Transaction A: Civil Engineering
Vol. 16, No. 4, pp. 273-285
(© Sharif University of Technology, August 2009

Application of an Ant Colony Optimization
Algorithm for Optimal Operation of
Reservoirs: A Comparative Study
of Three Proposed Formulations

R. Moeini! and M.H. Afshar'*

Abstract.  This paper presents an application of the Maz-Min Ant System for optimal operation of
reservoirs using three different formulations. Ant colony optimization algorithms are a meta-heuristic
approach initially inspired by the observation that ants can find the shortest path between food sources and
their nest. The basic algorithm of Ant Colony Optimization is the Ant System. Many other algorithms,
such as the Maxz-Min Ant System, have been wntroduced to improve the performance of the Ant System.
The first step for solving problems using ant algorithms is to define the graph of the problem under
consideration. The problem graph is related to the decision variables of problems. In this paper, the
problem of optimal operation of reservoirs is formulated using two different sets of decision variable, 1.e.
storage volumes and releases. It is also shown that the problem can be formulated in two different graph
forms when the reservoir storages are taken as the decision variables, while only one graph representation
1s available when the releases are taken as the decision variables. The advantages and disadvantages of
these formulation are discussed when an ant algorithm, such as the Maz-Min Ant System, is attempted
to solve the underlying problem. The proposed formulations are then used to solve the problem of water
supply and the hydropower operation of the “Dez” reservoir. The results are then compared with each
other and those of other methods such as the Ant Colony System, Genetic Algorithms, Honey Bee Mating
Optimization and the results obtained by Lingo software. The results indicate the ability of the proposed
formulation and, in particular, the third formulation to optimally solve reservoir operation problems.

Keywords: Ant colony optimization; Maz-Min Ant System; Graph; Optimal operation of reservoir;

Hydropower reservoir.

INTRODUCTION

Many optimization problems of practical, as well as
theoretical, importance consist of the search for the
“best” configuration of a set of variables to achieve
some goals. They seem to be divided naturally into two
categories: Those in which the solutions are encoded
with real-valued variables and those where solutions
are encoded with discrete variables. Among the latter,
there is a class of problem called Combinatorial Opti-
mization (CO) problems. According to Papadimitriou
and Steiglitz [1], in CO problems one is looking for an
object from a finite set. Examples of CO problems are

1. Department of Civil Engineering, Iran University of Science
and Technology, Tehran, P.O. Box 16765-163, Iran.

*, Corresponding author. E-mail: mhafsharQ@iust.ac.ir

Received 17 October 2007; received in revised form 18 September
2008; accepted 8 November 2008

the Traveling Salesman Problem (TSP), the Quadratic
Assignment Problem (QAP) and Time Tabling and
Scheduling Problems. Due to the practical importance
of CO problems, many algorithms have been developed
to tackle them [2].

In the last 20 years, a new kind of approximate
optimization method has emerged, which basically
tries to combine basic heuristic methods with higher
level frameworks aimed at efficiently and effectively
exploring a search space. These methods are nowadays
commonly called metaheuristics. Before this term
was widely adopted, metaheuristics were often called
modern heuristics. This class of algorithm includes,
but is not restricted to, Ant Colony Optimization
(ACO) and Evolutionary Computation (EC), including
Genetic Algorithms (GA), Iterated Local Search (ILS),
Simulated Annealing (SA), and Tabu Search (TS). Up
to now there has not been any commonly accepted
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definition for the term meta-heuristics. It is just in
the last few years that some researchers in the field
have tried to propose a definition [2].

Within the last decade, many researchers have
shifted the focus of optimization problems from tra-
ditional optimization techniques, based on linear and
non-linear programming, to the implementation of
Evolutionary Algorithms (EAs), Genetic Algorithms
(GAs), Simulated Annealing (SA) and Ant Colony
Optimization (ACO) algorithms.

ACO is a metaheuristic approach proposed by
Cloroni et al. [3] and Dorigo et al. [4]. The basic
algorithm of ant colony optimization is the Ant System
(AS). Many other algorithms have been introduced to
improve the performance of the Ant System such as Ant
Colony System (ACS), Elitist Ant System (ASeite),
Elitist-Rank Ant System (AS,anx) and Max-Min Ant
System (MMAS) [5]. Advancements have been made
on the initial and most simple formulation of ACO,
the Ant System (AS), to improve the operation of the
decision policy and the manner in which the policy
incorporates new information to help explore the search
space. These developments have primarily been aimed
at managing the trade-off between the two conflicting
search attributes of exploration and exploitation.

