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Optimal Design of Geometrically
Nonlinear Space Trusses Using an

Adaptive Neuro-Fuzzy Inference System

E. Salajegheh1;�, J. Salajegheh1, S.M. Seyedpoor1 and M. Khatibinia1

Abstract. An e�cient methodology is proposed to optimize space trusses considering geometric
nonlinearity. The optimization task is performed by a continuous Particle Swarm Optimization (PSO).
Design variables are cross sectional areas of the trusses and their weights are also taken as the objective
function. Design constraints are de�ned to restrict nodal displacements and element stresses and
prevent the overall elastic instability of the structures during the optimization procedure. In order to
reduce the computational e�ort of the optimization process, an Adaptive Neuro Fuzzy Inference System
(ANFIS) is employed to approximate the nonlinear analysis of the structures instead of performing
via a time consuming Finite Element Analysis (FEA). The presented ANFIS is compared with a
Back Propagation Neural Network (BPNN) and appears to produce a better performance generality for
evaluating structure design values. Test example results demonstrate the computational advantages of the
suggested methodology for optimum design of geometrically nonlinear space trusses.

Keywords: Space truss; Geometric nonlinearity; Particle swarm optimization; Approximation concepts;
Adaptive neuro fuzzy inference system.

INTRODUCTION

Due to the fact that material cost is one of the major
factors in the construction of a structure, it is preferable
to reduce it by minimizing the weight of the structural
system. All of the methods used for minimizing the
weight intend to achieve an optimum design having
a set of design variables under certain design criteria.
A great development of structural optimization took
place in the early 60's when programming techniques
were used in the minimization of structure weight.
From then on, various general approaches have been
developed and adopted for structural optimization [1-
6]. Moreover, one of the main di�culties of structural
optimization methods is that they need a great number
of structural analyses to achieve an optimal solution.
This de�ciency may increase when nonlinear analysis
must be implemented. This inherent nature of op-
timization methods can impose much computational
e�ort on the process. Over the last years, some
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function approximation techniques, such as Sensitivity
Analysis (SA), Multiple Regression Analysis (MRA)
and Arti�cial Neural Networks (ANN), have been
employed to approximate structural analysis instead of
direct implementation [7-8]. However, the Adaptive
Neuro-Fuzzy Inference System (ANFIS), which has
been widely utilized for di�erent purposes, such as
prediction [9-12], knowledge discovery, medical decision
making and disease diagnosis has not been tested yet
for structural optimization. It is the �rst time that
ANFIS has been tested and its performance compared
with that of ANN in approximating nonlinear analysis
for the design optimization of space trusses.

In this study, a novel application of ANFIS is
incorporated into the design optimization of geomet-
rically nonlinear space trusses. The optimization is
carried out by a continuous Particle Swarm Optimiza-
tion (PSO). The cross sectional areas of the structures
are taken as design variables and the weights of trusses
are selected as the objective function. The constraints
involved here include limits on nodal displacements,
element stresses and the collapse load of the structures.
Some ANFIS models are built to predict the critical
design values of the structures instead of direct evalu-
ation by an accurate analysis. Thus, the optimization
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process can be performed using an approximate anal-
ysis estimated by ANFIS models. In order to assess
the e�ectiveness of the proposed methodology, some
benchmark space trusses are optimized. Numerical
results reveal the e�ciency of the suggested approach
for the optimal design of structures.

GEOMETRIC NONLINEAR ANALYSIS OF
SPACE TRUSSES

In the presence of large de
ections, the compatibility
equations (strain to displacement relationships) are not
linear and geometrical nonlinearity becomes important.
In such cases, although the strains are small and the
material behaves linearly, the response of the structure
becomes nonlinear [13].

