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Improving Penalty Functions
for Structural Optimization

A. Joghataie1;� and M. Takalloozadeh1

Abstract. New penalty functions, which have better convergence properties, as compared to the
commonly used exterior and interior penalty functions, have been proposed in this paper. The convergence
behavior and accuracy of ordinary penalty functions depend on the selection of appropriate penalty
parameters. The optimization of ordinary penalty functions is accomplished after several rounds of
optimization where, at each round a di�erent but �xed value of penalty parameter is used. While some
useful hints and rules for the selection of suitable penalty parameter values have been provided by di�erent
authors, the objective of this paper has been to improve this procedure by including the penalty parameter
in the design vector, so that it can be modi�ed during the optimization, automatically, in order to improve
the convergence characteristics. This can also help accomplish optimization in only one round, which is
of considerable importance when it is desired to solve a constrained problem by using genetic algorithms.
The proof of convergence to the optimum solution of the proposed functions is also included in the paper.
Ten-bar and three-bar truss examples are used for illustration through which the convergence of ordinary
and new functions are evaluated and compared. The results show that the new penalty functions can
outperform the ordinary functions, especially in combination with genetic algorithms.
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INTRODUCTION

The general form of a minimization problem with
inequality and equality constraints is as follows:

�nd x; (1a)

Minimize f(x); (1b)

subject to:

gi(x) � 0; i = 1; 2; � � � ;m; (1c)

and:

hj(x) = 0; j = 1; 2; � � � ; p; (1d)

where x = n-dimensional vector of design variables,
f(x) = objective function to be minimized, and g and h
= the inequality and equality constraints, respectively;
hence there are m inequality and p equality constraints.
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However, in the majority of structural optimization
problems, the equality constraints constitute a part of
or the whole equilibrium equation and, so, are excluded
from the above formulation and hence are treated
implicitly.

Solving constrained optimization problems is gen-
erally cumbersome. While there are methods such
as the feasible directions method [1,2] that solves
the constrained problems directly, the main strategy
behind the penalty methods is to change the form
of the above constrained optimization problem to an
unconstrained form so that unconstrained optimization
techniques can be applied. To this end, a global
objective function,  , called the penalty function,
is de�ned, which includes both the main objective
function and all the constraints.  is so de�ned that,
through its optimization by unconstrained optimiza-
tion techniques, both the constraints are satis�ed and
also the objective function is minimized.

Penalty function methods are the most popular
constraint handling methods among users [3]. Two
main branches of penalty method have been proposed
in the literature: 1) Exterior, 2) Interior, which is also
called the barrier method. The general formulation of
these methods is as follows.



Improving Penalty Functions for Structural Optimization 309

Exterior Penalty Method

The widely used form of  in the exterior penalty
method is:

 = e(x; r) = f(x)

+re
�X

< gi(x) >2 +
X

hj(x)2
�
;

re !1; (2a)

where:

< gi(x) >= max(0; gi(x)); i = 1; 2; � � � ;m; (2b)

and re is a parameter, which is modi�ed at the begin-
ning of each round of optimization. Each optimization
round is de�ned here as a complete optimization of
 e(x; r) for a �xed value of re until the convergence is
achieved. The optimum point, x�, at the end of each
round serves as the starting point, x1, of the next round
of optimization with a larger re. Figure 1 shows the
general optimization procedure of the exterior penalty
method for problems with inequality and equality
constraints [2].

The selection of appropriate re values is vital for
faster convergence and more precision [4]. In some
cases, the user might specify the value of re at the
end of each optimization round. This technique is very
interactive and time consuming and is not generally
preferred. Another dominant technique is to de�ne a
function that automatically determines the re value at
the beginning of a new round of optimization. Denoting
the optimization steps by k, then k = 1 at the onset
of optimization and re;k = re;1. The selection of an
appropriate re;1 plays a key role in the convergence

Figure 1. Flow chart for exterior penalty function
method.

behavior of the method. Haftka and Gurdal [4] have
proposed to use:

re;1 =
16f(x1)

n
; (2c)

where x1 is the initial value of x. They have also
suggested that re be updated according to:

re;i+1 = cre;i; (2d)

where for most structural problems a value of:

c = 5; (2e)

has been found satisfactory.
The third alternative to determine appropriate

re is to use the so called intelligent and adap-
tive techniques such as fuzzy logic and neural net-
works [5,6].

