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Elitist-Mutated Ant System Versus
Max-Min Ant System: Application to
Pipe Network Optimization Problems

M.H. Afshar1

Abstract. The Ant Colony Optimization Algorithm (ACOA) is a new class of stochastic search
algorithm proposed for the solution of combinatorial optimisation problems. Di�erent versions of ACOA
are developed and used with varying degrees of success. The Max-Min Ant System (MMAS) is recently
proposed as a remedy for the premature convergence problem often encountered with ACOAs using elitist
strategies. The basic concept behind MMAS is to provide a logical balance between exploitation and
exploration. The method, however, introduces some additional parameters to the original algorithm,
which should be tuned for the best performance of the method adding to the computational requirement
of the algorithm. An alternative method to MMAS is proposed in this paper and applied to pipe network
optimization problem. The method uses a simple but e�ective mechanism, namely Pheromone Trail
Replacement (PTR), to make sure that the global best solution path has always the maximum trail
intensity. This mechanism introduces enough exploitation into the method and more importantly enables
one to exactly predict the number of global best solutions at each iteration of the algorithm without requiring
calculation of the cost of the solutions created. The sub-colony of repeated global best solutions of the
iterations is then mutated, such that a prede�ned number of solutions survive the mutation process. Two
di�erent mutation mechanisms, namely deterministic and stochastic mutation processes, are introduced
and used. The �rst one uses a one bit mutation with a probability of one on some members of the
sub-colony, while the second one uses a uniform mutation on the whole sub-colony. The probability of
mutation in the second mutation process is adjusted at each iteration, so that the required number of global-
best solutions survives the mutation. The method is shown to produce results comparable to the MMAS
algorithm, while requiring less free parameter tuning. The application of the method to a benchmark
example in the pipe network optimization discipline is presented and the results are compared.
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INTRODUCTION

Ant Colony Optimization (ACO) is a general frame-
work for developing optimization algorithms based on
the collective behaviour of ants in their search for
food [1]. These algorithms were initially inspired by
the observation that ants can �nd the shortest paths
between food sources and their nest even though they
are almost blind. Individual ants choose their paths
from the nest to the food source in an essentially
random fashion [2]. While walking from food sources
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to the nest and vice versa, however, ants deposit on
the ground a substance called pheromone forming in
this way a pheromone trail. Ants can smell pheromone
and, when choosing their way, they tend to choose
in probability paths marked by strong pheromone
concentrations. The pheromone trail acts as a form
of indirect communication called stigmergy [3] helping
the ants to �nd their way back to the food source or
to the nest. Also, it can be used by other ants to
�nd the location of the food sources found by their
nest mates. It has been shown experimentally [4] that
this pheromone trail following behavior can give rise,
once employed by a colony of ants, to the emergence of
shortest paths.

The searching behavior of Ant Colony Optimiza-
tion Algorithms (ACOA) can be characterized by two
main features [5]; exploration and exploitation. Explo-
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ration is the ability of the algorithm to broadly search
through the solution space, while exploitation is the
ability of the algorithm to search thoroughly in the lo-
cal neighborhood where good solutions have previously
been found. Higher exploitation is re
ected in the rapid
convergence of the algorithm to a suboptimal solution
while higher exploration results in a better solution at
higher computational cost due to the slow convergence
of the method. By de�nition, these attributes are in
con
ict with one another. A trade-o� between explo-
ration and exploitation in ant algorithms is, therefore,
vital for a logical balance between the optimality of the
solution and the e�ciency of the method. To encourage
exploitation, techniques have been adopted to ensure
that information about the best solutions govern the
search process. Bullnheimer et al. [6] suggested an
elitism strategy, where information about the best
solution is emphasized in the algorithms' search pro-
cedure. Dorigo and Gambardella [7] used a technique
to con�ne the search to the local neighborhood of the
best solution. Dorigo et al. [8] used local optimizers to
further improve good solutions. The biggest problem
that can be caused by such exploitative methods
is insu�cient exploration and premature convergence
to sub-optimal solutions. Di�erent remedies, in the
form of anti-convergence techniques, are suggested for
premature convergence phenomena often encountered
when using these exploitative methods. The most
notable of these methods is the Max-Min Ant System
(MMAS) proposed by Stutzle and Hoos [9] in which
the pheromone trails are adjusted at each iteration
such that no one solution dominates the stochastic
selection process. Afshar [10] has recently proposed
an alternative form of the ant's stochastic decision
policy, which overcomes the stagnation phenomena
often encountered with the algorithms using an elitist
strategy. The proposed method has the advantage
of not introducing a free parameter while producing
comparable results with other anti-stagnation methods.