In this study, a �nite element model, taking into
account the geometric nonlinearity of space trusses,
including large de
ection capabilities, is employed.
In this model, a 3-D truss element is used, where
the element is a uniaxial tension-compression element
with three degrees of freedom at each node. In this
case, since the axial strain is a nonlinear function of
the element displacements, the structure sti�ness is
dependent on unknown nodal displacements and axial
stresses. Obviously, the solution of the displacements
cannot be obtained in a single step. Instead, the
analysis is carried out by an incremental method
combined with some iterative equilibrium corrections
at every step. In this work, using the Newton-Raphson
method of solution, the following steps are used:

1. Form tangent sti�ness matrix of structure, Kt,
consisting of geometric sti�ness matrix, Kt1, and
initial stress matrix, K�, with the latest values of
nodal displacements and element stresses as [13]:

Kt = Kt1 + K� =
neX
i=1

Z
v

BT
nlEBnldv

+
neX
i=1

Z
v

dBT
nl

dU
�dv; (1)

where Bnl is the incremental strain-incremental
displacement matrix and E is the elasticity mod-
ulus. Also UT = fu1; v1; w1; u2; v2; w2g is the nodal
displacement vector of the truss element and � is
the element stress. To start the process in iteration
1 of load step 1, the linear sti�ness matrix is used,
assuming that the structure behaves linearly.

2. Solve the incremental displacement vector of the
structure as:

�� = K�1
t (�F +  ); (2)

where �F is part of the load vector to be applied at
the current increment (to be used only at the �rst
iteration of a load step) and  is the residual force
vector. Use zero values for  at the �rst iteration
of the �rst load step.

3. Add the incremental displacements, ��, to the total
displacement vector, �:

� = � + ��: (3)

4. Calculate the element strain based on the latest
estimate of the displacements.

5. Calculate the total element stress using the linear
elastic stress-strain relation:

� = E": (4)

6. Calculate the element internal force vector, Fi, as:

Fi =
Z
v

BT
nl�dv: (5)

Repeat steps 4 through 6 for all elements.
7. Calculate the residual force vector as:

 =
neX
i=1

Fi � Fe; (6)

where vector Fe contains the cumulative external
forces.

8. If the norm of  is less than a prescribed small
value, k k � CTOL, the current increment has
converged and, thus, go to step 9. Otherwise,
the current increment has not converged and so
the equilibrium correction should be applied by
repeating steps 1 through 8.

9. If all the load steps are done, stop. Otherwise, set
�F = incremental loads to be applied at the next
increment and repeat steps 1 through 9.

FORMULATION OF OPTIMIZATION
PROBLEM

In the optimal design problem of geometrically nonlin-
ear space trusses, the aim is to minimize the weight of
the truss under constraints on stresses, displacements
and ultimate load. This optimization problem can be
expressed as follows:

Minimize:

w(x1; � � � ; xn; � � � ; xng) =
ngX
n=1

xn
nmX
m=1


mlm: (7)

Subject to:
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�a � �u; (8)

�i � �all;i; i = 1; 2; � � � ; ne; (9)

�j � �all;j ; j = 1; 2; � � � ; nj; (10)

where xn, 
m and lm are the cross sectional area of
members belonging to group n, the weight density
and the length of the mth element in this group,
respectively; ng and nm are the total number of groups
in the structure and the number of members in group
n, respectively; ne and nj are the total number of
the elements and nodes in the truss, respectively; �a
and �u are the applied and the ultimate load factors,
respectively; �i and �j are stress in the ith element and
displacement of the jth node, respectively. Also, �all;i
and �all;j are allowable stress in the ith member and
allowable de
ection of the jth node, respectively.

It should be noted that Equation 8 is de�ned to
prevent the overall instability of the structure during
the optimization process. In the optimum design
of space trusses, considering nonlinearity e�ects, the
allowable stress for a tension member is simply taken
as the yield stress of steel and the allowable stress for a
compression member is obtained according to the AISC
code [14] as follows:

�all = �2E=�2 for � � Cc;
�all = �y(1� 0:5�2=C2

c ) for � < Cc; (11)

where E, �y and � are the modulus of elasticity, the
yield stress of steel and the slenderness ratio, respec-
tively. Also, in the above equation, Cc =

p
2�2E=�y is

the slenderness ratio dividing the elastic and inelastic
buckling regions.