Interior Penalty Method

The original form of the interior penalty function, in,
is as follows [1]:

 in(x; r) =f(x)� rin
�X 1

gi(x)
+
X 1

hj(x)

�
;

rin ! 0; (3a)

where rin reduces from a high value to 0 gradually.
Rao [2] has proposed the following function for

selecting rin at the start of the optimization procedure:

r1 = (0:1 � 1)� f(x1)
�P 1

g(x1)
; (3b)

where x1 is the initial point in the feasible region.
The optimization procedure is similar to the exterior
penalty function method except that rin reduces to
0 gradually. Figure 2 summarizes the optimization
procedure of the interior penalty method. Here, the
reduction follows [2]:

rini+1 = c� rini ; (3c)

where c is a coe�cient less than 1.
Hence, ordinary penalty functions generally re-

quire the value of some coe�cients to be speci�ed at the
beginning of optimization. However, these coe�cients
usually have no clear physical meaning. Consequently,
it is very di�cult to select appropriate values for these
coe�cients even through experience [7].

Besides the classical nonlinear optimization meth-
ods, smart computational techniques, especially Ge-
netic Algorithms, have been applied to �nd the min-
imum of the response surface,  . To this end, some
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Figure 2. Flow chart for interior penalty function
method.

special penalty functions such as the Death Penalty,
Static and Dynamic Penalty and Maximum-violation
Penalty methods have also been introduced and dis-
cussed in the literature [8-11].

In this paper, a new technique has been proposed
for the determination of suitable re and rin values,
where they have been treated as design variables
and modi�ed automatically through the optimization
procedure. To this end, new penalty functions have
been proposed for the interior and exterior penalty
approaches. The new functions have been used in
the optimization of the 10 and 3 bar truss benchmark
problems [4] using the steepest descent method. Also,
to assess the e�ciency of the functions in combination
with GA methods, the problems have been solved using
GA too.

NEW PENALTY FUNCTIONS

Two new penalty functions are introduced with their
proof of convergence: 1) New exterior penalty function
and 2) New interior penalty function.

New Exterior Penalty Function

The function is as follows:

 0e(x; r0e) =f(x) + r0e
�X

< gi(x) >2

+
X

hj(x)2 ) + u(r0e); (4a)

where:

< gi(x) >= max(0; gi(x)); i = 1; 2; � � � ;m; (4b)

and r0e and u(r0e) have the following properties:

r0e > 0; (4c)

u(r0e) � 0; 8r0e � 0; (4d)

lim
r0e!1

u(r0e) = 0: (4e)

Also, u(r0e) is monotonically decreasing with r0e, that
is:

if r0e1 � r0e2 then u(r0e1) � u(r0e2): (4f)

Hence, it is expected that the penalty function is
minimized gradually with the advancement of the op-
timization, when r0e increases towards very high values,
forcing the constraints to be satis�ed and u(r0e)reduce
to 0. Any function satisfying the above criteria could
be used for u(r0e). In this paper, the following simple
function has been found useful:

u(r0e) =
�e
r02e
; (5)

where �e is a constant, the designer should specify. The
general rule is that a larger �e should be selected for
more accuracy.

A suitable set of convergence criteria is:

kxk � xk�1k � ": (6)

For accuracy, where k�k is the length of vector � and
" is a small positive number speci�ed by the designer.

Proof of Convergence
Theorem
The minimization of the new  0 function provides
the optimal solution, whether the answer to the con-
strained optimization problem is a point, x�, inside the
feasible region or on the feasible surface, and it never
provides an answer outside the feasible region.