In this paper, MMAS is applied to the problem
of reservoir operation. Three different formulations
are presented to cast the underlying problem into a
form suitable for the application of MMAS. Two of
these formulations use storage volumes as the decision
variables, while the other formulation considers the
releases as the decision variable of the problem. With
the releases taken as the decision variable, referred
to as first formulation, each period of the operation
is considered as the decision point of the problem.
Discretizing the range of possible values of release at
each period, the options available at each decision point
are then represented by the set of discretized values of
the releases. When storage volumes are taken as the
decision variables, two different formulations are possi-
ble. In the first representation, referred to as the second
formulation, the beginning and end of each period are
taken as the decision points of the problem. Having
discretized the range of possible values of storage
volumes at each decision point, the options available
are then represented by the set of discretized values
of the storage volumes at each decision point. In this
representation, it is not possible to associate a cost with
the options available at each decision point due to the
fact that the cost function of the problems considered
is a function of release. In the second representation of
the reservoir operation problem, with storage volumes
taken as decision variables and referred to as the third
formulation, the beginning and end of each period are
again taken as the decision points of the problem,
as in the second formulation. Having discretized the

R. Moeini and M.H. Afshar

range of allowable storage volume at all decision points,
available options at each decision point are represented
now by the arcs joining each and every one of the dis-
cretization points to all discretization points of the next
decision point. This formulation offers the advantage of
defining a heuristic value for all the different operation
problems, since each arc uniquely defines the operation
policy of the corresponding period. The formulations
so constructed are applied to solve the water supply and
hydropower operation problems of the “Dez” reservoir
and the results are presented. The results indicate the
MMAS is a suitable method for the solution of reservoir
operation problems compared to other ant algorithms.
The results also indicate that the third formulation is
superior to other formulations when solving larger scale
water supply operation problems.

In what follows, the Ant Colony Optimization
Algorithm (ACOA) is first described. The Max-
Min Ant System is then presented. The proposed
formulations of the reservoir operation problem are
presented in the next section. And, finally, the “Dez”
reservoir operation problem is solved using MMAS and
proposed formulations and the results are presented
and compared to the existing results.

ANT COLONY OPTIMIZATION
ALGORITHM (ACOA)

Ant algorithms were initially inspired by the observa-
tion that ants can find the shortest path between food
sources and their nest, even thought they are almost
blind [4]. Individual ants choose their path from the
nest to the food source in an essentially random fashion.
While walking from the food source to the nest and vice
versa, the ants deposit on the ground a substance called
pheromone forming, in this way, a pheromone trail.
Ants can smell pheromone and they tend to choose
paths marked by strong pheromone concentrations
when choosing their way [6]. The pheromone trail acts
as a form of indirect communication called stigmergy,
helping the ants to find their way back to the food
source or the nest. Also, it can be used by other ants
to find the location of the food source [7,8].

Based upon this ant behavior, Cloroni et al. [3]
and Dorigo et al. [9] developed ACO method. In
the Ant Colony Optimization meta-heuristic, a colony
of artificial ants cooperates in finding good solutions
to difficult discrete optimization problems [10]. The
original and simplest ACO algorithms used to solve
many difficult combinatorial optimization problems are
TSP [6], graph coloring [11] and network routing [12].

The searching behavior of ant algorithms can be
characterized by two main features, exploration and
exploitation. Exploration is the ability of the algorithm
to broadly search through the solution space, whereas
exploitation is the ability of the algorithm to search
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thoroughly in the local neighborhood, where good solu-
tions have previously been found. Higher exploitation
is reflected in rapid convergence of the algorithm to a
suboptimal solution, whereas higher exploration results
in better solutions at higher computational cost due to
the slow convergence of the method. Different methods
have been developed for a proper trade-off between
exploration and exploitation in ant algorithms.
Application of ant algorithms to an arbitrary
combinatorial optimization problem requires that the
problem be projected on a graph [9]. Consider a graph,
G = (D,L,C) in which D = {d;,ds, - ,d,} is the
set of decision points at which some decisions are to
be made, L = {l;;} is the set of options (arcs) j,
(j = 1,2,---,J), at each of the decision points 1,
(t=1,2,--,n),and finally C' = {c;; } is the set of costs
associated with options L = {l,;}. The components of
sets D and L may be constrained if required. A feasible
path on the graph is called a solution (¢) and the
minimum cost path on the graph is called the optimal
solution (¢*). The cost of the solution is denoted by
f(p) and the cost of the optimal solution by f(p*).
ACOA was used first for the Traveling Salesman
Problem (TSP). In TSP, each ant starts from an
arbitrary city and, while passing all other cities, goes
back to the starting city. The object of this problem is
to find the shortest path covering all cities only once.
The graph of this problem is presented in Figure 1.
Each city is considered as a decision point, therefore,
the number of decision points is equal to the number of
cities. Each option (arcs) defines the path taken from
one city to another. In TSP, each city (decision point)
is connected to all other cities (decision points) and,
hence, the use of a fully connected graph. This means
that in TSP each ant is faced with the total number of
options nearly equal to the number of cities. When an
option (arc) is chosen by an ant, the next city (decision

c13=d13

dy

Figure 1. Basic graph for TSP.
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point) to move to is known. The cost of each option is
equal to the distance between two cities.

