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Modeling of Moving Boundaries in Large
Plasticity Deformations via an Enriched

Arbitrary Lagrangian-Eulerian FE Method

M. Anahid1 and A.R. Khoei2;�

Abstract. In this paper, a new computational technique is presented for the modeling of moving
boundaries in large plastic deformations based on an enriched arbitrary Lagrangian-Eulerian �nite element
method. An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to capture the advantages of
both Lagrangian and Eulerian methods and alleviate the drawbacks of mesh distortion in Lagrangian
formulation. An enriched �nite element method is implemented based on the extended FEM technique
to capture the arbitrary interfaces independent of element boundaries. The process is accomplished by
performing a splitting operator to separate the material (Lagrangian) phase from the convective (Eulerian)
phase, and partitioning the Lagrangian and relocated meshes with some sub-quadrilaterals whose Gauss
points are used for integration of the domain of elements. In order to demonstrate the e�ciency of
the enriched ALE �nite element model in large deformations, several numerical examples including the
coining problem with horizontal and vertical moving boundaries and a tensile plate with a moving interface
are presented and the results are compared with those of the standard �nite element and extended �nite
element methods.

Keywords: Large plasticity deformations; Arbitrary Lagrangian-Eulerian; Enriched FEM; Partition of
unity; Godunov technique.

INTRODUCTION

In large deformation problems with discontinuities and
material interfaces, the implementation of adaptive
mesh re�nement in di�erent stages of analysis is of
great importance. The requirement of adaptive mesh
re�nement may consume high amounts of capacity and
time. Thus, it is necessary to perform an innovative
procedure to alleviate these di�culties by allowing the
discontinuities to be mesh-independent. The eXtended
Finite Element Method (X-FEM) has been success-
fully applied to problems exhibiting discontinuities and
inhomogeneities, such as cracks, holes, or material
interfaces. In this technique, the discontinuities are
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taken into account by adding appropriate functions
into the standard approximation through a partition of
unity method [1]. The technique was �rst introduced
by Dolbow [2], Belytschko and Black [3] and Mo�es
et al. [4] to model cracks, voids and inhomogeneities.
The method allows modeling the entire crack geometry
independently of the mesh, and completely avoids
the need to remesh as the crack grows. The X-
FEM was used to model crack growth and arbitrary
discontinuities by enriching the discontinuous approx-
imation in terms of a signed distance and level sets
functions [5-11]. The method was implemented in
various solid and uid mechanics problems including:
the moving particles [12], microstructures with complex
geometries [13], moving hyper-surface with arbitrary
discontinuities in space-time [14,15], stationary and
growing cracks [16], bimaterial interfacial cracks [17],
simulation of strong and weak discontinuities [18,19],
plasticity of frictional contact [20,21] and nonlinear
analysis of pressure-sensitive materials [22-24].

A common feature of the large plastic deformation



142 M. Anahid and A.R. Khoei

analysis of solid mechanics problems is the use of a
Lagrangian kinematics formulation. This approach
has shown to be adequate for problems that do not
exhibit large mass uxes among di�erent parts of the
problem. However, in large deformation analysis, the
conventional �nite element and extended �nite element
techniques using the updated Lagrangian formulation
may su�er from serious numerical di�culties when the
deformation of material is signi�cantly large. This
di�culty can be particularly observed in higher order
elements when severe distortion of elements may lead
to singularities in the isoparametric mapping of the el-
ements, aborting the calculations or causing numerical
errors [25]. In order to solve this problem, the mesh
adaptive strategy was incorporated in large deforma-
tion analysis [26,27], however, it is computationally ex-
pensive, and information must be interpolated from the
old mesh to the new mesh. In order to overcome this
di�culty, the Arbitrary Lagrangian-Eulerian (ALE)
approach has been proposed by researchers for the
classical �nite element method. In the ALE approach,
the mesh motion is taken arbitrarily from material
deformation to keep element shapes optimal. The ALE
formulation was �rst applied to nonlinear solid mechan-
ics path-dependent materials with a de�nition of the
tangent sti�ness matrix and the consistent linearization
process by Haber [28], Liu et al. [29,30] and Benson [31].
The technique was then implemented in various solid
mechanics problems including: incompressible hyper-
elasticity [32], metal forming simulation [33-35], tran-
sient dynamic analysis [36], hyperelastoplasticity [37],
�nite strain plasticity [38,39] and pressure-sensitive
materials [40,41]. A key issue in ALE formulation is
an e�cient mesh motion technique in order to achieve
satisfactory results. There are various mesh relocation
techniques based on the ALE split operator [31], a
uniform distribution of the equivalent plastic strain
indicator [33], the trans�nite mapping algorithm using
nodal relocation [34,35] etc. These techniques are able
to keep elements with a good shape by equalizing
the size of elements and by avoiding shape distortion
without changing the mesh topology.

The aim of present study is to extend the X-
ALE-FEM technique recently developed by authors
in [42] to the large plastic deformation analysis of
moving boundary problems. An enriched FE model is
incorporated with the ALE technique in large plastic
deformation based on an operator splitting technique.
The constitutive equation of ALE nonlinear mechanics
contains a convective term which reects the relative
motion between the physical motion and the mesh
motion. The correct treatment of this convective term
in the constitutive Equation is the key point in ALE
nonlinear solid mechanics. The most popular approach
in dealing with the convective term is the use of a split
or fractional-step method. In fact, each time-step is

�rst divided into a Lagrangian phase and an Eulerian
phase. Convection is neglected in the material phase,
which is, thus, identical to a time-step in a standard
Lagrangian analysis. The stress and plastic internal
variables are then transferred from Lagrangian mesh to
the relocated mesh in order to evaluate relative mesh-
material motion in the convection phase. Hence, in
order to perform an enriched arbitrary Lagrangian-
Eulerian FE analysis, a typical X-FEM analysis is
�rst carried out in the Lagrangian phase using the
updated Lagrangian approach. The Eulerian phase is
then applied to update the mesh, while the material
interface is independent of the FE mesh. Special
care has to be taken with respect to the integration
of constitutive Equations, often denoted as the stress
update, since the stress �eld is usually discontinuous
across the elements due to the fact that stress values
are only evaluated at discrete integration points. To
handle this, an approach called the Godunov scheme
is used here for the stress update. This uncoupled
approach makes easy the extension of a pure extended
Lagrangian FE code to the ALE technique and allows
the use of the original updated Lagrangian program to
solve the relevant ALE equations.

The plan of the paper is as follows: The X-
FEM technique is briey presented in the next sec-
tion. The arbitrary Lagrangian-Eulerian method is
then introduced in large deformation problems. The
algorithm of the uncoupled ALE solution together with
the mesh motion strategy and stress update procedure
are demonstrated based on the Godunov method for
the transferring of variables from Lagrangian mesh
to relocated mesh. An enriched ALE �nite element
technique is described based on the combined ALE
and X-FEM methods to reduce the mesh distortion
occurred in conventional large X-FEM deformation. A
technique is presented in this section to update the
nodal values of a level set and stress components during
the Eulerian phase. Finally, the numerical simulation
of several examples is presented to demonstrate the
capability of the X-ALE-FEM technique in large plastic
deformation problems.