Optimization Method

There are many techniques that can be applied to solve
the optimization problem formulated above. Among
the solution techniques available, Particle Swarm Opti-
mization (PSO) proved to be robust, e�ective and easy
to apply [6,15]. The particle swarm optimization has
been inspired by the social behavior of animals such
as �sh schooling, insect swarming and bird 
ocking.
It involves a number of particles, which are initialized
randomly in the search space of an objective function.
These particles are referred to as a swarm. Each
particle of the swarm represents a potential solution
of the optimization problem. The particles 
y through
the search space and their positions are updated based
on the best positions of individual particles in each
iteration. The objective function is evaluated for
each particle and the �tness values of particles are
obtained to determine which position in the search

space is the best. This is achieved by transforming
the constrained design problem into an unconstrained
one by employing a penalty function method. In
this study, the formulation proposed by Rajeev and
Krishnamoorthy [16] is used to calculate the violation
of constraints. This formulation for design constraints
given in Equations 8 to 10 is expressed as follows:

g� = max
�
�a
�u
� 1; 0

�
; (12)

g� =
neX
i=1

max
�

�i
�i;all

� 1; 0
�
; (13)

g� =
njX
j=1

max
�

�j
�j;all

� 1; 0
�
: (14)

Therefore, the unconstrained form of the problem or
�tness function, �, can be de�ned as:

� = w[1 + �r(g� + g� + g�)]; (15)

where w and �r are the objective function given in
Equation 7 and the coe�cient of penalty function,
respectively. After calculating the �tness function,
the particle position and velocity are updated by the
following equation in each iteration:

V k+1
i = �kV ki + c1r1(P ki �Xk

i ) + c2r2(P kg �Xk
i );

(16)

Xk+1
i = Xk

i + V k+1
i ; (17)

where Xk
i and V ki represent the position and the

velocity vectors of the ith particle in the kth iteration,
respectively; P ki is the best previous position of the ith
particle and P kg is the best global position among all
the particles in the swarm; r1 and r2 are two uniform
random sequences generated from interval [0,1]; c1 and
c2 are the cognitive and social scaling parameters,
respectively, and �k is the inertia weight used to
discount the previous velocity of the particle preserved.
The velocity vector, Vi, is limited to a maximum value,
V max
i , and a minimum value, V min

i .

APPROXIMATION OF NONLINEAR
ANALYSIS USING ANFIS

The Adaptive Neuro-Fuzzy Inference System (ANFIS)
represents a useful neural network approach for the
solution of function approximation problems. In this
study, ANFIS is utilized to approximate the geomet-
rically nonlinear analysis of space trusses. In this
manner, design values, such as nodal displacements,
element stresses and ultimate load factors of the struc-
tures, can be predicted using some ANFIS models.
So, lengthy nonlinear analysis is not needed to be
performed during the optimization process.
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ANFIS Structure

The ANFIS is a multilayer feed-forward network, which
uses neural network learning algorithms and fuzzy
reasoning to map inputs into an output. Indeed, it
is a Fuzzy Inference System (FIS) implemented in the
framework of adaptive neural networks. For simplicity,
a typical ANFIS architecture with only two inputs
leading to four rules and one output for the �rst
order Sugeno fuzzy model is expressed [17,18]. It
is also assumed that each input has two associated
Membership Functions (MFs). It is evident that this
architecture can be easily generalized to our preferred
dimensions. For a �rst-order Sugeno fuzzy model, a
typical rule set with four fuzzy if-then rules can be
expressed as:

Rule 1: if In1 is A1 and In2 is B1

then f11 = p11In1 + q11In2 + r11;

Rule 2: if In1 is A1 and In2 is B2

then f12 = p12In1 + q12In2 + r12;

Rule 3: if In1 is A2 and In2 is B1

then f21 = p21In1 + q21In2 + r21;

Rule 4: if In1 is A2 and In2 is B2

then f22 = p22In1 + q22In2 + r22; (18)

where A1, A2, B1 and B2 are labels for representing
membership functions for the inputs, In1 and In2,
respectively. Also, pij , qij and rij(i; j = 1; 2) are
parameters of the output membership functions.

As can be seen from Figure 1, the architecture of
a typical ANFIS consists of �ve layers, which perform
di�erent actions in the ANFIS and are detailed below.