The basic steps of the ant algorithm may be
defined as follows [10]:

1. m ants are randomly placed on n decision points,
and the amounts of pheromone trail on all arcs are
initialized to some proper value at the start of the
computation.

2. A transition rule is used at each decision point, 7,
to decide which option is to be selected. The ants
move to the next decision point and the solutions
are incrementally created by ants as they move from
one point to the next. This procedure is repeated
until all decision points of the problem are covered.

The transition rule used in the original Ant
System is defined as follows [10]:

Pi(k,t) = J[Tiﬂ'(t)]—a[”ij]'g’ (1)

(735 (£)] [1:5]°

J
where:

P;;(k,t) the probability that ant k selects option
L;;(t) for the ith decision point at
iteration t;

7;; () the concentration of pheromone on
option (arc) L;;(t) at iteration t;

Mij the heuristic value representing the cost
of choosing option j at point i;

Q the parameter that control the relative
weight of the pheromone trail;

8 the parameter that controls the relative

weight of the heuristic value.

The heuristic value (7;;) is analogous to pro-
viding the ants with sight and is sometimes called
visibility. This value is calculated once at the start
of the algorithm and is not changed during the
computation.

3. Costs, f(¢), of the trail solutions generated are
calculated. The generation of a complete trail
solution and calculation of the corresponding cost
is called the cycle (k).

4. The pheromone is updated after steps 2 and 3 are
repeated for all ants and, therefore, the generation
of m trail solutions and calculation of their corre-
sponding costs are referred to as iteration ().

The general form of the pheromone updating rule is as
follows:

Tij(t + 1) = p1i;(t) + A7y, (2)
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where:

7;;(t+1) the amount of pheromone trail on option
7 at the 7th decision point, which is
option L;; at iteration ¢ 4 1;

7:;(t) the concentration of pheromone on
option L;; at iteration ¢;

p the coefficient representing the
pheromone evaporation (0 < p < 1);

ATij the change in pheromone concentration

associated with option L;;.

Different methods have been developed for calculating
the change of pheromone, Ar;;, one of which is the
Max-Min Ant System [13].

MAX-MIN ANT SYSTEM

Premature convergence to suboptimal solutions is an
issue that can be experienced by all ant algorithms. To
overcome the problem of premature convergence, whilst
still allowing for exploitation, Stutzle and Hoss [14,15]
developed the Max-Min Ant System (MMAS). The
basis of MMAS is the provision of dynamically evolving
bounds on the pheromone trail intensities, such that
the pheromone intensity on all paths is always within a
specified lower bound, Tin(t), of a theoretically asymp-
totic upper limit, Timin(f), that is mmin(f) < 7;() <
Tmax(t) for all edges (i,7). As a result of the lower
bound stopping the pheromone trails from decaying to
zero, all paths always have a nontrivial probability of
being selected and, thus, a wider exploration of the
search space is encouraged. The upper pheromone
bound at iteration ¢ is given by:

1 ¢

Tmax t = T i 3
0= 1=, T m) )
where:

Tmax (1) upper bound of pheromone trail at

iteration ¢;
P the coefficient representing pheromone
evaporation (0 < p < 1);
rewarding factor (usually ¢ = 1);
cost of the best global solution at
iteration ¢.

¢
f(so(t))

This expression is equivalent to the asymptotic
limit of an edge receiving pheromone additions of
ﬂ%ﬁ(t» and decaying by a factor of (1—p) at the end of
each iteration. The lower bound at iteration ¢ is given

by:
Tmax(t) (1 - ’V" B)est)
(Noavg - ]-) 7\/1 Pbest '

where Pyegt (0 < Poest <1) is a specified probability that
the current global-best path (s9°(¢)) will be selected,

Tmin (t) =

(4)
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given that no global best edge has a pheromone level
of Tmin(t) and all global-best edges have a pheromone
level of Tmax(t); and NOgy, is the average number of
edges across all decision points.

It should be noted that a lower value of
Ppest indicates tighter bounds. Theoretical justifica-
tion of Tmin(f) and Tmax(t) is given in Stutzle and
Hoos [16].

As the bounds serve to encourage exploration,
provision for exploitation is made in MMAS by addi-
tion of pheromone to only the iteration-best ant path
(s:(¢)) at the end of an iteration and, to further exploit,
the global-best solution (s9°(t)) is updated every T,
iterations. The MMAS updating scheme is given by:

7ii(t+1) = prij(t) + AT () + ATi%b(t)IN {Ttb}(7 )
9% 7 (5

where N is the set of natural numbers (note, TL, is an
ab

element of N in every Ty, iteration), and AT}}’(Z) is the
pheromone addition given by iteration-best ant (s;()),
which is defined as below:

T S
A0 = Ty oG ©)
where:
0] the coefficient (usually ¢ = 1);

f(si(t))
]sl(t) =1

Isl(t) :O

cost of best global solution at iteration ¢;
if arc (7, ) is chosen by best ant (ib);
otherwise.