A new anti-stagnation method is proposed in this
paper to be used with the elitist strategy of pheromone
updating in ACO algorithms. The method is based on
the observation that at the stagnation point, the colony
is dominated by one solution, which may or may not be
the global best solution of the search depending on the
pheromone updating procedure used. The proposed
method uses a Pheromone Replacement Mechanism
(PRM) to ensure that the colony is only dominated by
the global best solution when stagnation occurs. This
mechanism is advantageous, as it enables one to exactly
calculate the number of global best solutions created
at each iteration. The global best solutions of the
iteration are mutated such that a prede�ned number
of these solutions survive the mutation process. Two
di�erent mutation mechanisms, namely deterministic
and probabilistic mutations, are devised and used. The

proposed method is used here in conjunction with the
ant system using the elitist strategy and, hence the
name Elitist Mutated Ant System (EMAS) is used for
the resulting algorithm. Application of the proposed
method to one of the benchmark problems in the
pipe network optimization literature is addressed and
the results are compared with that of MMAS. The
experiments show the proposed method is able to
produce comparable results to that of MMAS while
introducing less free parameters.

ANT COLONY OPTIMIZATION
ALGORITHM

In the Ant Colony Optimization (ACO) meta-heuristic,
a colony of arti�cial ants cooperates in �nding good
solutions to discrete optimization problems. Applica-
tion of the ACO algorithm to arbitrary combinatorial
optimization problems requires that the problem be
projected on a graph [7]. Consider a graph, G =
(D;L;C), in which D = fd1; d2; � � � ; dng is the set
of decision points at which some decisions are to be
made, L = flijg is the set of options, j = 1; 2; � � � ; J , at
each of the decision points, i = 1; 2; � � � ; n, and �nally
C = fcijg is the set of costs associated with options
L = flijg. The components of sets D and L may be
constrained if required. A path on the graph is called a
solution (') and the minimum cost path on the graph is
called the optimal solution ('�). The cost of a solution
is denoted by f(') and the cost of the optimal solution
by f('�).

The basic steps in ACO algorithms [2] may be
de�ned as follows:

1. m ants are randomly placed on the n decision points
of the problem and the amount of pheromone trail
on all options are initialized to some proper value
at the start of the computation;

2. A transition rule is used for ant k at each decision
point i to decide which option is to be selected.
Once the option at the current decision point is
selected, the ant moves to the next decision point
and a solution is incrementally created by ant k as
it moves from one point to the next. This procedure
is repeated until all decision points of the problem
are covered and a complete solution is constructed
by ant k. The transition rule used in the original
ant system is de�ned as follows [2]:

pij(k; t) =
[�ij(t)]�[�ij ]�
JP
j=1

[�ij(t)]�[�ij ]�
; (1)

where pij(k; t) is the probability that ant k selects
option lij(t) for the ith decision at iteration t; �ij(t)
is the concentration of pheromone on option lij
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at iteration t; �ij = 1
(cij) is the heuristic value

representing the cost of choosing option j at point
i, and � and � are two parameters that control the
relative weight of the pheromone trail and heuristic
value referred to as the pheromone and the heuristic
sensitivity parameter, respectively. The heuristic
value, �ij , is analogous to providing the ants with
sight and is sometimes called visibility. This value
is calculated once at the start of the algorithm and
is not changed during the computation. The role
of parameters � and � can be best described as
follows: If � = 0, the cheapest options are more
likely to be selected, leading to a classical stochastic
greedy algorithm. If, on the contrary, � = 0, only
pheromone ampli�cation is at work, which will lead
to the pre-mature convergence of the method to a
strongly sub-optimal solution [2];

3. The cost, f('), of the trial solution generated is
calculated. The generation of a complete trial
solution and calculation of the corresponding cost
is called a cycle (k);

4. Steps 2 and 3 are repeated for all m ants of the
colony at the end of which m trial solutions are
created and their costs are calculated. Generation
of m trial solutions and calculation of their corre-
sponding costs is referred to as an iteration (t);

5. The pheromone is updated at the end of each
iteration. The general form of the pheromone
updating used in the ant system is as follows [2]:

�ij(t+ 1) = ��ij(t+ 1) + ��ij ; (2)

where �ij(t + 1) is the amount of pheromone trail
on option j of the ith decision point, i.e. option
lij at iteration t + 1; �ij(t) is the concentration of
pheromone on option lij at iteration t; 0 � � � 1 is
the coe�cient representing pheromone evaporation,
and ��ij is the change in pheromone concentra-
tion associated with option lij . The amount of
pheromone trail, �ij(t), associated with option lij
is intended to represent the learned desirability of
choosing option j when in decision point i. The
pheromone trail information is changed during the
problem solution to re
ect the experience acquired
by the ants during problem solving. The main role
of pheromone evaporation is to avoid stagnation,
that is, the situation in which all ants end up doing
the same tour. In addition, evaporation reduces the
likelihood that high cost solutions will be selected
in future cycles.