AN ENRICHED FINITE ELEMENT
METHOD

The enriched �nite element method is a powerful
and accurate approach to model discontinuities, which
are independent of the FE mesh topology. In this
technique, the discontinuities or interfaces are not con-
sidered in the mesh generation operation, and special
functions, which depend on the nature of discontinuity,
are included into the �nite element approximation. The
aim of this method is to simulate the discontinuity, or
interface, with minimum enrichment. In X-FEM, the
enrichment functions are associated with new degrees
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Figure 1. Modeling of internal interfaces; a) Problem de�nition, b) The FE mesh which conforms to the geometry of
discontinuity, c) A uniform mesh in which the circled nodes have additional degrees of freedom and enrichment functions.

of freedom and approximation of the displacement �eld,
described in Figure 1 as:

u(x) =
X
I

NI(x)�uI +
X
J

NJ(x) (x)aJ ;

for nI 2 nT and nJ 2 ne: (1)

The �rst term of the above equation denotes the
classical �nite element approximation and the second
term indicates the enrichment function considered in
X-FEM. In this equation, �uI is the classical nodal
displacement; aJ , the nodal degrees of freedom cor-
responding to the enrichment functions;  (x), the
enrichment function, and N(x), the standard shape
function. In Equation 1, nT represents the set of
all nodes of the global domain, and ne the set of
nodes of elements split by the interface, as indicated
in Figure 1c.

The choice of enrichment functions in displace-
ment approximation is dependent on the conditions
of the problem. The level set method is a numerical
scheme developed by Sethian [43] for tracking the
motion of interfaces. This method, which is used for
predicting the geometry of boundaries, is very suitable
for bi-material problems, in which the displacement
�eld is continuous but there is a jump in the strain �eld.
In this technique, the interface is implicitly represented
by assigning a level set value to node I of the mesh,
located at distance 'I from the interface. The sign
of its value is negative on one side and positive on the
other. The level set function can be then obtained with
interpolating the nodal values using standard FE shape
functions as:

'(x) =
X
I

'INI(x); (2)

where the above statement indicates the summation
over the nodes, which belong to elements cut by the
interface. A discontinuity is represented by the zero
value of level set '. The new degrees of freedom,
aJ , corresponding to the level set enrichment function
are considered in Equation 1 in order to attribute to

the nodes that belong to the set of ne. In order
to improve the numerical computation in X-FEM, it
is preferable to have a uniform distribution of shape
functions around the boundary of discontinuity. To this
goal, a technique for smoothing the values of the level
set is applied by employing the nodes that belong to the
elements in the neighborhood of discontinuity elements.
Sukumar et al. [6] proposed the absolute value of the
level set function to implement the enrichment function
in the modeling of discontinuity as a result of di�erent
types of material properties. This function has a
discontinuous �rst derivative on the interface de�ned
as:

 1(x) =

�����X
I

'INI(x)

����� : (3)

An extension of the above function was proposed by
Mo�es et al. [13] that improves the previous enrichment
strategy, and has the convergence rate very close to
the optimal FE convergence. The modi�ed level set
function has a ridge centered on the interface and zero
value on the elements that are not crossed by the
interface. This level set function,  2, is de�ned as:

 2(x) =
X
I

j'I jNI(x)�
�����X
I

'INI(x)

����� : (4)

Considering the enriched approximation of the dis-
placement �eld de�ned by Equation 1, the value of u(x)
on an enriched node, K, in set ne, can be written as:

u(xK) = �uK +  (xK)aK : (5)

Since  (xK) is not necessarily zero, the above expres-
sion is not equal to the real nodal value, �uK . Thus, the
enriched displacement �eld (1) can be corrected as:

u(x) =
X
I

NI(x)�uI +
X
J

NJ (x)( (x)�  (xJ))aJ ;

for nI 2 nT and nJ 2 ne: (6)
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Based on the new de�nition in the last term of
Relation 6, the expected property can be obtained as
u(xK) = �uK . Using the enrichment function,  (x),
based on its nodal values as  (x) =

P
I NI(x) I ,

Equation 6 can be rewritten as:

u(x) =
X
I

NI(x)�uI

+
X
J

 
NJ(x)

 X
K

NK(x) K �  J
!

aJ

!
:

(7)

It must be noted that the numerical integration of
the weak form with the standard Gauss quadrature
points for elements cut by the interface must be
improved because of the existence of a discontinuous
displacement gradient through the interface.

ARBITRARY LAGRANGIAN-EULERIAN
FORMULATION

In the ALE description, the choice of the material,
spatial or any arbitrary con�guration yields to a La-
grangian, Eulerian or arbitrary Lagrangian-Eulerian
description, respectively. In this method, since the
mesh motion is taken arbitrarily from material defor-
mation to keep element shapes optimal, the convective
term appears in the balance of momentum equation.
The main di�culty in extending the ALE formulation
from FEM to X-FEM is the convective term, which re-
ects the relative motion between the physical motion
and the mesh motion. The correct treatment of this
convective term in X-FEM is the key point in the X-
ALE-FEM modeling of solid mechanic problems. The
most popular approach in dealing with the convective
term is the use of a split or fractional-step method.
Each time-step is divided into a Lagrangian phase and
an Eulerian phase. Convection is neglected in the
material phase, which is, thus, identical to a time-
step in a standard Lagrangian X-FEM analysis. The
stress and plastic internal variables are then transferred
from Lagrangian mesh to the relocated mesh in order
to evaluate the relative mesh-material motion in the
convection phase. Special care has to be taken with
respect to the time integration of the constitutive
equations, often denoted as the stress update, since the
stress �eld is usually discontinuous across the elements
due to the fact that stress values are only evaluated
at discrete integration points that normally lie inside
the element. To handle this, an approach called the
Godunov scheme is used here for the stress update.

Kinematics

In the ALE description, three di�erent con�gurations
are considered: the material domain, 
0, spatial

domain, 
, and reference domain, 
̂, which is called
the ALE domain. The material motion is de�ned by
xmi = fi(Xj ; t), with Xj denoting the material point
coordinates and fi(Xj ; t) a function that maps the
body from the initial or material con�guration, 
0,
to the current or spatial con�guration, 
. The initial
position of material points is denoted by xgi , called the
reference or ALE coordinate in which xgi = fi(Xj ; 0).
The reference domain, 
̂, is de�ned to describe the
mesh motion and is coincident with mesh points so it
can be denoted by the computational domain. The
mesh motion is de�ned by xmi = f̂i(xgj ; t). The material
coordinate can be then related to the ALE coordinate
by xgi = f̂�1

i (xmj ; t). The mesh displacement can be
de�ned by:

ugi (x
g
j ; t) = xmi � xgi = f̂i(xgj ; t)� xgi : (8)

It must be noted that mesh motion can be simply
obtained from material motion replacing the material
coordinate by the ALE coordinate. The mesh velocity
can be de�ned as:

vgi (xgj ; t) =
@f̂i(xgj ; t)

@t
=
@xmi
@t

����
xgj

; (9)

in which the ALE coordinate, xgj , and material coor-
dinate, Xj , in the material velocity are �xed. In ALE
formulation, the convective velocity, ci, is de�ned using
the di�erence between the material and mesh velocities
as:

ci = vmi � vgi =
@xmi
@xgj

@xgj
@t

�����
Xk

=
@xmi
@xgj

wj ; (10)

where the material velocity, vmi = (@xmi =@t)Xj , can
be obtained using the chain rule expression with re-
spect to the ALE coordinate, xgj , and time, t. In
Equation 10, the referential velocity, wi, is de�ned by
wi = (@xgi =@t)Xj . The above relationship between
the convective velocity, ci, material velocity, vmi , mesh
velocity, vgi , and referential velocity, wi, is frequently
used in ALE formulation.