Application of MMAS to some benchmark combi-
natorial optimization examples such as the Traveling
Salesman Problem (TSP), has shown that it over-
comes the stagnation problem and, hence, improves
the performance of the ant algorithms for the range
of problems considered.

FORMULATION OF THE RESERVOIR
OPERATION PROBLEMS

A variety of reservoir operation problems have been
devised and solved with different methods. Three
major modeling approaches that have been widely
used for optimization of reservoir operation problems
are: Linear Programming (LP), Non-Linear Program-
ming (NLP) and Dynamic Programming (DP). Ap-
plication of DP techniques to water resource systems
has been reviewed by Yakowitz [17]. Marino and
Loaiciga [18] and Becker and Yeh [19] solved the
optimal operation of reservoirs with DPs. Recently,
Mousavi and Karamouz [20] improved the DP mod-
els by diagnosing infeasible storage combinations and
using the results for solving multi-reservoir operation
problems. However, the main shortcoming of DP
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is the exponential increase in computational burden
and memory requirements, known as the curse of
dimensionality, as the number of state variables in-
crease. Thus, the applicability of DP is limited to
systems with very few reservoirs. To partially overcome
the dimensionality problem in dynamic programming,
evolutionary algorithms have been used. There have
been several applications of GAs to multi-reservoir
operation problems [21-23]. Esat and Hall [21] clearly
demonstrated the advantages of GAs over standard
dynamic programming techniques in terms of compu-
tational requirements. Wardlaw and Sharif [24] applied
GAs to a four-reservoir system operation problem
concluding that GA’s with real value coding perform
significantly faster than those employing binary coding.
They extended the formulation to a more complex
ten-reservoir problem. Being at its early stages
of development, a Honey-Bee Mating Optimization
(HBMO) meta-heuristic algorithm was applied to a
single reservoir operation problem [25]. Recently,
Jalali et al. wused a multi-colony ant colony opti-
mization algorithm to solve a ten-reservoir operation
problem [26].

With a view to handle the scale aspect of the
reservoir operation problem using heuristic search
methods, such as ACOA uses here, only reservoir oper-
ations for the water supply and reservoir operations for
the hydropower generation of a single reservoir with a
known storage volume at the start of the operation are
considered in this paper. The extension of the methods
to multi-reservoir problems will pose no problem once
the basics of the methods are understood.

Reservoir Operation for Water Supply

Optimal operation of a single reservoir for water supply
may be stated mathematically as follows:

NT .
> [D(t) —r(t)]?

Minimize F = =1 ) ) (7)

subject to continuity equations at each period:

s(t+1) = s(t) + I(t) — r(t) — I(t), (8)

and minimum and maximum allowable values for the
release and storage volumes at each period:

Smin S S(t) S Smax (9)
Tmin S T(t) S Tmax (10)
where:
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NT total number of periods;
D(t)  water demand in time period ¢;
r(t) water release from the reservoir in time
period t;
Dpax  maximum water demand (constant);
s(t) reservoir storage at the beginning of period
t;
I(t) water inflow to the reservoir in period ;
r(t) water release from the reservoir in period ¢;
I(t) evaporation loss in period ;
Smin minimum water storage of the reservoir;
Smax maximum water storage of the reservoir;
Pmin minimum water release from the reservoir;
T max maximum water release from the reservoir.

Optimal Reservoir Operation for Hydropower
Generation

The problem of optimal reservoir operation for hy-
dropower generation is often stated mathematically as
follows:

NT

t
Minimize F =y (1 _ ) ) : (11)
— power
where:
NT total number of time periods;
p(t) power generated by the hydro-electric plant
in period #;

Power total capacity of hydro-electric plant (MW).

The power generated by the plant is defined as:

p(t) = min K‘q . n;;R(t)) x (18(30) ’power] (12)

with:

H, + H,
ht:( t+ Hipr

5 ) —-TWL, (13)

p(t)  power generated in period ¢t (MW);

g gravity acceleration (m?/s);

n efficiency of hydro-electric plant;

PF plant factor;

hy effective head of hydro-electric plant in
period t;

H, elevation of water in the reservoir in period
t;

TWL tail water elevation of hydro-electric plant
(constant);

R(t) turbine release (release rate from reservoir,

(m?/s)).
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Subject to the continuity equation of the reservoir
at each period:

s(t+1) =s(t) + I(t) —r(t) = U(¢), (14)

and minimum and maximum allowable values for the
release and storage volumes at each period and mini-
mum power yield and turbine release at each period:

Smin < S(t) < Smax» (15)
Tmin < T(t) < Tmax, (16)
p(t) Z Pmin> (17)
R(t) > Rmin~ (18)
s(t) reservoir storage at the beginning of period
t;
I(t)  water inflow to the reservoir in period ¢;
r(t) water release from the reservoir in period ¢;
1(t) evaporation loss in period ¢;

Smin minimum water storage of reservoir;
Smax maximum water storage of reservoir;
Tmin minimum water release from reservoir;
Tmax maximum water release from reservoir;
Pmin minimum power yield;

Rin  minimum turbine release.