Layer 1
All the nodes in this layer are adaptive nodes. They
generate membership grades of the inputs. The outputs
of this layer are given by:

O1
Ai = �Ai(In1); i = 1; 2;

O1
Bj = �Bj(In2); j = 1; 2; (19)

where In1 and In2 are inputs and Ai and Bj stand for
appropriate MFs, which can be triangular, trapezoidal,
Gaussian functions or other shapes. In the current
study, the Gaussian MFs de�ned below are utilized:

�Ai(In1; �i; ci)=exp
�
� (In1�ci)2

2�2
i

�
; i = 1; 2;

�Bj (In2; �j ; cj)=exp

 
� (In1�cj)2

2�2
j

!
; j = 1; 2;

(20)

where f�i; cig and f�j ; cjg are the parameters of the
MFs, governing the Gaussian functions. The param-
eters in this layer are usually referred to as premise
parameters.

Layer 2
The nodes in this layer are �xed nodes labeled

Q
indicating that they perform as a simple multiplier.
The outputs of this layer are represented as:

O2
ij=Wij=�Ai(In1)�Bj (In2); i; j = 1; 2: (21)

Layer 3
The nodes in this layer are also �xed nodes labeled N
indicating that they play a normalization role in the
network.

Figure 1. A typical ANFIS architecture for a two-input Sugeno model with four rules.
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The outputs of this layer can be represented as:

O3
ij = W ij =

Wij
2P
i=1

2P
j=1

Wij

; i; j = 1; 2; (22)

which are called normalized �ring strengths.

Layer 4
Each node in this layer is an adaptive node whose
output is simply the product of the normalized �ring
strength and a �rst-order polynomial (for a �rst order
Sugeno model). Thus, the outputs of this layer are
given by:

O4
ij = W ijfij = W ij(pijIn1 + qijIn2 + rij);

i; j = 1; 2: (23)

Parameters in this layer are referred to as consequent
parameters.

Layer 5
The single node in this layer is a �xed node labeled

P
,

which computes the overall output as the summation
of all incoming signals, i.e.:

Out = O5 =
2X
i=1

2X
j=1

W ijfij

=
2X
i=1

2X
j=1

W ij(pijIn1 + qijIn2 + rij)

=
2X
i=1

2X
j=1

[(W ijpij)In1+(W ijqij)In2+(W ijrij)];
(24)

where the overall output, \Out", is a linear combina-
tion of the consequent parameters when the values of
the premise parameters are �xed.

It can be observed that the ANFIS architecture
has two adaptive layers: Layers 1 and 4. Layer 1 has
modi�able parameters, f�i; cig and f�j ; cjg, related to
the input MFs. Layer 4 has modi�able parameters,
fpij ; qij ; rijg, pertaining to the �rst-order polynomial.
The task of the learning algorithm for this ANFIS
architecture is to tune all the modi�able parameters
to make the ANFIS output match the training data.
Learning or adjusting these modi�able parameters is a
two-step process, which is known as the hybrid learning
algorithm. In the forward pass of the hybrid learning
algorithm, the input membership function parameters
are hold �xed, node outputs go forward until Layer 4
and the output membership function parameters are
identi�ed by the least squares method. In the back-
ward pass, the output membership function parameters

are held �xed, the error signals propagate backward
and the input membership function parameters are
updated by the gradient descent method. The detailed
algorithm and mathematical background of the hybrid
learning algorithm can be found in [19].

In this study, for space truss problems, the cross
sectional areas of the structures are selected as ANFIS
inputs and nodal displacements; element stresses and
the ultimate load factor can be separately considered
as ANFIS output. For each input, two Gaussian
membership functions are adopted and the maximum
number of epochs in the training mode is set to 250.

TEST EXAMPLES

In order to assess the e�ectiveness of the proposed
methodology, three illustrative truss examples with
�xed geometries are optimized and the numerical re-
sults are compared with those reported in the litera-
ture. The optimization of the �rst example is described
in detail, whereas more abbreviations are involved in
the two other test examples. For all trusses, the
elasticity modulus, yield stress and weight density are
considered as E = 210 kN/mm2, Fy = 240 N/mm2

and 
 = 7850 � 10�9 kg/mm3, respectively. With the
mentioned conditions, the optimum solution is achieved
for two cases:

a) Optimization using FEA,

b) Optimization using an approximate analysis via
ANFIS.

The speci�cations of PSO are given in Table 1. The
optimization process is performed by a coreTM 2
Duo 2GHz CPU and the time of all computations is
evaluated in clock time.