Proof
Assuming that f , gi, i = 1; 2; � � � ;m and hj , j =
1; 2; � � � ; p are continuous, that an optimum solution
exists for the given problem and, also, that the opti-
mum of  0 is point x0 inside the feasible region, then:X

< gi(x0) >2 +
X

hj(x0)2 = 0; (7a)

)  0(x0; r0e) = f(x0) + 0 +
�e
r02e
: (7b)

But f and �e
r02e are independent, so,  0 is minimized

when both these functions are minimized indepen-
dently. The minimum of ( �er02e ) is zero when r0�e ! +1
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and the minimum of f inside the feasible region is
obtained for x = x�, hence x0 = x�.

Now, assume that x0, the optimal answer to  0, is
outside the feasible region. Then:

 0(x0; r0e) = f(x0) + r0e

 X
< gi(x0) >2

+
X

hj(x0)2

!
+
�e
r02e

; (8a)

 0 is a function of r0e. Its optimum is obtained by
putting its �rst derivative equal to zero:

@ 0
@r0e

= 0)X
< gi(x0) >2

+
X

hj(x0)2 � 2�e
r03e

= 0: (8b)

Then, solving for r0e:

r0�e =
�

2�eP
< gi(x0) >2 +

P
hj(x0)2

� 1
3

; (8c)

substituting r0e in Equation 8a,

)  0�(x0; r0e) = f(x0)

+
�

2�eP
< gi(x0) >2 +

P
hj(x0)2

� 1
3

�X
< gi(x0) >2 +

X
hj(x0)2

�
+

�e�
2�eP

<gi(x0)>2+
P
hj(x0)2

� 2
3
; (8d)

)  0�(x0; r0e) = f(x0)

+
�
(2�e)

1
3 +

��e
4

� 1
3
�

�X
< gi(x0) >2 +

X
hj(x0)2

� 2
3
: (8e)

If �e is assigned a su�ciently large value, so that the
second term in Equation 8e is signi�cantly larger than
f(x0), then the answer x0 tends to be a point which is
�rstly on the constraints surface so that:X

< gi(x0) >2 +
X

hj(x0)2 = 0; (8f)

and, secondly, for which f(x0) is minimized; hence, x0
is the solution to the original constrained optimization
problem of the set of Equations 1.

New Interior Penalty Function

The new penalty function is de�ned as:

 0in(x; rin) =f(x) + rin

 X 1
gi(x)

+ :

X 1
hj(x)

!
+ u(rin);

rin ! 0; (9a)

where the following function is proposed for u(rin):

u(rin) = �inr2
in; (9b)

where more accuracy is obtained by taking smaller
values of �in. The proof of convergence is similar to
that of the new exterior penalty method.

EXAMPLE PROBLEMS

The results of application of the old and new ex-
terior and interior penalty functions in conjunction
with the steepest descent method are reported in this
section.

Ten-bar Truss

The 10 bar truss benchmark problem, as shown in
Figure 3a, which has been previously studied by
other authors [4], has been optimized using both
old and new penalty functions, and the results are
compared.

It has been desired to minimize the weight of the
truss (W ) as the objective function by changing x = the
vector of cross sectional areas of the members, subject
to stress constraints and minimum cross sectional area
of 6:452 � 10�5 m2 (0.1 in2) for all the members.
The maximum allowable stress has been the same in
compression and tension equal to 172375 kPa, for all
the members except bar 9 for which the allowable
stress has been 517125 kPa [4]. The density and
elastic modulus of the material have been assumed
2768 kg/m3 and 6:895 � 107 kPa, respectively. The
optimization problem can be formulated as:

Minimize:

W (x) = weight = sum over weight of 10 bars; (10a)

subject to:

�i(x)� 172375 � 0; i = 1; 2; � � � ; 8; 10;
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Figure 3. Truss problems.