Now, the general relationship between material
time derivatives and referential time derivatives of any
scalar function, fi, can be written as:

@fi
@t

����
Xj

=
@fi
@t

����
xgj

+
@fi
@xgi

@fi
@t

����
Xj

=
@fi
@t

����
xgj

+
@fi
@xmj

cj : (11)

The above equation can be used to deduce the funda-
mental conservation laws of continuum mechanics, i.e.
the momentum, mass and constitutive equations, in a
nonlinear ALE description.
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Governing Equations

In the ALE technique, the governing equations can be
derived by substituting the relationship between the
material time derivatives and referential time deriva-
tives, i.e. Equation 11, into the continuum mechanics
governing equations. This substitution gives rise to
convective terms in the ALE equations, which account
for the transport of material through the grid. Thus,
the momentum equation in ALE formulation can be
written similar to the updated Lagrangian description
by consideration of the material time derivative terms,
as:

� _vmi = �ji;j + �bi; (12)

where � is the density, � the Cauchy stress and bi
the body force. In the above equation, the material
time derivative of velocity _vmi can be obtained by
specializing the general Relationship 11 to _vmi , as:

_vmi =
@vmi
@t

����
xgj

+
@vmi
@xmj

cj : (13)

Substituting Equation 13 into 12, the momentum
equation can be then written as:

�

 
@vmi
@t

����
xgj

+
@vmi
@xmj

cj

!
=
@�ij
@xmj

+ �bi: (14)

The mass balance in ALE formulation can be similarly
derived by specializing the general Relationship 11 to
the density, �, as:

@�
@t

����
xgj

+
@�
@xmj

cj = ��@v
m
j

@xmj

�����
Xj

: (15)

Finally, in order to describe the constitutive equation
for nonlinear ALE formulation, the general Relation-
ship 11 is specialized to the stress tensor as:

@�
@t

����
xgj

+
@�
@xmj

cj = q; (16)

where q accounts for both the pure straining of the
material and the rotational terms that counteract the
non-objectivity of the material stress rate [36].

The basis of any mechanical initial boundary
value problem in the framework of the material de-
scription is the balance of momentum equation. In
the framework of the referential con�guration, we have
also considered mass balance and the constitutive equa-
tions, which are de�ned as partial di�erential equations
in the case of the referential description. In the quasi-
static problems, the inertia force, �a, is negligible with
respect to other forces of momentum equations, hence,

the equilibrium equation in ALE and Lagrangian de-
scriptions is exactly identical. In addition, considering
the constant value of density, �, the balance of the
mass equation results in @vmj =@xmj jXj = 0, which
is already satis�ed. Thus, the governing equations
of ALE formulation for quasi-static problems can be
summarized into Equations 14 and 16.

Weak Form of ALE Formulation

In order to present the weak form of initial boundary
value problems in the ALE description, the mass
balance and the balance of linear momentum can be
written in the integral form over the spatial domain,

, multiplied by the test functions, ��, �v and ��.
Clearly, there must be a relationship between the
strong and weak form of governing equations, in which
these two forms are identical. The weak form of a
momentum equation is obtained by multiplying the
strong form of Equation 14 by the test function, �v 2
U0, where U0 = f�vj�v 2 C0, �v = 0 on �vg and
�v indicates the part of the boundary in which the
velocities are prescribed. Consider that v 2 U is the
trial solution with U = fvjv 2 C0, v = v̂ on �vg, and
v̂ is the prescribed velocities in �v, the integration over
the spatial domain results in:Z




�v�
�
@vm

@t

����
xg

+
@vm

@xm
c
�
dv=

Z



�v(divxm�+�b)dv;
(17)

or:Z



�v�
@vm

@t

����
xg
dv +

Z



�v�
@vm

@xm
c dv

=
Z



�v divxm� dv+
Z



�v �b dv:
(18)

To eliminate the stress derivatives, the �rst term of the
right hand side in the above equation is rewritten using
the integration, part by part, as:Z




�v�
@vm

@t

����
xg
dv +

Z



�v �
@vm

@xm
cdv

= �
Z



divxm �v � dv +
Z



�v �b dv +
Z
�t

�v t̂ d�;
(19)

where �t refers to the part of the boundary in which
the traction vector, t̂, is prescribed.

Since the mass balance is enforced in the refer-
ential description as a partial di�erential equation, a
weak form must be developed. Considering the trial
solution as � 2 C0, the weak form of the balance of
mass can be obtained by integration of the strong form
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of the mass balance, as given in Equation 15, over the
spatial domain, 
, which has been multiplied by a test
function, �� 2 C0, as:Z




��
�
@�
@t

����
xg

+
@�
@xm

c + �
@vm

@xm

����
X

�
dv = 0: (20)

In this equation, only the �rst derivatives are appeared,
with respect to the mass density, �, and the veloc-
ity, v.

Similar to the momentum equation and mass
balance, the weak form of the constitutive equation
for nonlinear ALE formulation can be obtained by
multiplying the strong form of Equation 16 with a test
function, ��, and integrating over the spatial domain
as:Z




��
�
@�
@t

����
xg

+
@�
@xm

c
�
dv =

Z



��qdv; (21)

or:Z



��
@�
@t

����
xg
dv +

Z



��
@�
@xm

cdv =
Z



�� q dv: (22)

ALE Finite Element Discretization

In the �nite element method, the reference domain, 
̂,
is subdivided into a number of elements in which for
each element, e, the ALE coordinates, xg, are de�ned
as:

xg(�) =
NeX
I=1

NI(�)xgI ; (23)

where � denotes the parent element coordinates, NI(�)
is the interpolation shape function, xgI stands for the
ALE coordinates of node I, and Ne is the number of
nodes of element e. The mesh displacement �eld can
be then written (following Equation 8) as:

ug(�) = xm(�)� xg(�) =
NeX
I=1

NI(�)ugI : (24)

Thus, the mesh, material and convective velocities can
be de�ned:

vg(�) =
@xm

@t

����
xg

=
NeX
I=1

NI(�)vgI ;

vm(�) =
@xm

@t

����
X

=
NeX
I=1

NI(�)vmI ;

c(�) = vm � vg =
NeX
I=1

NI(�)(vmI � vgI )

=
NeX
I=1

NI(�e)cI(t): (25)

Furthermore, the internal variables, such as density and
stress, can be approximated in the same manner as:

�(�; t) =
NeX
I=1

N�
I (�e)�I(t);

�(�; t) =
NeX
I=1

N�
I (�e)�I(t); (26)

where N�
I and N�I stand for the shape functions of

density and stress, respectively. These shape functions
may di�er from those used to approximate the displace-
ment �eld, NI . It must be noted that because the
convective terms appear in governing equations, the
implementation of the standard Galerkin �nite element
formulation may result in numerical instabilities. This
point is especially true for severe dynamic systems.
One way to alleviate these di�culties is to employ
the Petrov-Galerkin formulation. In this approach,
di�erent sets of shape function are used to interpolate
the trial and test functions for displacement, stress and
density.