Di�erent methods are suggested for calculating
pheromone change. In the original ant system sug-
gested by Dorigo et al. [2], all ants deposit pheromone
on the options they have selected to produce the

solution,

��ij =
mX
k=1

��kij ; (3)

in which ��kij is the pheromone deposited by ant k on
option lij during iteration t. The amount of pheromone
change is usually de�ned as [2]:

��kij =

(
R

f(')k if option (i; j) is chosen by ant k
0 otherwise (4)

where f(')k is the cost of the solution produced by ant
k, and R is a quantity related to the pheromone trail,
called the pheromone reward factor. The amount of
pheromone added to each of the options during a cycle
is a function of the cost of the trial solution generated.
The better the trial solution, and hence the lower the
cost, the larger the amount of pheromone added to the
option. Consequently, solution components that are
used by the best ant and which form a part of the lower
cost solution receive more pheromone and are more
likely to be selected by future ants. This choice clearly
helps to direct the search towards good solutions.

At the end of each iteration, each ant has gener-
ated a trial solution. The pheromone is updated before
the next iteration starts. This process is continued
until the iteration counter reaches its maximum value
de�ned by the user. A note has to be added regarding
the feasibility of the solutions created by ants in con-
strained optimization problems. If the constraints can
be explicitly de�ned in terms of the options available at
a decision point, the ants are forced to create feasible
solutions by limiting the available options to those
leading to feasible solutions. In TSP, for which the ant
algorithms were originally devised and were tested on,
the feasibility of the solution requires that each point
is visited once and only once and that the �nishing
point is the same as the starting one. This is not,
however, possible in optimization problems such as pipe
network optimization problems, where the constrained
are implicitly de�ned in terms of the options and,
therefore, the feasibility of the solution is only known
when the solution is totally created. In these problems,
a higher total cost is usually associated to the infeasible
solutions via use of a penalty function to discourage the
ants from taking options which constitute parts of these
solutions.

ELITIST STRATEGIES

In the ant system described in the previous section,
all the ants contribute to the pheromone change cal-
culation de�ned by Equation 3. This means that
options that have been selected before will have a
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higher chance of selection in future iterations. This
pheromone updating rule is of a highly explorative
nature. The exploitation, on the other hand, is only
re
ected in Equation 4, where the pheromone changes
caused by better solutions are calculated to be higher
than other solutions. The experience shows, however,
that the exploitation introduced into the method by
Equation 4 is not enough to balance the exploration
present in the algorithm. This is usually re
ected
in slower convergence of the method or convergence
to the sub-optimal solutions depending on the value
of the evaporation factor used. Di�erent methods
are suggested to regulate a trade-o� between the
exploitation of the best solutions (iteration-best and
global-best) and further exploration of the solution
space. Dorigo and Gambardella [7] presented the Ant
Colony System (ACS), which includes additional rules
that probabilistically determine whether an ant is to
act in an exploitative or explorative manner at each
decision point. Another mechanism used within ACS
is the local updating of the pheromone of the ant's
selected options immediately after it has generated its
solution, such that the reselection of options within an
iteration is discouraged, leading to further exploration
of the method. The global updating rule in ACS is
similar to that in AS, but in ACS, only the path with
the global-best solution receives additional pheromone.
This updating rule clearly acts as an encouragement for
exploitation, as only the best solution is reinforced with
additional pheromone. To exploit information about
the global-best solution, Dorigo et al. [2] proposed the
use of an algorithm known as the Elitist Ant System
(ASelite). The updating rule in ASelite is the same as
that of AS, except that in ASelite the global-best ant is
also allowed to contribute to the pheromone change �
times at each iteration. The updating rule for ASelite
encourages both exploration (as each of the m solutions
found by the colony receive a pheromone addition) and
exploitation, as the global-best path is reinforced with
the greatest amount of pheromone. As � ! 1, the
emphasis on exploitation is greater. Another method
further developing the idea of elitism is the elitist-
Rank Any System (ASrank) proposed by Bullnheimer
et al. [6], which involves a rank-based updating scheme.
At the end of an iteration, � elitist ants reinforce the
current global best path, as in ASelite, and the ants that
found the top � � 1 solutions within the iteration add
pheromone to their paths with a scaling factor related
to the rank of their solution. The decision rule for the
ASrank is the same as that for AS.