One-Hundred-Twenty-Bar Space Truss

The space truss shown in Figure 2 is considered as
the �rst example. It has 37 joints and 120 members,
which are collected into seven di�erent groups. The
grouping of members is shown in the �gure. The truss
is subjected to a vertical loading of 60 kN at joint 1,
30 kN at joints 2-13 and 10 kN at joints 14-37 acting
in the negative direction of the z-axis. The vertical

Table 1. The speci�cations of PSO method.

Swarm size 30

Cognitive parameter 2

Social parameter 2

Minimum of inertia weight 0.01

Maximum of inertia weight 0.90

Maximum number of iterations 100
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Figure 2. One-hundred-twenty-bar space truss.

displacement of all joints is limited to 10 mm. The
minimum size constraints are taken as 200 mm2.

Training and Testing the ANFIS Models
In order to select data for training the ANFIS models,
for predicting the critical design values of the structure,
seven cross sectional areas of the truss are selected
as inputs, and the vertical displacements of joints 1
and 2 and the stresses of elements 25, 37 and 85,
which govern on the design procedure, are taken as the
outputs. For this meaning, a total number of 175 struc-
tures are randomly generated and the corresponding
displacements and stresses of all generated trusses are
evaluated using a conventional �nite element analysis.
Since each nonlinear analysis of the selected truss
elapses after approximately 13 seconds; this process
takes about 2275 seconds. Thereafter, truss samples
are randomly split into two sets with 140 samples for
training and 35 samples for testing, respectively. Then,
with the 140 data sets, �ve ANFIS models are trained
to approximate the mentioned design quantities.

In order to validate the trained ANFIS models
and compare the results, a Back Propagation Neural
Network (BPNN) is also employed to anticipate the
design values of the truss. The BPNN uses design
variables of the truss as the input vector and the
mentioned design quantities as the output vector. The
maximum number of epochs for BPNN training is also
set to 2000 epochs. The Absolute Percentage Errors
(APE) of the design values obtained by ANFIS and
BPNN in the testing mode are shown in Figures 3
to 7. For further comparison, Relative Root-Mean-
Squared Error (RRMSE), Mean Absolute Percentage
Error (MAPE) and the absolute fraction of variance
(R2), which arose during testing in ANFIS and BPNN,
are also calculated by using the following equations:

RRMSE =

vuuuuut 1
nt�1

ntP
i=1

(ai � pi)2

1
nt

ntP
i=1

(ai)2
; (25)
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Figure 3. Absolute percentage errors of displacement of
joint 1.

Figure 4. Absolute percentage errors of displacement of
joint 2.

Figure 5. Absolute percentage errors of stress of
element 25.

MAPE =
1
nt

ntX
i=1

100�
����ai � piai

���� ; (26)

R2 = 1�
0BB@

ntP
i=1

(ai � pi)2

ntP
i=1

p2
i

1CCA ; (27)

where a is actual value, p is predicted value and nt is
the number of testing samples. The smaller RRMSE
and MAPE and larger R2 mean a better performance

Figure 6. Absolute percentage errors of stress of
element 37.

Figure 7. Absolute percentage errors of stress of
element 85.

generality. The statistical parameters for design values
of the structure found from testing in ANFIS and
BPNN are compared in Table 2. All of the statistical
values in this table demonstrate that the proposed
ANFIS achieves a better performance than the BPNN.
Therefore, ANFIS is a good choice for predicting the
displacements and stresses of the truss. It is also
observed that, besides the high-speed computing of the
ANFIS model in comparison with the BPNN, the main
advantage of the ANFIS is that its solution stability
is high while BPNN exhibits di�erent performances
in each run. Nevertheless, the main disadvantage of
ANFIS is to have only one output.

Optimization Results
The optimal solution is achieved by incorporating the
trained ANFIS models into the optimization procedure
and the results are listed in Table 3. The minimum
weight sought is 7,194 kg while the value found in [20]
is 7,587 kg. It is impressive to mention that the
optimization takes about 11 seconds.

The optimal structure is also analyzed by an
accurate �nite element method and the percentage
errors between the accurate design values and those
predicted using ANFIS models are given in Table 4. It
can be observed that the errors are acceptable.
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Table 2. The statistical values found from testing in ANFIS and BPNN for 120-bar truss.