Substituting the material and the convective ve-
locity (vm and c), given in Equation 25, and the density
and the stresses (� and �), given in Equation 26, into
the weak form of the balance of linear momentum,
given in Equation 18, yields to:

M
dvm

dt
+ Lvm + f int = f ext; (27)

where:

M =
Z



�NTNdv;

L =
Z



�NT c

dN
dxm

dv; (28)

and:

f int =
Z




dNT

dxm
�dv;

f ext =
Z



�NTbdv +

Z
�

NT t̂d�: (29)

As mentioned earlier, the term of inertia forces can
be neglected in the quasi-static problems. Thus, the
momentum Equation 27 can be simpli�ed to f int = f ext.



An Enriched ALE-FEM Modeling for Moving Boundaries 147

In a similar manner, the FE formulation for the
mass balance can be obtained by substituting the
material velocity from Equation 25 and the density
from Equation 26 into Equation 20 as:

M� d�
dt

+ L��+ K�� = 0; (30)

where:

M� =
Z



N�TN�dv;

L� =
Z



N�T c

dN�

dxm
dv;

K� =
Z



N�T divxmvmN�dv: (31)

Finally, the FE formulation for the constitutive equa-
tion can be obtained by replacing the convective veloc-
ity from Equation 25 and the stresses from Equation 26
into Equation 22 as:

M� d�
dt

+ LT� = q; (32)

where:

M� =
Z



N�TN�dv;

L� =
Z



N�T c

dN�

dxm
dv: (33)

UNCOUPLED ALE SOLUTION

There are, basically, two methods of solution for
the governing equations of ALE Formulations 27, 30
and 32: the fully coupled solution and uncoupled
solution [44]. In the fully coupled solution method,
no further simpli�cations can be considered and var-
ious terms must be calculated simultaneously. This
approach was used in the works of Yamada and
Kikuchi [32], Bayoumi and Gadala [39] and Khoei et
al. [40]. In the uncoupled solution technique, we do
not consider the fully coupled equations and the whole
process can be decoupled into a Lagrangian phase and
an Eulerian phase by employing a splitting operator.
Such a technique has been employed by Benson [31],
Rodriguez-Ferran et al. [36] and Khoei et al. [41]. In
an uncoupled technique, the analysis is �rst carried
out according to the Lagrangian phase, at each time
step until the required convergence is attained. The
Eulerian phase is then applied to keep the mesh con-
�guration regular. In this study, the uncoupled ALE
solution is applied as it makes it possible to upgrade
a standard Lagrangian X-FEM program to a X-ALE-
FEM case with as little expenditure as possible. In this

case, the Lagrangian computation can be included as
a sub-step of the new ALE computation.

The basis of a splitting operator in an uncou-
pled solution is to separate the material (Lagrangian)
phase from the convective (Eulerian) phase, which is
combined with a smoothing phase (Figure 2). In the
Lagrangian phase, the convective e�ects are neglected,
so the material body deforms from its material con-
�guration to its spatial one. In this framework, the
nodal and quadrature points may lead eventually to a
high distortion of the spatial discretization after the
Lagrangian step. In order to reduce this distortion, a
smoothing phase is then applied, which leads to the
�nal spatial discretization. This allows computation
of the mesh velocity, which leads to the convective
velocity, or Eulerian phase. The advantage of the ALE
splitting operator is that the calculations are performed
in the Lagrangian step, with no convective terms, to
achieve equilibrium. When equilibrium is achieved in
the Lagrangian step, the Eulerian step is performed by
transferring the internal variables from the Lagrangian
mesh to the relocated mesh.

Material (Lagrangian) Phase

In the material phase, the convective terms are ne-
glected, so, the momentum equation is identical to a
time-step in a standard Lagrangian analysis. Thus,
the momentum balance (Equation 27) in quasistatic
analysis becomes:Z




dNT

dxm
�dv =

Z



�NTbdv +
Z
�

NT t̂d�; (34)

which is a static equilibrium equation with no time,
velocity and convective terms in the ALE momentum
balance.

Figure 2. Decomposition of the ALE step into a
Lagrangian phase and an Eulerian phase combined with a
smoothing phase.
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The ALE constitutive Equation 32 in the material
phase can be simpli�ed as:

M� d�
dt

= q; (35)

which needs to be integrated at each time step to
update the stress from �n at time tn to �Ln+1 after
the Lagrangian phase. It means that in the absence of
convective terms, the grid points move together with
material particles. Thus, the Lagrangian phase can
be performed with the same stress update algorithm
used in Lagrangian simulation, which handles the
constitutive equation at the Gauss point level.

Smoothing Phase

In order to reduce the mesh distortion in spatial
con�guration, a remeshing procedure must be applied
between the Lagrangian and the Eulerian phase. The
algorithm can produce smoother meshes without re-
de�ning the element connectivity. Since the mesh
moves independently from the material, we obtain the
mesh velocity, which can be used to compute the con-
vective velocity. There are various remeshing strategies
that have been proposed by researchers [31,33-35]. In
this study, the simple methods are used based on
the `Laplacian approach' and the `mid-area averaging
technique'. In these approaches, the mesh distortion is
controlled by moving the inner nodes in an appropriate
way. In addition, the boundary nodes are remained on
the boundary by allowing only a tangential movement
to those nodes.

The Laplacian approach is one of the most pop-
ular and simple smoothing strategies, which has been
used by researchers to produce smoother meshes. In
this technique, the spatial position of smoothed node,
xi, can be computed using the spatial position after
the Lagrangian phase, xLi , as [45]:

xi =
1

(2� w)N

NX
e=1

(xe1 + xe2 � wxe3) ; (36)

where xi presents the spatial position of node i, and N
is the number of four-node elements connecting to node
i (typically N = 4). For each element, 1 � e � N , xe1
and xe2 are the coordinates of the nodes of element e
connected to xi by an edge, and xe3 is the coordinate
of the node of element e at the opposite corner of xi,
as shown in Figure 3a. In the above relation, w is the
weighting factor, 0 � w � 1, which, for w = 0, yields
to the commonly used Laplacian scheme [45].