R(t) = co(t) x r(t), (19)

where co(t) = time coefficient for period ¢ and other
parameters are defined as before.

The water elevation can be obtained from the
volume-elevation curve defined as follows:

Hi=a+bxs+ecxs?+dxss, (20)

where a,b,c,d = constant coeflicients obtained by
fitting the above equation to the data available.

Proposed Formulations

Formulation of the optimal operation of reservoirs as an
optimization problem requires the selection of decision
variables. Basically, two different sets of decision
variable can be sought in reservoir operation problems,
namely storage volumes (s) or releases (r) at each
period. Furthermore, application of ant algorithms,
such as MMAS, requires that the problem under con-
sideration be presented in terms of a graph by defining
decision points, options available at each decision point
and costs associated with each of these options. The
problem graph is very much dependant on the decision
variables selected for the problem.

With the releases taken as the decision variables,
the problem graph can be defined as illustrated in
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g=

Figure 2. Basic graph when release is the decision
variable (first formulation).

Figure 2. In this representation, referred to as first
formulation, each period of the operation is considered
as the decision point of the problem. Discretizing
the range of possible values of release in each period,
the options available at each decision point are then
represented by the set of discretized values of the
releases. It is to be noted that the options are, in fact,
represented by the set of discretization points rather
than arcs in its real sense. When the initial reservoir
storage is unknown, this parameter is also taken as a
decision variable leading to a problem with total of
NT + 1 decision variables. For the first problem, a
cost can be associated to each option j at decision
point ¢, which is defined as the squared deviation of
the release from the required demand at that period.
The corresponding heuristic value can, therefore, be
defined as:

(21)

"= Dm P

where:

n;;  heuristic value at arc (i, j);

D(t) water demand at period ¢ (decision point 7);

Tij jth discretized release from reservoir at
period (decision point) i.

Definition of a cost for each option in a hydropower
reservoir operation problem, however, is not possible
in this formulation, since it requires the value of the
effective head, which is not known. Note that the
effective head is a function of the storage volumes at
the beginning and end of the period.

The situation is somehow different when storage
volumes are taken as the decision variables. In this
case, the problem can be represented by two different
graphs. In the first representation, referred to as
second formulation, the beginning and end of each
period are taken as the decision points of the problem,
as illustrated in Figure 3. Discretizing the range
of possible values of storage volume at each decision
point, the options available are then represented by
the set of discretized values of the storage volumes
at that decision point. In this formulation, it is not
possible to associate a cost to the options available
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Figure 3. Basic graph when storage is decision variable
(second formulation).

at each decision point, due to the fact that the
cost function of both water supply and hydropower
reservoir operation problems are functions of release.
It is clear that the amount of release can only be
known when the storage volumes are known at both
the beginning and end of the period. Two notes
have to be made regarding the characteristics of this
formulation. First, the options available at different
decision points are independent from each other and,
therefore, the decisions made at for example two
consecutive decision points can be made arbitrarily,
as shown in Figure 3. Second, available options at
each decision point are in fact some points chosen on
the range of possible values of the decision variable
associated with that decision point. There is no
arc in the sense that exists in TSP problem in this
formulation of the reservoir operation problem. The
pheromones are, therefore, associated to this point
rather than the arcs in its true meanings. This is
somehow related to the fact that no heuristic infor-
mation can be defined for options in this representa-
tion.

In the second representation of the reservoir
operation problem with the storage volumes taken as
decision variables, referred to as the third formulation,
the beginning and the end of each period are taken as
the decision points of the problem, as in the second
formulation. Having discretized the range of allowable
storage volumes at all decision points, one can represent
available options at each decision point as shown in
Figure 4 by the arcs joining each and every one of the
discretization points to all discretization points of the
next decision point. This formulation differs from the
second formulation in two ways. First, the options
available to the ants at each decision point are not
independent from decisions made at previous decision
points. To be specific, the options (arcs) available at
decision point ¢ are very much related to the decisions
made at previous decision points and, in particular,
at decision point 7 — 1. This is a direct result of the
physical requirement that a storage volume at the end
of each period should be the same as a storage volume
at the beginning of the next period. This property is
very useful, as it takes into account the serial feature of
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Figure 4. Basic graph when storage is decision variable
(third formulation).