MAX-MIN ANT SYSTEM

Max-Min Ant System (MMAS) suggested by Stutzle
and Hoos [9] is yet another method that employs
the idea of elitism to introduce exploitation into the

original ant system. The provision of exploitation
is made in MMAS by the addition of pheromone to
only the iteration-best ant's path at the end of each
iteration. To further exploit good information, MMAS
uses the global-best solution to update the pheromone
trail every Tgb iterations. The MMAS updating scheme
is then given by:

��ij(t) = �� ibij (t) + ��gbij (t)INft=Tgbg; (5)

where N is the set of natural numbers and �� ibij (t)
and ��gbij (t) are the pheromone addition given by the
iteration-best and global-best ants, respectively.

Premature convergence to sub-optimal solutions
is an issue that can be experienced by all ACO algo-
rithms, especially those that use an elitist strategy of
pheromone updating. To overcome this problem, whilst
still allowing for exploitation, Stutzle and Hoos [9]
proposed the provision of dynamically evolving bounds
on pheromone trail intensities such that the pheromone
intensity on all paths is always within a speci�ed range.
As a result, all paths will have a non-trivial probability
of being selected and, thus, a wider exploration of the
search space is encouraged. MMAS uses upper and
lower bounds to ensure that pheromone intensities lie
within a given range, which is calculated based on some
analytical reasoning. The upper pheromone bound at
iteration t is given by [9]:

�max(t) =
1

1� �
R

f(')gb
: (6)

This expression is equivalent to the asymptotic
pheromone limit of an option receiving a pheromone
addition ofR=f(')gb and decaying by a factor of 1�� at
the end of each iteration. The upper bound as de�ned
in Equation 6, was found to be of lesser importance,
while the lower limit played a more decisive role.
Stutzle and Hoos [9] introduced the following formula
for the calculation of the lower trail strength limit based
on some analytical arguments:

�min =
�max:(1� pdec)
(Javg � 1):pdec ; pdec = (pbest)1=n; (7)

where �min represents the lower limit for the pheromone
trail strength; pdec is the probability that an ant
constructs each component of the best solution again;
pbest is the probability that the best solution is con-
structed again and Javg is the average number of
options available at decision points of the problem.
MMAS, as formulated in Stutzle and Hoos [9], also
incorporates another mechanism known as Pheromone
Trail Smoothing (PTS). This mechanism reduces the
relative di�erence between pheromone intensities and
further encourages exploration. The PTS operation
performed at the end of each iteration is given by:

�ij(t) �ij(t) + �(�max(t)� �ij(t)); (8)
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where 0 � � � 1 is the PTS coe�cient. If � = 0,
the PTS mechanism has no e�ect whereas if � = 1, all
pheromone trails are scaled up to �max(t). In addition
to these additional mechanisms, MMAS uses the same
decision policy as AS.

PIPE NETWORK OPTIMIZATION

Due to the high costs associated with pipe networks,
much research over the last decades has been dedicated
to the development of methods to minimize the capital
costs associated with such an infrastructure. Within
the last decade, many researchers have shifted the
focus of pipe network optimization from traditional
techniques based on linear and nonlinear programming
to the implementation of heuristic methods derived
from nature [5] namely: Genetic Algorithms (GAs) [11-
16], simulated annealing [17] and Ant Colony Opti-
mization (ACO) [10,18,19]. The pipe network opti-
mization problem in its simplest form is de�ned as
selecting the diameter of each pipe of the network so
that the resulting network has a minimum cost while
meeting the required conditions. These conditions are
often considered as pipe velocities and nodal pressures
remaining in a pre-speci�ed range de�ned by maximum
and minimum velocity and pressure values. Here, each
pipe is a decision point at which the diameter of the
pipe is to be determined. The components of the
decision set, D = fd1; d2; � � � di; � � � ; dng, are, therefore,
the existing pipes of the network, where di represents
the ith pipe of the network. The pipe diameters are
usually selected from a set of commercially available
diameters, ' = f'ijg, which may or may not be
the same for all the pipes. Assuming that these
diameters are the same for all the pipes, then ' =
('1; '2; � � � ; 'J ) would represent the list of available
options at each and every decision point of the problem.
If ucj is de�ned as the per unit length cost of the pipe
with diameter 'j , cost cij associated to option 'j at
decision point di can now be calculated as the product
of per unit cost ucj and length lei of the link under
consideration. The cost of a trial solution, f('), which
may or may not be a feasible solution, is now calculated
as the sum of the links cost plus a penalty term de�ned
as:

f(') =
nX
i=1

ucj � lei + �pCSV; (9)