The mid-area averaging technique is a modi�ca-
tion of the Laplacian approach. In this method, the
considered node is in the centroid of all connected
elements, and the area of di�erent elements is taken

Figure 3. Remeshing procedure in smoothing phase.

into account. Thus, the spatial position of smoothed
node xi can be computed as:

xi =

NP
e=1

AexSe

NP
e=1

Ae
; (37)

where xSe is the location of the centroid of element
e (Figure 3b), Ae is the area of element e and N
indicates the number of four-node elements connecting
to node i. After smoothing the position of all nodal
points, xn+1, at time tn, the convective term, cn+1,
can be computed using the material (Lagrangian)
displacement, uLn+1, and mesh displacement, ugn+1, for
quasi-static problems, as cn+1 = uLn+1 � ugn+1.

In order to perform the smoothing procedure for
boundary nodes, it is assumed that the nodal points
remain on the boundary by allowing only a tangential
movement to these nodes. In this case, the boundary
nodes are allowed to move in a normal direction follow-
ing the motion of the material points. For boundaries
with a pre-known deformed shape, it is su�cient to
assign a motion in the normal direction equal to the
known material motion. To assign a desired tangential
motion for nodal points, the following algorithm is
performed here. First, a polynomial of second order
is constructed using the considered node and two
connected nodes on the boundary. The position of the
mid-node is then corrected according to the position
of two connected nodes as shown in Figure 4a. This
procedure will not work properly when the determinant
of the matrix of its solution becomes zero. To avoid
this problem, the approach is modi�ed in a manner
whereby the extension of the mid-node lies on the next
connecting line, as shown in Figure 4b.



An Enriched ALE-FEM Modeling for Moving Boundaries 149

Figure 4. Illustration of boundaries motion.

Convection (Eulerian) Phase

The �nal part of the operator splitting technique
includes the data transferring of the solution obtained
by the Lagrangian phase onto the new relocated mesh,
which was developed through the mesh smoothing
algorithm. In the Eulerian (or convection) phase,
the convective terms that were neglected during the
Lagrangian phase are taken into account. Since we are
dealing with history-dependent materials and due to
the fact that di�erent material integration points have
di�erent histories, these quantities must be updated
in order to compute the history-dependent variables in
the next time step. These variables are computed at
discrete integration points, which normally lie inside
the element. This yields to discontinuous �elds and
produces trouble, since the spatial gradients of these
variables are required. To overcome theses di�culties,
a smooth gradient �eld is obtained, based on the Go-
dunov technique, which circumvents the computation
of history variable gradients.

The constitutive Equation 32 in the convection
phase can be written as:

@�
@t

����
xgj

+
@�
@xmj

cj = 0; (38)

which needs to be integrated at each time step to
update the stress from �Ln+1 to �n+1 at time tn+1. As
noted above, the main di�culty in Equation 38 is the
stress gradient, which cannot be properly computed
at the element level. In order to avoid computing
gradients of the discontinuous �elds, the Godunov
technique is implemented here to transfer the internal
variables, �Ln+1, �"p

L

n+1 and �Ln+1, from the Lagrangian
mesh to the relocated mesh.

The Godunov method assumes a piecewise con-
stant �eld of the solution of internal variable after

the Lagrangian phase. In the �nite element frame-
work, this is the situation if one-point quadratures
are employed. However, to allow for a subsequent
generalization to multiple-point quadratures, the �nite
element can be subdivided into various sub-elements,
each corresponding to the inuence domain of a Gauss
point [36]. Considering the scalar quantity,  , to be
any component of the stress, �, or the e�ective plastic
strain, �"p, the value of the internal variable,  n+1,
at time tn+1, can be obtained from the Lagrangian
solution,  Ln+1, as:

 n+1 =  Ln+1 � �t
2A

NsX
s=1

�
fs( Lcn+1 �  Ln+1)

� [1� �0sign(fs)]
�
; (39)

where A is the area of the sub-element, Ns the number
of edges of the sub-element, and  Lcn+1 is the value
of  Ln+1 in the contiguous sub-element across edge s
(Figure 5). The upwind parameter, �0, is in the range
of 0 � �0 � 1, where �0 = 1 corresponds to a full-donor
approximation and �0 = 0 is a centered approximation.
In the above relation, fs is the ux of the convective
velocity, c, across edge s, de�ned as:

fs =
Z
s
c:n ds: (40)

Based on this approach, if, for instance, quadrilaterals
with 2�2 integration points are employed, each element
is divided into four sub-elements, as shown in Figure 5.
In each sub-element,  is assumed to be constant and
represented by the Gauss point value. Thus,  is a
piecewise constant �eld with respect to the mesh of sub-
elements, and Relation 39 can be employed to update
the value of  for each sub-element.

THE X-ALE-FEM ANALYSIS

Application of ALE Technique into X-FEM
Method

In X-ALE-FEM analysis, the X-FEM method is per-
formed, together with an operator splitting technique,
in which each time step consists of two stages: La-
grangian (material) and Eulerian (smoothing) phases.
In the material phase, the X-FEM analysis is carried
out based on an updated Lagrangian approach. It
means that the convective terms are neglected and
only material e�ects are considered. The time step
is then followed by an Eulerian phase in which the
convective term is taken into account. In this step,
the nodal points move arbitrarily in the space so that
the computational mesh has a regular shape and mesh
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Figure 5. Illustration of the Godunov technique.

distortion can be prevented. However, the material
interface is independent of the FE mesh.

Figure 6 presents the mesh con�guration includ-
ing the material interface, before and after the Eulerian
phase. In this �gure, the position of the interface has
been shown in two di�erent cases. In Figure 6a, the
interface does not move from one element to another
during the smoothing phase. On the other hand, the
number of elements which has been cut by the interface
does not change during the smoothing phase, while in
Figure 6b, the material interface may move from one
element to another. As can be seen, elements 1, 3 and 4
have been cut by the interface before the mesh motion
procedure. However, only element 3 is cut by the
interface after the Eulerian phase. Thus, the number
of enriched nodes may be di�erent during the X-ALE-
FEM analysis, which results in a di�erent number of
degrees-of-freedom in two successive steps. There are
two main requirements that need to be considered in
the smoothing phase:

Figure 6. Mesh con�guration before and after Eulerian
phase together with the material interface in X-ALE-FEM
analysis. The dashed and solid elements correspond to
mesh con�guration before and after mesh motion,
respectively.

1. Due to the movement of nodal points in the mesh
motion process, a procedure must be applied to
determine the new nodal values of the level set
enrichment function.

2. In the extended �nite element analysis, the number
of Gauss quadrature points for numerical inte-
gration of elements cut by the interface can be
determined using the sub-quadrilaterals obtained
by the partitioning procedure. However, in the case
wherein the material interface leaves one element
to another during the mesh update procedure, the
number of Gauss quadrature points of an element
may di�er before and after mesh motion. Hence,
an accurate and e�cient technique must be applied
into the Godunov scheme to update the stress
values.