the reservoir operation problem. The associated graph
is, in fact, very similar to the graph constructed in the
dynamic programming method for a total enumeration.
The second difference, very much related to the first,
is that the options are, in fact, real arcs joining the
value of the storage volumes at the beginning and the
end of each period. This is very significant, as it is
now possible to define heuristic information for all the
options (arcs) at any of the decision points, since a
release value can be computed for each and every arc
using the storage volumes at the beginning and end of
the arc and the continuity equation. It is interesting
to note that useful heuristic information can be easily
computed for both of the reservoir operation problems
considered here. The heuristic value is calculated by
Equation 21 for water supply reservoir operations and
Equation 22 for hydropower operation problems.

= 7 22
i power (22)
where:
M5 the heuristic value at arc (i, j);
Power total capacity of hydro-electric plant;
Dij power generated by the power plant, which

can be calculated by Equation 15 using the
known storage volumes and release during
the period.

To discourage the ants from making decisions
(i.e. select releases or storages) that constitute an
infeasible solution, a higher cost is associated to the
solutions that violate constraints of the problem. This
is achieved via the use of a penalty method, in which
the total cost of the problems is considered as the sum
of the problem costs and a penalty cost as follows:

NT
F,=F+a,x» C8V, (23)

t=1

where:
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F original objective function defined by
Equaitons 7 and 11 for the water supply
and hydropower cases, respectively;

F, penalized objective function;

CSV, a measure of constraint violation at period
t;

op represents the penalty parameter.

TEST EXAMPLES

In this section, the water supply and hydropower
operation of the “Dez” reservoir in southern Iran are
counsidered as test examples to test the versatility and
efficiency of the proposed formulations. The active
storage volume of the “Dez” reservoir is equal to 2510
MCM, and its average annual inflow is equal to 5303
MCM over 5 years and 5900 MCM over 40 years. These
problems are solved here for optimal monthly operation
over 5 and 20 years, i.e. 60 and 240 monthly periods,
respectively. The initial storage of the reservoir is taken
equal to 1430 MCM. The maximum and minimum
allowable storage volumes are considered equal to 3340
MCM and 830 MCM, respectively, while maximum and
minimum monthly water releases are taken to be 1000
MCM and zero, respectively. Evaporation losses in
each period, minimum power yield and turbine releases
are considered to be equal to zero.

For hydropower reservoir operation problem, a
polynomial is fitted to the volume-elevation data,
defined as follows:

H; = 249.83364 + 0.0587205 x s; — 1.37 x 1077

x 52 4+ 1.526 x 1077 x 2. (24)

The “Dez “reservoir hydro-electric plant consists of
eight units. FEach unit has a capacity of 80.8 MW
and is supposed to work 10 hours per day leading to a
plant factor of 0.417. The total capacity of the hydro-
electric plant of the “Dez” reservoir is equal 650 MW
and its efficiency equals 90 percent (n = 0.9). The
downstream elevation of the hydro-electric plant from
the sea surface equals 172 meters (TW L = 172 meter
above sea level).

RESULTS AND DISCUSSIONS

In this section, the results obtained for optimal op-
eration of the “Dez” reservoir, using the proposed
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formulations, are presented and compared to results
obtained by other methods. All the results presented
hereafter are based on an iteration best pheromone
updating mechanism, neglecting the role of a global-
best solution in Equation 6, and uniform discretization
of the allowable range of decision variables into 18
intervals for first formulation and 36 intervals for the
second and third formulations.

First, consider the solution of the water supply
and hydropower operation using the first formulation,
in which the releases are taken as the decision vari-
ables of the problem. The graph of the problem is
already shown in Figure 2. A set of preliminary runs
are conducted to find the proper values of MMAS
parameters as shown in Table 1. Table 2 shows the
results of 10 runs carried out for the problems of
water supply and hydropower operation of the “Dez”
reservoir using the parameters of Table 1 over 60
and 240 monthly periods. These results are obtained
within 2000 iterations, amounting to 400,000 function
evaluations for each run using a colony size of 200.

As seen from Table 2, optimal solutions obtained
using the first formulation for water supply operations
over 60 and 240 months have costs of 0.785 and 10.314
units, respectively. Optimal solutions obtained using
the first formulation for hydropower operations over
60 and 240 months have costs of 7.913 and 35.3 units,
respectively. These can be compared with the costs
of 0.7316 and 4.7684 obtained with Lingo software
(version 9) for water supply over 60 and 240 months,
respectively, and 7.372 and 20.622 obtained with Lingo
software for hydropower operation over 60 and 240
months, respectively. It is clear that MMAS is able to
produce a near-optimal solution for both cases of water
supply and hydropower operation problem. These
problems were also solved by Jalali et al. [26] using
standard and improved Ant Colony System (ASC).
Standard ACS required 400,000 function evaluation to
get to a solution of 0.926 for water supply operation
over 60 monthly periods. The improved version of ACS,
on the other hand, was able to obtain the solution of
0.804 for water supply reservoir over 60 monthly pe-

Table 1. Values of MMAS parameters used in the first
formulation.