��i(x)� 172375 � 0; i = 1; 2; � � � ; 8; 10;

�9(x)� 517125 � 0;

��9(x)� 517125 � 0;

�xi + 6:452� 10�5 � 0; i = 1; 2; :::; 10: (10b)

Using the allowable stress design method, the optimum
weight for this truss has been obtained as 680 gN [4],
where g = 9:81 m/s2 is the gravitational acceleration.
The cross sectional areas have been:

x = [50:97 0:65 52:26 25:16 0:65 0:65

37:42 35:55 23:74 0:90]� 10�4 m2: (11)

In the following sections, the old and new exterior
and interior penalty functions for this example problem
have been optimized by the steepest descent method.
Next, in order to demonstrate the advantages of the
new functions when combined with GA, the old and
new exterior penalty functions have been solved by GA
and a comparison has been made.

Optimization by Old and New Exterior
Penalty Functions
The old and new exterior penalty functions have been
de�ned as:

 (x; re) = 2768�
 

9:15�X6

1
xi+9:15

p
2
X10

7
xi

!
+re�

 X8

1
<
j�ij � 172375

1723:75
>2

+<
j�9j � 517125

5171:25
>2 +<

j�10j�172375
1723:75

>2

+
X10

1
<
xi�6:452
0:06452

>2

!
; (12a)

and:

 0(x; r0e) = 2768�
 

9:15�X6

1
xi + 9:15

p
2
X10

7
xi

!
+ r0e �

 X8

1
<
j�ij � 172375

1723:75
>2

+ <
j�9j � 517125

5171:25
>2

+ <
j�10j � 172375

1723:75
>2

+
X10

1
<
xi � 6:452

0:06452
>2

!
+
�e
r02e

; (12b)

respectively. For both cases, minimization by the steep-
est descent method has been utilized. The gradient
of the exterior penalty function has been calculated
numerically by calculating the change in  because of
a small change � in the ith design parameter. Taking
� = 0:001 in2, the slope of  with respect to the ith
parameter can be calculated as follows:

@ 
@xi

=
 (x1; � � � ; xi�1; xi+0:001; xi+1; � � � ; xn)� (x)

0:001
:

(12c)

Also, re has been increased after each complete round
of optimization according to Equations 2d and 2e:

rei+1 = 5rei ; (12d)

where i represents the ith round of optimization.
The result of minimization is shown in Figures 4a

and 5a, where the weight of the truss and re are plotted
as functions of Ns= number of steps of minimization
by the steepest descent method. As can be seen, after
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Figure 4. Convergence to �nal solution using old and
new exterior penalty functions.

6 rounds of changing re, which are comprised of a
total number of 5000 steps of movement in the steepest
descent directions (Ns=5000), the minimum weight,
design vector and re have been:

W �e = 697:36gN; (12e)

x�e = [50:32 2:45 54:00 24:32 3:94 1:74

39:29 34:19 25:81 2:84]� 10�4 m2; (12f)

re = 209820: (12g)

After Ns = 4000 steps, the increase in re has not
provided much improvement and the reduction in
weight after 3700 steps has been just 2.5%.

To solve the problem, by using the new exterior
penalty function, the gradient of the new penalty
function has also been calculated from Equation 12c
by  0 replacing  . Also, r0e has been considered as
an additional variable. The result of using the new
penalty function (Relations 4a to 4f) has been shown
in Figures 4a and 5a. In this case,

Figure 5. History of change in response surface factor for
the ordinary and new exterior penalty functions.

�e = 1000; (13a)

has been used in Equation 5 and r0e has been changed
as a design variable, in order to help minimize the
weight. The convergence of the solution has been
much smoother and monotonic in the case of the new
function. After 2260 steps, the weight, design vector
and r0e have been:

W 0�e = 681:1 gN; (13b)

x0�e = [48:84 2:19 53:81 23:23 1:16 2:26

39:55 32:71 22:00 3:10]� 10�4 m2; (13c)

r0e = 67:03: (13d)

The new function has been more successful than the
old exterior penalty function. Referring to Figure 4,
it is noteworthy that the curve of the new penalty
function is always below the curve of the ordinary
penalty function. Hence, the result has always been
better, regardless of the number of steps.
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While re has increased monotonically and step-
wise, r0e has changed in order to help minimization more
e�ectively. However, in this problem, the change in r0e
has been slight and it only has changed 1.7%.