Level Set Update

During the smoothing phase, the nodal points are
relocated in order to keep the computational mesh
in regular shape. However, the material interface is
independent of the FE mesh, as shown in Figure 7.
In this �gure, the dashed lines illustrate the old mesh
and the relocated elements are depicted by solid lines.
The aim is to obtain the level set value for node I
after the Eulerian phase. For this purpose, we must
determine the distance of the relocated node, I, from
the interface. The intersection of the interface with
the edges of old elements can be calculated at the end
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Figure 7. The procedure for determination of level set nodal values after mesh motion.

of the Lagrangian step, called points A, B, C and D
in Figure 7a. The procedure used here to update the
nodal values of the level set is as follows; The arc
ABCD is �rst approximated by several straight lines
that connect the intersection of the interface with the
edges of old elements, i.e. lines AB, BC and CD in
Figure 7b. The support domain of node I has been
indicated by elements 1, 2, 3 and 4 in Figure 7a.
Among the elements of the support domain, we de�ne
the Extended Support Domain (ESD) of node I that
contains those elements cut by the interface at the
end of the Lagrangian phase. As can be seen from
Figure 7b, the ESD of node I includes elements 2,
3 and 4. For each element of ESD, the distance of
the relocated node, I, is calculated from the element
interface. The exact value of the level set function
for the relocated node, I, is the minimum value of
distances, d1, d2 and d3, as shown in Figure 7b. In
order to determine the sign of the level set value for
the relocated node, I, the above procedure will be
performed once again to evaluate the value of the level
set for the old node, I. If the sign of these two level set
values are similar, it means that the old and relocated
nodes lie in the same side of the interface. Thus, the
sign of the level set value for the relocated node I must
be identical with its sign for the old node I.

However, the proposed algorithm is not appropri-
ate for determination of the level set value of nodal
points that are not enriched during the Lagrangian
phase, and included in an element split by the interface
after mesh motion (e.g. node I in Figure 7c). In
this case, the ESD of node I in Figure 7c contains
no elements, and the de�nition of ESD must be
modi�ed. In order to modify the ESD for these nodal
points, we �rst indicate the support domain of node
I (e.g. elements 6, 7, 10 and 11 in Figure 7c).
All nodal points of this domain, which were enriched
during the Lagrangian phase, are selected (circled
nodes in Figure 7c). Those elements in the union
of circled nodes' support domains that are cut by
the interface can be considered as the modi�ed ESD

of node I. The procedure will be then followed
by determination of the level set value for node I,
as demonstrated above. By substituting the nodal
values of the level set in Equation 2, the level set
function can be �nally expressed. The iso-zero of
the level set function determines the location of the
interface.

Stress Update and Numerical Integration

A key point of the Godunov-like stress update proce-
dure is that the number of Gauss points before and
after mesh motion must be equal. In addition, the
natural coordinates of Gauss quadrature points must
remain constant during the smoothing phase. However,
these conditions may not be necessarily satis�ed in
the Eulerian phase of an X-ALE-FEM analysis, since
the elements cut by the interface are divided into sub-
polygons whose Gauss points are used for numerical in-
tegration. It must be noted that for the elements cut by
the interface boundary, the standard Gauss quadrature
points are insu�cient for numerical integration, and
may not adequately integrate the interface boundary.
Thus, it is necessary to modify the element quadrature
points to accurately evaluate the contribution to the
weak form for both sides of the interface. In the
standard FE method, numerical integration can be
performed by discretizing the domain, as 
 =

m[
e=1


e
in which m is the number of elements and 
e is the
element sub-domain. In X-FEM, the elements located
on the interface boundary can be partitioned by sub-
polygons, 
s, with the boundaries aligned with the
material interface, i.e. 
e =

ms[
s=1


s in which ms

denotes the number of sub-polygons of the element.
It is important that the Gauss points of sub-polygons
are only used for numerical integration of the elements
cut by the interface and no new degrees of freedom are
added to system. Di�erent algorithms may be applied
to generate these sub-polygons, based on sub-triangles
and sub-quadratics. However, for the following two
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reasons, the sub-triangles are not suitable in an X-ALE-
FEM analysis:

a) Due to the relative motion between the interface
and elements, the natural coordinates of Gauss
quadrature points may di�er during the smoothing
phase, even though the interface does not leave the
element to another in this phase,

b) During the evolution of relative motion between
the interface and nodal points, it is possible that
a nodal point lies close to the interface. In this
case, partitioning the bounded part between the
node and the interface by sub-triangles results in
serious numerical errors.

Thus, the numerical integration of elements cut by the
interface is performed here based on sub-quadrilaterals,
as shown in Figure 8. In this technique, it is not
necessary for the sub-quadrilaterals to conform to the
geometry of the interface. However, it is required
to have enough sub-divisions to reduce the errors of
numerical integration. Considering each split element
contains 8� 8 subdivisions, the total number of Gauss
points is 64 for each split element, while, in standard
elements, a set of 2 � 2 Gauss points are used for
numerical integration. Based on the sub-quadrilaterals
integration scheme, the natural coordinates of Gauss
quadrature points are independent of the interface
position and do not change during the smoothing
phase. Furthermore, the most important feature is that
the error of numerical integration can be signi�cantly
reduced in this technique. However, a key requirement
of the Godunov scheme is the equivalence of integration
points before and after the mesh update process that
are not satis�ed in the Eulerian phase of an X-ALE-
FEM analysis when the interface leaves one element
to another, or moves into the relocated element during

Figure 8. The sub-quadrilateral partitioning for
numerical integration of elements cut by the interface.

the smoothing procedure. In this circumstance, four
di�erent cases may occur regarding the number of
Gauss quadrature points:

1. The element is not cut by the interface either
before or after mesh motion (e.g. elements 1, 2,
3 and 7 in Figures 9a and 9b). In this case, the
FE standard Gauss points are used for numerical
integration before and after the smoothing phase.
Thus, the number of Gauss points and their natural
coordinates remain constant, and the Godunov
scheme can be used without any modi�cation.

2. The element which has been cut by the interface
before the smoothing phase is still cut by the
interface after the mesh updating procedure (e.g.
elements 4, 5 and 9 in Figures 9a and 9b). Based
on the new integration scheme, both the old and
relocated elements contain 64 Gauss quadrature
points, and the natural coordinates of Gauss points
do not change. Hence, the Godunov scheme can be
applied without any modi�cation.

3. The interface leaves one element for another during
the smoothing phase. In this case, the element
which was split by the interface before the mesh
updating procedure does not contain the interface
after mesh motion (e.g. element 6 in Figures 9a
and 9b). It, therefore, results in di�erent numbers
of Gauss points in the old and relocated elements.
As mentioned earlier, the old and relocated ele-
ments contain 64 and 4 Gauss quadrature points,
respectively. Thus, an e�cient algorithm must be
applied into the Godunov technique to update the
stress from �Ln+1 obtained from the Lagrangian
phase to �n+1 after the Eulerian phase. First, the
internal variables such as stresses are updated from
the 8 � 8 Gauss points in the old element to a
virtual set of 8�8 FE standard Gauss points in the
relocated mesh via a Godunov update algorithm.
The stress values must be then transferred from the
virtual Gauss points to relocated 2�2 Gauss points

Figure 9. The distribution of Gauss integration points in
the X-ALE-FEM analysis.
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Figure 10. The support domain of Gauss integration
point q; �: The Gauss points 2� 2 corresponding to
relocated mesh, �: The virtual Gauss points in relocated
mesh.

in the updated element, as shown in Figure 10.
According to this �gure, for each FE Gauss point,
q, there is a support domain which consists of the
three nearest virtual Gauss points. The stress value
at q can be interpolated from the stress values of
these three nearest Gauss points.