Statistical Joint 1 Joint 2 Element 25 Element 37 Element 85

Parameters BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS

RRMSE 0.089 0.075 0.059 0.045 0.014 0.009 0.009 0.008 0.016 0.016

MAPE 7.64 7.43 4.913 3.99 2.370 1.26 1.501 0.803 2.87 1.322

R2 0.992 0.994 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999

Table 3. Optimization results for 120-bar space truss.

Design Variables Ref [20] (mm2) Present Study (mm2)

FEA ANFIS

A1 1750 906 862.

A2 4,556 4,710 4,670

A3 2,545 1,890 1,890

A4 844. 733 862.

A5 2,230 2,600 2,640

A6 1,596 1,171 862.

A7 390. 862 862.

Optimal weight (kg) 7,587 7,419 7,194

Maximum violated constraint - 0.00 0.041

Optimization time (min.) - 650 0.18

Required time for data generation (min.) - - 38.0

Training time (min.) - - 3.60

Overall time (min.) - 650 41.78

Table 4. The errors between design values of approximate analysis and FEA.

Design Values FEA ANFIS Error (%)

Displacement of joint 1 (mm) 9.34 8.66 7.28

Displacement of joint 2 (mm) 10.41 9.91 4.77

Stress of element 25 (Mpa) 30.57 30.69 0.42

Stress of element 37 (Mpa) 28.96 29.11 0.54

Stress of element 85 (Mpa) 51.58 52.19 1.18

Fifty-Six-Bar Space Truss

The space truss shown in Figure 8 is considered as
the second example. The members are collected into
four di�erent groups as shown in the �gure. The
external loading is taken as 45.5 kN in the x-direction
at joints 1, 2, 5, 7, 9, 11, 13 and 15, and 91 kN in the
negative z-direction at joints 1, 2, 3 and 4. The vertical
displacements of all joints are restricted to 32 mm.
The lower bounds of 500 mm2 are used for these area
variables.

In this example, six ANFIS models are built to
approximate the critical design values, including the
horizontal displacements of joints 1 and 2 in an x-

direction and the stresses of elements 24, 32, 53 and
56, respectively. For this meaning, a total number of
200 structures are randomly generated. Then, samples
are randomly divided into two sets with 160 samples
for training and 40 samples for testing, respectively.
The statistical characteristics for the mentioned design
values of the structure found from testing in ANFIS
and BPNN are compared in Table 5. All of the statis-
tical values in this table demonstrate that the proposed
ANFIS achieves a good performance generality.

Optimization Results
The truss is optimized for mentioned conditions and
the results are listed in Table 6. The optimal weight
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Table 5. The statistical values found from testing in ANFIS and BPNN for 56-bar truss.

Statistical Joint 1 Joint 2 Element 24 Element 32 Element 53 Element 56

Parameters BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS

RRMSE 0.016 0.014 0.020 0.020 0.065 0.018 0.013 0.012 0.050 0.043 0.064 0.038

MAPE 1.72 1.61 1.62 1.37 4.19 1.45 0.89 0.74 5.93 5.35 6.92 6.16

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.997 0.998 0.998 0.998

Table 6. Optimization results for 56-bar space truss.

Design Variables Ref [20] (mm2) Present Study (mm2)

FEA ANFIS

A1 744 500 500

A2 11,102 11,300 11,300

A3 500 500 500

A4 4,646 4,827 4,492

Optimal weight (kg) 13,577 13,587 13,441

Maximum violated constraint - 0.00 0.024

Optimization time (min.) - 455 0.170

Required time for data generation (min.) - - 43.33

Training time (min.) - - 3.00

Overall time (min.) - 455 46.50

Table 7. The errors between design values of approximate analysis and FEA.

Design Values FEA ANFIS Error (%)

Displacement of Joint 1 (mm) 31.22 30.00 3.62

Displacement of Joint 2 (mm) 32.78 29.72 9.38

Stress of element 24 (Mpa) 61.04 59.35 2.77

Stress of element 32 (Mpa) 46.57 46.93 0.78

Stress of element 53 (Mpa) 73.12 69.88 4.43

Stress of element 56 (Mpa) 62.07 66.26 6.75

obtained in this study is 13,441 kg, while the weight
found in [20] is 13,577 kg.

