trend continues up to the point where the lift
force changes in direction and thus the bubble moves
downward.

� As the density ratio increases, the number of itera-
tions required to reach the same residual level also
increases. The multi-grid technique, in the context
of the projection method, improved convergences
and computational sti�ness.

� With growing Marangoni number (for non-
isothermal cases), the isotherm lines are displaced
from the bubble towards the rigid surfaces, leading
to an increased heat transfer there.

NOMENCLATURE

V bubble volume
g gravitational acceleration
req equivalent radius
UT terminal velocity
u velocity vector �eld
� surface tension coe�cient
n normal unit vector at interface
k interfacial curvature
P pressure
� kinematic viscosity coe�cient
� Dirac delta function

H Heaviside function
xf ; yf coordinates of nodes in moving grid
x; y coordinates of nodes in �xed grid
A the bubble surface area
T temperature
cp speci�c heat
c1 speci�c heat (primary phase)
c2 speci�c heat (secondary phase)
_mf interfacial mass transfer

k0 conductive coe�cient
L0 latent heat
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