4. The material interface moves into the relocated
element during the Eulerian phase. In this case,
the relocated element is cut by the interface, while
it was not included before the mesh motion (e.g.
element 8 in Figures 9a and 9b). In this case,
the stress values have been calculated at the 2 � 2
standard FE Gauss points of the old element at the
end of the Lagrangian phase. These values must
be updated using the Godunov algorithm to obtain
the stress values at the virtual 2 � 2 Gauss points
in the relocated element. It must be noted that the
stress values are required at relocated 8 � 8 Gauss
quadrature points. For this aim, the stress values
are �rstly computed at the nodal points of the
relocated element by using an averaging technique
from the related values at the nearest Gauss points.
The required stress values at relocated 8� 8 Gauss
points can be then obtained using the standard FE
shape functions of relocated nodal values.

NUMERICAL SIMULATION RESULTS

In order to illustrate the applicability of the proposed
computational algorithm in large elasto-plastic defor-
mation problems, several numerical examples are pre-
sented, including the coining problem with horizontal
and vertical moving boundaries and a tensile plate with
a moving interface. The examples are solved using
FEM, X-FEM and X-ALE-FEM techniques, and the
results are compared. The initial mesh used for X-FEM
and X-ALE-FEM methods are similar and independent

of the discontinuity shape, while, in FEM analysis, the
FE mesh needs to be conformed to the geometry of
discontinuity. In order to perform a real comparison,
the number of elements in FEM and X-FEM analyses
is almost equal. All examples are simulated by a plain
strain representation and the convergence tolerance is
set to 5� 10�14.

Coining Test

The �rst example illustrates the performance of the X-
ALE-FEM technique in large deformation simulation of
a practical and challenging example, extensively used
to present the performance of the ALE technique in
literature. The proposed technique is implemented
to simulate the coining problem by pressing a rigid
component into the exible elastic foam. Two di�erent
cases are considered in analysis of the current example,
including the horizontal and vertical moving bound-
aries.

In the �rst case, the coining problem is assumed
with a horizontal moving boundary, while the edge of
the component is restrained at the right-hand side,
as shown in Figure 11. The geometry and bound-
ary conditions together with the problem de�nition
are shown in this �gure. An elasto-plastic metallic
component of von-Mises behavior with the Young
modulus of 2:1 � 106 kg/cm2, Poisson coe�cient of
0.35, a yield stress of 2400 kg/cm2 and a hardening
parameter of 3:0 � 103 kg/cm2 is pressed from the
bottom edge into the elastic foam with the Young
modulus of 2:1� 105 kg/cm2 and Poisson coe�cient of
0.35. The component is restrained at the top edge along
the line, BG, and all contact surfaces, AC, CF, DF,
are frictionless. In Figure 12, the FEM and X-ALE-
FEM meshes are shown together with the material
interface, at the initial stage of compaction. For both
simulations, the material interface conforms to the edge
of elements at the initial con�guration, in order to

Figure 11. Coining test with a horizontal interface;
Problem de�nition.
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Figure 12. Coining test with a horizontal interface; the
FEM and X-ALE-FEM meshes of (a) 400 elements, (b)
1600 elements.

simplify the implementation of displacement boundary
conditions along the edge, BG. However, the movement
of interface GE is independent of the grid in X-ALE-
FEM analysis as the compaction proceeds. It must
be noted that the X-FEM analysis leads to similar
results obtained by FEM modeling as the interface
passes through the nodal points. The simulation of this
example poses a major di�culty using the Lagrangian
formulation due to highly distorted mesh, particularly
around point G; aborting the calculations and causing
numerical errors at the compaction of 0.7 cm.

In Figures 13a and 13c, the deformed �nite
element meshes are shown for �ne mesh at the pressing
of 0.35 and 0.7 cm. Based on a simple ALE remeshing
strategy with the equal height and width of elements
prescribed in the regions of ABED and BCFE, the X-
ALE-FEM analysis can be performed until 0.83 cm
height reduction. The deformed X-ALE-FEM con�g-
uration for �ne mesh is presented in Figures 13b, 13d
and 13e corresponding to the compaction deformations
of 0.35, 0.7 and 0.83 cm. The contours of normal
stress, �y distribution of the component are shown in
Figure 14 for both FEM and X-ALE-FEM methods at
the height reduction of 0.5 cm. Remarkable agreements
can be observed between two di�erent techniques. A
comparison has been performed using two techniques
by evolution of the vertical reaction and vertical dis-
placement of point E with compaction deformation in
Figures 15 and 16. Good agreement can be seen up
to the compaction of 0.70 cm (the �nal compaction
obtained by the FEM analysis) using the FEM and X-
ALE-FEM techniques.

In the second simulation, the coining problem is
modeled with horizontal and vertical moving bound-
aries, as shown in Figure 17. The geometry and bound-
ary conditions are shown together with the problem
de�nition in this �gure. Similar to previous simulation,
the movement of the component is constrained along
the line, BG, and the contact surfaces, AC, CF and
DF, are assumed to be frictionless. Figure 18 presents
the computational meshes corresponding to FEM and
X-ALE-FEM analyses, together with the internal ma-
terial interface at the initial stage of pressing. In
order to simply implement the displacement boundary

Figure 13. Coining test with a horizontal interface; the
deformed con�guration using �ne meshes. (a) The FEM
at d = 0:35 cm; (b) The X-ALE-FEM at d = 0:35 cm; (c)
The FEM at d = 0:7 cm; (d) The X-ALE-FEM at
d = 0:7 cm; and (e) The X-ALE-FEM at d = 0:83 cm

conditions along edge BG, the internal interface for
both simulations coincides with the edge of elements at
the initial con�guration. Due to the high distortion and
elongation of elements, particularly around the corners,
the FE analysis aborts at 0.66 cm height reduction.
However, the X-ALE-FEM analysis continues pressing
until 0.816 cm by using a mesh smoothing strategy.
In Figures 19a to 19d, the deformed FEM and X-
ALE-FEM con�gurations are shown for �ne mesh at
die-pressing of 0.33 and 0.66 cm. Also, depicted in
Figure 19e is the �nal deformed con�guration of X-
ALE-FEM mesh at 0.816 cm height reduction. In
order to perform a comparison between the FEM and
X-ALE-FEM results, the normal stress contours are
illustrated in Figure 20 for both techniques at the
pressing of 0.5 cm. In Figures 21 and 22, the variations
of the reaction force and horizontal displacement of
point H are shown with vertical displacement. This
example clearly shows that the proposed X-ALE-FEM
method can be e�ciently used to model large elasto-
plastic deformations in solid mechanic problems.