The errors between design values of the optimum
solution predicted using ANFIS and those evaluated by
an accurate analysis are also given in Table 7. It can
be observed that the errors are small.

Fifty-Two-Bar Space Truss

The space truss of Figure 9 is considered as the third
example. The joints are subjected to vertical loads in
the negative direction of the z-axis, which are 150 kN at
joints 6-13. The vertical displacements of all joints are
restricted to 10 mm. The structure has 52 members,

which are collected into eight groups, as shown in
Figure 9. The lower bounds of 200 mm2 are used for
these area variables.

For this example, since element stresses are gov-
erned on the design procedure, only the stresses of
elements 21, 29, 30, 37 and 45 are approximated
by the ANFIS. For this meaning, a total number of
200 sample structures are randomly generated. Then,
samples are randomly divided into two sets; with 160
samples for training and the remaining samples for
testing, respectively. The statistical characteristics for
the mentioned design values of the structure found
from testing in ANFIS and BPNN are compared in
Table 8. All of the statistical values in the table
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Table 8. The statistical values found from testing in ANFIS and BPNN for 52-bar truss.

Statistical Element 21 Element 29 Element 30 Element 37 Element 45

Parameters BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS BPNN ANFIS

RRMSE 0.038 0.027 0.031 0.025 0.023 0.022 0.037 0.037 0.037 0.037

MAPE 3.59 2.15 4.87 2.32 2.68 2.26 3.40 2.07 3.40 2.07

R2 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.998 0.999

Figure 8. Fifty-six-bar space truss.

reveal the good performance generality of the proposed
ANFIS.

Optimization Results
The truss optimization results achieved by FEA and
ANFIS are listed in Table 9. It is impressive to note
that the overall computing time of the approximate
optimization procedure is 0.07 times that required
through FEA.

Optimum structures obtained using ANFIS are
analyzed by FEA and the stress and displacement
errors between them are given in Table 10. It can be
observed that the errors are small.

CONCLUSION

An e�cient methodology is presented for the optimiza-
tion of geometrically nonlinear space trusses employing
the Adaptive-Neuro Fuzzy Inference System (ANFIS)

Figure 9. Fifty-two-bar space truss.

for analysis approximation. The optimization algo-
rithm used in this investigation is a Particle Swarm
Optimization (PSO). In order to reduce the computa-
tional e�ort of the optimization process involving many
nonlinear structural analyses, some ANFIS models are
built to predict the nodal displacements and element
stresses of trusses instead of computing by FEA. The
present ANFIS models are compared with a Back
Propagation Neural Network (BPNN) and it is proved
to have a better performance generality than BPNN.
Some illustrative test examples are considered to assess
the e�ectiveness of the proposed method. The numer-
ical results demonstrate the computational advantages
of the suggested methodology when compared with
those reported in the literature. It is also impressive to
mention that the overall computing time including data
generation, ANFIS modeling and optimization tasks is
much lower than that needed by optimization using
FEA while the errors are small.
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Table 9. Optimization results for 52-bar space truss.

Design Variables Present Study (mm2)
FEA ANFIS

A1 200 200

A2 200 200

A3 800 939

A4 800 800

A5 2,866 2,609

A6 2,481 2,463

A7 3,732 3,786

A8 3,758 3,770

Optimal weight (kg) 8,672 8,615

Maximum violated constraint 0.00 0.00

Optimization time (min.) 650 0.180

Required time for data generation (min.) - 43.33

Training time (min.) - 2.00

Overall time (min.) 650 45.51

Table 10. The errors between design values of approximate analysis and FEA.

Design Values FEA ANFIS Error (%) Allowable Stress

Stress of element 21 (Mpa) 37.04 34.33 7.42 37.83

Stress of element 29 (Mpa) 35.95 33.62 6.55 39.84

Stress of element 30 (Mpa) 38.97 39.33 1.42 39.84

Stress of element 37 (Mpa) 25.88 26.28 0.76 26.34

Stress of element 45 (Mpa) 25.15 26.18 3.76 26.19
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