NO. Ant « B P
200 1 0.1 0.9

Pbest
0.15

Table 2. Maximum, minimum and average solution costs over 10 runs (first formulation).

Maximum Cost Average Cost Minimum Cost
. 60 240 60 240 60 240
Operation
Period | Period | Period | Period | Period | Period
Water Supply | 0.814203 | 13.3259 | 0.799127 | 12.0133 | 0.784853 | 10.3135
Hydropower 8.0629 39.9800 | 8.00153 | 37.5683 | 7.91263 | 35.2988
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riods with 400,000 function evaluations. The problem
of water supply operation of “Dez” reservoir over 60
monthly periods was also solved by Bozorg Haddad et
al. [25] using GA and HBMO algorithms to only achieve
solutions of 1.1 and 0.82 wusing 6,000,000 function
evaluations, respectively. Also, standard ACS failed
to produce a feasible solution for hydropower operation
over 60 monthly periods. The improved version of ACS,
on the other hand, was able to obtain the solution of
7.504 for hydropower reservoir over 60 monthly periods
with 1,000,000 function evaluations. It is clearly seen
that for both problems, MMAS was able to obtain
better solutions than standard and improved ACS,
GA and HBMO algorithms. The CPU time required
by MMAS for each run carried out on a 2.4 MHZ
Pentium PC, were about 300(320) and 1220(1250)
seconds for water supply (hydropower) operation over
60 and 240 monthly periods, respectively. Figures 5
to 8 show the variation of maximum, minimum and
average solution costs of water supply and hydropower

Solution cost

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

Figure 5. Variation of maximum, minimum and average
solution costs of water supply operation over 60 periods
(first formulation).
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Figure 6. Variation of maximum, minimum and average
solution costs of water supply operation over 240 periods
(first formulation).
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Figure 7. Variation of maximum, minimum and average
solution costs of hydropower operation over 60 periods
(first formulation).
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Figure 8. Variation of maximum, minimum and average

solution costs of hydropower operation over 240 periods
(first formulation).

operation of “Dez” reservoir over 60 and 240 monthly
periods obtained using the first formulation in which
the releases are taken as the decision variables.

Next, these problems are solved using the second
formulation in which the storage volumes are taken as
the decision variables of the problem. Following a set
of preliminary runs, the values of MMAS parameters
listed in Table 3 are selected for the main runs. Again
to assess the sensitivity of the proposed formulation
to initial random colony, the problems are solved
with ten different initial colonies. Table 4 shows
the maximum, minimum and average solution costs
of water supply and hydropower operation of “Dez”
reservoir over 60 and 240 monthly periods obtained

Table 3. Value of MMAS parameters in the second
formulation.

NO. Ant a 5 P Pbest
200 1 0.0 0.9 0.15
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Table 4. Maximum, minimum and average solution costs over 10 runs (second formulation).

Maximum Cost Average Cost Minimum Cost
. 60 240 60 240 60 240
Operation
Period | Period | Period | Period | Period | Period
Water Supply 1.504 17.472 1.209 15.095 1.072 13.282
Hydropower 9.107 42.535 8.568 40.629 8.069 38.971

using the second formulation in which the storage
volumes are taken as the decision variables. It is seen
that all the results obtained with this formulation is
inferior to those obtained with the first formulation.
This can be attributed to two following differences.
First, the second formulation as explained earlier does
not allow for the definition of heuristic information
neither in water supply operation nor in hydropower.
This of course only explains the superiority of the first
formulation in the case of water supply operation. The
second reason for inferior performance of the second
formulation can be due to the fact that the original
continuous search space is represented by a coarser
discrete search space when storage volumes are taken
as the decision variables. This can be easily seen by a
comparison between allowable range of storage volumes
(830-3340) and release volumes (0.0-1000). It should be
noted that in this case no heuristic information can be
defined for the options available at decision points of
the problem and, therefore, the value of 5 = 0.0 is used
in the second formulation.

Figures 9 to 12 show the variation of maximum,
minimum and average solution costs of the water sup-
ply and hydropower operation of the “Dez” reservoir
over 60 and 240 monthly periods obtained using the
second formulation, in which the storages are taken as
the decision variables.

The CPU times required by MMAS for each run
carried out on a 2.4 MHZ Pentium PC, are about

3.5+

3.0

2.54

2.04

Solution cost

1.54

1.0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

Figure 9. Variation of maximum, minimum and average
solution costs of water supply operation over 60 periods
with iterations (second formulation).