To study how dependent on �e the result could
be, the problem was solved by selecting di�erent values
for �e, where in Figure 6a the value of W 0�e has been
plotted against the number of steps for �e= 1, 100 and
10000. The result has not been sensitive to the value
of �e.

Optimization by Old and New Interior Penalty
Functions
The same procedure as for the exterior and new exterior
penalty functions has been repeated for the interior
and new interior penalty functions and the results have
been shown in Figure 7a. Again, the new interior
penalty function has proven to be more successful
than the old interior penalty function. rin has been
reduced monotonically and stepwise, however, r0in
has been optimally changed to help the minimization
procedure. It is noteworthy that r0in has changed

Figure 6. E�ect of di�erent �e values on result of new
exterior penalty function.

Figure 7. Comparison between old and new interior
methods.

mainly monotonically in this example, though this
observation might not be generalized to other cases.
The optimum solutions have been W �in = 694 gN after
about 145 steps for the interior and W

0�
in = 685:4

gN after about 125 steps for the new interior penalty
functions.

Also, Figure 8a shows the change in rin and r0in
through the procedure. The e�ect of �in on the result
has been investigated too as depicted in Figure 9a.
Convergence has not been achieved if a large �in (for
this example � > 20 has been considered large) has
been selected. Using smaller �in, it is possible to get
a better answer with more accuracy, though it requires
more time to converge.

Three-bar Truss

The 3 bar truss benchmark problem shown in Figure 3b
has been optimized using both the old and new penalty
functions and the results are compared. This problem
has been included only to show that the method could
be easily applied to other truss problems too.
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Figure 8. History of change in response surface factor for
the ordinary and new interior penalty functions.

Again, the objective function has been the weight
of the truss to be minimized, subject to stress con-
straints and a minimum cross sectional area of 10�4 m2

for all the members. The maximum allowable stress has
been the same under compression and tension equal
to 144000 kPa = 1440 kg/cm2 for all the members.
The density and elastic modulus of the material have
been assumed to be 7800 kg/m3 and 2:04 � 108 kPa,
respectively, which are those of steel. The optimization
problem can be formulated as:

Minimize:
W (x) = weight = sum over weight of 10 bars; (14a)

subject to:

�i(x)� 144000 � 0; i = 1; 2; 3;

��i(x)� 144000 � 0; i = 1; 2; 3;

�xi + 10�4 � 0; i = 1; 2; 3: (14b)

Using the allowable stress design method, the optimum
weight for this truss has been obtained as 267 N. The

Figure 9. E�ect of di�erent �in values on convergence in
new interior method.

cross sectional areas have been:

x = [4:9 0:04 0:02]� 10�4m2: (15)

Optimization by Old and New Exterior
Penalty Functions
The result of minimization is shown in Figures 4b and
5b, where the weight of the truss and re are plotted as
functions of Ns= number of steps of minimization by
the steepest descent method. As can be seen, after
3 rounds of changing re, which are comprised of a
total number of 2500 steps of movement in the steepest
descent directions (Ns = 2500), the minimum weight,
design vector and re have been:

W �e = 267:6 N; (16a)

x�e = [4:899 0:04 0:017]� 10�4m2; (16b)

re = 17000: (16c)

The results and comparison of the old and new exterior
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penalty functions can be seen in Figures 4b and 5b. In
this case,

�e = 1000: (17a)

The convergence has been much faster in the case of
the new function. After 500 steps, the weight, design
vector and r0e have been:

W
0�
e = 267:3N; (17b)

x�e = [4:90 0:037 0:012]� 10�4m2; (17c)

r0e = 703: (17d)

The new function has been more successful than the
old exterior penalty function. Again, as shown in
Figure 4b, the curve of the new penalty function has
always been below the curve of the ordinary penalty
function, hence, the result has always been better,
regardless of the number of steps.