Plate in Tension

The next example is of a rectangular plate under uni-
axial extension up to an elongation of 6.4 cm, as shown
in Figure 23. The plate has an elasto-plastic von-Mises
behavior with the Young modulus of 2:1�106 kg/cm2,
Poisson coe�cient of 0.35, yield stress of 2400 kg/cm2

and a hardening parameter of 100 kg/cm2. The
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Figure 14. Coining test with a horizontal interface; the normal stress �y contours of rigid part at d = 0:5 cm; a
comparison between FEM and X-ALE-FEM analyses.

Figure 15. Coining test with a horizontal interface; the
variation of reaction force with vertical displacement; a
comparison between FEM and X-ALE-FEM analyses.

Figure 16. Coining test with a horizontal interface; the
variation of vertical displacement of point E with
displacement; a comparison between FEM and
X-ALE-FEM analyses.

Figure 17. Coining test with a horizontal and vertical
interfaces; problem de�nition.

Figure 18. Coining test with a horizontal and vertical
interfaces; the FEM and X-ALE-FEM meshes of (a) 400
elements and (b) 1600 elements.

necking may be physically occurred at each part of
the specimen. In order to control the phenomenon,
a geometric imperfection of 1% reduction in width is
induced in the central part of the plate. On the virtue
of symmetry, only one-quarter of the metallic plate is
modeled under a plane strain condition (Figure 23a).
The analysis is performed using the FEM, X-FEM and
X-ALE-FEM techniques and the results are compared.
In order to make a comprehensive comparison, the
FEM analysis is carried out using both the Lagrangian
and ALE approaches.

The �nite element mesh has 480 linear quadri-
lateral elements, as shown in Figure 23b. In order
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to demonstrate the performance of X-FEM and X-
ALE-FEM methods in modeling discontinuities, due
to the signi�cant di�erence of material properties, the
numerical simulation is performed using a metallic
part, whose geometry and properties are similar to the
FE model connected to a rectangular part with zero
Young modulus. Figure 23c illustrates the X-FEM and
X-ALE-FEM meshes of 600 uniform elements, together
with the geometry of the model. The boundary
conditions are applied by restricting the bottom edge
in y-direction and the left edge in x-direction. In the
X-FEM and X-ALE-FEM models, all nodal points of
the right edge are restrained in a x-direction.

A very simple remeshing strategy is applied for

Figure 19. Coining test with a horizontal and vertical
interfaces; the deformed con�guration using �ne meshes.
(a) The FEM at d = 0:33 cm; (b) The X-ALE-FEM at
d = 0:33 cm; (c) The FEM at d = 0:66 cm; (d) The
X-ALE-FEM at d = 0:66 cm; and (e) The X-ALE-FEM at
d = 0:816 cm

Figure 21. Coining test with a horizontal and vertical
interfaces; the variation of reaction force with vertical
displacement; a comparison between FEM and
X-ALE-FEM analyses.

Figure 22. Coining test with a horizontal and vertical
interfaces; the variation of horizontal displacement of
point H with vertical displacement; a comparison between
FEM and X-ALE-FEM analyses.

Figure 20. Coining test with a horizontal and vertical interfaces; the normal stress �y contours of whole domain at
d = 0:5 cm; a comparison between FEM and X-ALE-FEM analyses.
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Figure 23. A plate in tension.

Figure 24. A plate in tension; the mesh con�gurations at
di�erent bottom displacements. (a-b) Lagrangian
formulation, (c-d) ALE formulation, (e-f) X-FEM
formulation, (g-h) X-ALE-FEM formulation.

the ALE analysis, in which the equal height of elements
is prescribed in the whole domain. The Laplacian
approach is used in the X-ALE-FEM analysis to reduce
the mesh distortion and produce a smooth mesh.
Figure 24 presents the deformed con�guration obtained
by four techniques, i.e. the Lagrangian approach, the
ALE, X-FEM and X-ALE-FEM methods, up to an
elongation of 3.2 cm for one quarter of the specimen.
The variations of normal stress, �y, along the vertical
symmetry plane are shown in Figure 25 at the half

Figure 25. A plate in tension; a comparison of normal
stress between the FEM, X-FEM and X-ALE-FEM
techniques; the stress �y distribution along vertical
symmetry plane.

and �nal stages of the tensile process for four di�erent
techniques. In Figure 26, a quantitative comparison
is performed between various methods by evolution of
the vertical reaction at di�erent vertical displacements.
The variation of dimensionless width (ratio of current
to initial width) at the necking section is illustrated
with elongation in Figure 27. Obviously, it can be
concluded that the proposed X-ALE-FEM method can
be successfully used to model large deformations in
elasto-plastic behavior.

CONCLUSION

In the present paper, a new computational technique
was presented for the modeling of moving boundaries
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Figure 26. A plate in tension; the variation of reaction
force with vertical displacement; a comparison between
FEM, X-FEM and X-ALE-FEM analyses.

Figure 27. A plate in tension; the dimensionless width at
the necking section versus the edge displacement; a
comparison between FEM, X-FEM and X-ALE-FEM
analyses.

in large plastic deformations based on an enriched
arbitrary Lagrangian-Eulerian �nite element method.
The X-FEM method was developed in the framework
of an arbitrary Lagrangian-Eulerian formulation for
the large deformation of solid mechanic problems by
implementation of the enrichment functions to approx-
imate the displacement �elds of elements located on
discontinuity due to di�erent material properties. The
X-FEM method was applied by performing a splitting
operator to separate the material (Lagrangian) phase
from the convective (Eulerian) phase. The Lagrangian
phase was carried out by partitioning the domain with

sub-quadrilaterals whose Gauss points were used for
integration of the domain of the elements. The ALE
governing equation was derived by substituting the
relationship between the material time derivative and
grid time derivative into the governing equations of
continuum mechanics. The analysis was carried out
according to the Lagrangian phase at each time step
until the required convergence was attained. The
Eulerian phase was then applied to keep the mesh
con�guration regular. In the Eulerian phase, the nodal
points were relocated arbitrarily, and the material
interface was independent of the FE mesh. A technique
was proposed to update the nodal values of the level
set and the natural coordinate of Gauss quadrature
points, which could be di�erent before and after the
mesh updating procedure. Furthermore, a technique
was applied to update the stress values from the old
Gauss points to the new ones based on the Godunov
stress updating scheme. Finally, the applicability of
the proposed X-ALE-FEM method was demonstrated
through several numerical examples of large defor-
mation processes including the coining problem with
horizontal and vertical moving boundaries and a tensile
plate with moving interface. The results are compared
with those of classical �nite element and extended
�nite element methods. It was shown that the X-
ALE-FEM technique can be used e�ciently to prevent
the grid from severe mesh distortion, and model the
large plasticity deformation in continuum mechanic
problems.
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