530(340) and 2120(2160) seconds for the water sup-
ply (hydropower) operation over 60 and 240 monthly
periods, respectively.

The third formulation is also tested on these
problems using the MMAS parameters listed in Table 5,
which are obtained by some preliminary runs for the
best performance of the algorithm. Again, ten runs are
carried out to eliminate the effect of an initial colony
on the final solutions obtained. The performance
of the third formulation over 10 runs is shown in
Table 6 for the two operation problems over 60 and
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Figure 10. Variation of maximum, minimum and average
solution costs of water supply operation over 240 periods
with iterations (second formulation).
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Figure 11. Variation of maximum, minimum and average

solution costs of hydropower operation over 60 periods
with iterations (second formulation).
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Figure 12. Variation of maximum, minimum and average
solution costs of hydropower operation over 240 periods
with iterations (second formulation).

Table 5. Value of MMAS parameters in the third
formulation.

NO. Ant o B P Phbest
200 1 0.3 0.9 0.15

240 monthly periods. Comparison of these results with
those obtained with the second formulation reveals full
superiority of the third formulation over the second.
Comparison of the results with those obtained by the
first formulation in which the releases are taken as
decision variables, listed in Table 2, is noteworthy. In
the water supply operation problem, the best solution
obtained by the third formulation, 0.830, is slightly
inferior to that obtained by the first formulation, 0.785,
over a shorter period of 60 months, while the optimal
solution produced by the third formulation over a
longer period of 240 months, 7.370, is considerably
better than that of the first formulation, 10.313. This
superiority is even more apparent for the worst and
average solution costs, showing that the third formu-
lation is less sensitive to the initial colony, which is
considered to be a useful property for stochastic search
methods. The performance of the third formulation for
hydropower operation, however, is not as good as the
first formulation, as one might have expected. This
can be attributed to the fact that the value of the
heuristic information for some arcs, those for which
p(t) > power, is infinity which is replaced by the
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maximum heuristic value of all arcs. This will lead to
the same heuristic value for some of the arcs leading to
poorer results than expected. Figures 13 to 16 show the
variation of maximum, minimum and average solution
costs for water supply and hydropower operation over
60 and 240 periods considered here.

The CPU time required by MMAS for each run,
carried out on a 2.4 MHZ Pentium PC, is about
550(360) and 2200(2240) seconds for the water sup-
ply (hydropower) operation over 60 and 240 monthly
periods, respectively.
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Figure 13. Variation of maximum, minimum and average
solution costs of water supply operation over 60 periods
with iterations (third formulation).
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Figure 14. Variation of maximum, minimum and average
solution costs of water supply operation over 240 periods
with iterations (third formulation).

Table 6. Maximum, minimum and average solution costs over 10 runs (third formulation).

Maximum Cost Average Cost Minimum Cost
. 60 240 60 240 60 240
Operation
Period | Period | Period | Period | Period | Period
Water Supply 1.097 8.201 0.922 7.664 0.830 7.370
Hydropower 14.701 64.784 13.727 47.043 13.002 42.955
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Figure 15. Variation of maximum, minimum and average
solution costs of hydropower operation over 60 periods
with iterations (third formulation).
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Figure 16. Variation of maximum, minimum and average

solution costs of hydropower operation over 240 periods
with iterations (third formulation).

CONCLUSION

In this paper, three different formulations were used to
represent the water supply and hydropower reservoir
operation problems in proper form, to be solved with
ant colony optimization algorithms. In the first formu-
lation, each period was taken as the decision point of
the problem at which the value of the release, as the
decision variable, is to be decided. This formulation
allowed for definition of the heuristic information only
for the case of water supply operation problem. In
the second formulation, the beginning and the end
of each period were taken as the decision points of
the problem and the value of the storage volume was
considered as the decision variable. This formulation,
however, did not allow for the heuristic information
to be defined for options available for none of the
problems considered. In the third representation of
the reservoir operation problem, with storage volumes
taken as decision variables, the beginning and end
of each period were taken as the decision points of

R. Moeini and M.H. Afshar

the problem. Having discretized the allowable range
of storage volumes at all decision points, one could
represent available options at each decision point by
the arcs joining each and every one of the discretization
points to all discretization points of the next decision
point. With this representation, it was possible to
define the heuristic information for the options avail-
able at any of the decision points, since a release
value can be computed for each and every arc using
the storage volumes at two ends of the arc and the
continuity equation. A recent variant of the ACOA’s,
namely MMAS, was then used to solve the problem of
the water supply and hydropower reservoir operation
problems over 5 and 20 years and the results were
presented and compared to the available solutions.
The results indicated the superiority of the MMAS,
in conjunction with the third formulation, over other
available methods.
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