The e�ect of �e can be seen in Figure 6b, where
the value of W 0�e has been plotted against the number
of steps for �e = 1, 1000 and 100000. The plots are
not distinguishable and, hence, the result has not been
sensitive to the value of �e.

Optimization by Old and New Interior Penalty
Functions
The results of application of the new and old ordinary
penalty functions have been as shown in Figure 7b.
The optimum solutions have been W �in = 271 N after
about 100 steps for the ordinary interior and W 0�in =
287 N after about 80 steps for the new interior penalty
functions where the new interior penalty method has
not been as successful as the ordinary interior penalty
method.

Also, Figure 8b shows the change in rin and r0in
through the procedure. The e�ect of �in on the result
has been investigated too as depicted in Figure 9b,
showing that convergence has not be achieved for large
values of �in (in this example � > 10 has been
considered large).

SOLUTION BY GENETIC ALGORITHMS

One category of optimization method, which could
enjoy the bene�ts of using the new penalty functions, is
the Genetic Algorithm (GA). Noticing most engineer-
ing problems are of constrained type, it is generally
cumbersome to solve such problems by GA using the
old penalty functions in which a new r value (re for
exterior and rin for interior penalty function) should
be introduced for every new round of optimization.
Using the new functions though, it is possible to
include r (r0e or r0in for exterior and interior penalty

respectively) as an additional gene in the chromosomes
of variables, so that r is also optimized during the
optimization.

There are many references to the application of
GA to di�erent design optimization problems, such
as [12-17]. In this paper, the method explained in [18]
has been adopted and used to solve the truss problems
of Figure 3. Figure 10 depicts the 
owchart of the GA
approach in structural optimization. [12]. The genetic
operation shown in Figure 10a is described in more
detail in Figure 10b. Also, the 
owchart of continuous
GA was shown in Figure 11 [18].

Here, the GA has been used to minimize both the
old and new exterior penalty functions of the example
problems.

GA with the Old Exterior Penalty Function

The 10 and 3 bar trusses have been optimized by the
old exterior penalty functions in conjunction with the
GA.

Figure 10. (a) Flowchart of GA approach; (b) Details of
genetic operation box.
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Figure 11. Flowchart of a continuous GA.

For the 10-bar truss the chromosome has been
de�ned as:

choromosome = [x1; x2; :::; x10]; (18a)

where xi = area of the ith bar, which is considered
as the ith gene of the chromosome. The selected
parameters for use in Equations 2a and 2b have been:

c = 5; (18b)

r1 = 1: (18c)

The size of the population, which has been considered
�xed throughout the optimization, has been Npop = 48.
The roulette wheel strategy has been used to select the
pairs for mating where at each generation Npairs of
pairs of chromosomes have been drawn from the pool.
Denoting a pair of parents by:

parent1 = [xm;1xm;2xm;3:::xm;l:::xm;Npar]; (18d)

parent2 = [xf;1xf;2xf;3:::xf;l:::xf;Npar]; (18e)

where the subscripts m and f stand for male and
female, one of the genes is selected randomly. Assum-
ing the lth gene is selected, the �rst (l � 1) genes in

each parent are kept unchanged, while the remaining
genes are combined to form two newborn chromosomes.
Denoting the two newborns by n1 and n2, they can be
shown as:

n1 = [xn1;1xn1;2xn1;3:::xn1;l:::xn1;Npar]; (18f)

n2 = [xn2;1xn2;2xn2;3:::xn2;l:::xn2;Npar]; (18g)

where their genes have the following values:

xn1;i = xm;i i < l; (18h)

xn2;i = xf;i i < l; (18i)

xn1;i = xm;i � �[xm;i � xf;i] i > l; (18j)

xn2;i = xf;i � �[xf;i � xm;i] i > l; (18k)

where � is also a randomly generated real number in
the interval [0.0, 1.0].

In the 10-bar truss example, a mutation rate of
10% has been applied to the population. Also, a
mutation rate of 1% has been applied to the 3-bar truss
optimization.

Figures 12a and 12b show the changes in the value
of the exterior penalty function and the corresponding
weight, as functions of the generation number for the
10 and 3 bar trusses, respectively. Also, Figures 13a
and 13b plot the change in re against the generation
number.

GA with the New Exterior Penalty Function

In the case of the 10 bar truss, a chromosome has been
de�ned as:

choromosome = [x1; x2; :::; x10; r0]; (19)

where r0e has been included as an additional gene in
the chromosome. It has one more gene (r0e) than in the
ordinary exterior method. The results of optimization
are reported in Figures 12a and 13a where the values
of the penalty function, weight and r0e are shown
against the generation number. It should be noticed
that di�erent scales have been used for re and r0e to
show both on the same �gure. It is noteworthy that
r0e has been much smaller than re. For the 10-bar
truss, the best results have been W �e = 759:8 gN
after 170 generations, using the ordinary and W 0�e =
684:9 gN after 46 generations, using the new exterior
penalty function, which shows a considerable reduction
of about 10% in the weight. Also, for the 3-bar truss,
the best results have been W �e = 280:3 N after 140
generations, using the ordinary, and W 0�e = 277:8 N
after 140 generations, using the new exterior penalty
functions where the result for the new penalty function
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Figure 12. Convergence using ordinary and new exterior
penalty functions in GA.

has been slightly better. Figures 12b and 13b show
the history of changes in the weight and response
factor. Also, changes in xi values through generation
by ordinary exterior and new exterior methods are
reported in Figures 14 and 15.

CONCLUSIONS

In this paper, the penalty parameter in the ordinary
exterior and interior penalty functions has been con-
sidered as a design variable and optimized together
with the main variables to achieve the best result.
This technique has both improved the convergence
speed and the �nal result. Testing on the 10-bar
benchmark problem, the ordinary exterior penalty
function converged to W �e = 697:4 gN after about
5000 steps while the new penalty function converged
to W 0�e = 681:1 gN in less than 2300 steps, proving
that the convergence has been more than twice as fast
and the answer has been about 2.3% better. Using
the ordinary and new interior penalty functions, the
results have been W �in = 694 gN after about 145 steps
for the interior, and W 0�in = 685:4 gN, after about 125

Figure 13. History of change in response surface factor
for the ordinary and new exterior penalty functions in GA.

steps for the new interior penalty functions. Again, the
convergence has been 1.25 times faster and the �nal
answer has been 1.3% better.

One area that might enjoy the bene�t of using the
new penalty functions is Genetic Algorithms (GA). The
10-bar truss problem has been solved by GA using the
ordinary and new exterior penalty functions. The best
results have been W �e = 759:8 gN, after 170 generations
using the ordinary and, W 0�e = 684:9 gN, after 46
generations using the new exterior penalty functions.
The convergence has been 4 times faster and the result
has been 11% better using the new exterior penalty
function.

To show that the obtained answers have not
been limited to the 10-bar truss, a 3-bar truss has
also been optimized by the same methods. The
results have shown that, while the new exterior penalty
function has been obviously successful, the optimum
weight obtained from the new interior method has
even been slightly higher. Noticing that the new
interior penalty has been able to provide slightly better
results in the case of the 10-bar truss, it is expected
that the new interior penalty method would be less
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Figure 14. Change in xi values through generations by
ordinary exterior method.

e�ective, as compared to the new exterior penalty
function. However, both the new methods of interior
and exterior penalty functions have proven to be
helpful methods to be used together with the GA.
More research on the subject is in progress by the
authors.
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Figure 15. Change in xi values through generations by
new exterior method.
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