CSV =

(
nX
i=1

�
1� Vi

Vmin

�
+

nX
i=1

�
Vi
Vmax

� 1
�

+
nnX
in=1

�
1� Hin

Hmin

�
+

nnX
in=1

�
Hin

Hmax
� 1
�)

;

in which n and nn are the number of existing pipes
and nodes, respectively; Hin is the nodal head; Hmin
and Hmax are minimum and maximum allowable hy-
draulic head; Vi is the pipe velocity; Vmin and Vmax
are minimum and maximum allowable 
ow velocity;
CSV represents a measure of the head and velocity
constraint violation of the trial solution and �p is the
penalty parameter with a large enough value to ensure
that any infeasible solution will have a higher total cost
than any feasible solution. It should be noted that
in calculating the CSV , the summation ranges over
those nodes and pipes at which a violation of pressure
and velocity constraints occurs, i.e. the terms in each
parenthesis are positive. Here, the penalty parameter
is taken as the cost of the most expensive network,
i.e. a network with all its pipes having the largest
possible diameter. For a given network, the nodal
pressures and pipe velocities are obtained via the use
of a simulation program that explicitly solves the set
of hydraulic constraints for nodal heads [20]. This,
however, requires the de�nition of some parameters in
the Hazen-Williams equation, which states the relation
between head loss and 
ow in each link. Here, a Hazen-
Williams formula of the type:

hf = �L
�
Q
C

��
D�
 ; (10)

is used, in which L = length of pipe; Q = 
ow rate
of pipe; C = Hazen-Williams coe�cient, D = internal
diameter of pipe and: � = 1:852, 
 = 4:871 and � =
10:667 for q in cubic meters per hour and d in inches
(equivalent to � = 4:727 for D in feet and Q in cubic
feet per second) are Hazen-Williams constants as used
in EPANET 2.0.

The test problem considered here concerns the
rehabilitation of the New York City water supply
network with 21 pipes, 20 demand nodes and one
reservoir as shown in Figure 1 [11]. The commercially
available pipe diameters and their respective costs are
listed in Table 1, while the pipe and nodal data of the
existing network are shown in Table 2. This table is
augmented by a virtual zero-diameter cost equal to half
of the cheapest diameter to enable the calculation of
local heuristics for all available options. This problem
has been used as a case study by many researchers using
genetic algorithms [11,12,15,16,21]; most recently by
Maier et al. [18]; Zecchin et al. [22] and Afshar [10]
using ACO algorithms.

ELITIST-MUTATED ANT SYSTEM (EMAS)

MMAS, as de�ned above, su�ers from some shortcom-
ings. Firstly, the argument behind MMAS is based
on the strong assumption that around good solutions
other good or even better solutions are located. This
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Figure 1. New York tunnel network.

Table 1. Pipe cost data for New York network.

Diameter Pipe Cost
(inch) (mm) ($/ft) ($/m)

36 (910) 93.5 (306.8)
48 (1220) 134.0 (439.6)
60 (1520) 176.0 (577.4)
72 (1830) 221.0 (725.1)
84 (2130) 267.0 (876.0)
96 (2440) 316.0 (1036.8)
108 (2740) 365.0 (1197.5)
120 (3050) 417.0 (1368.1)
132 (3350) 469.0 (1538.7)
144 (3660) 522.0 (1712.6)
156 (3960) 577.0 (1893.0)
168 (4270) 632.0 (2073.5)
180 (4570) 689.0 (2260.5)
192 (4880) 746.0 (2447.5)
204 (5180) 804.0 (2637.8)

is de�nitely the case for TSP, the problem for which
the MMAS is proposed, as it is shown that reason-
ably good tours are located in a small region of the
search space. This is not necessarily true for other
problems such as pipe network optimization problems
in which good solutions may be surrounded by costly

infeasible solutions. The second is that the trail limits
and, in particular, the lower limit used in MMAS
will e�ectively come into play when a best found
solution dominates the colony to encourage the ant
to create some other solutions using the components
of this solution. When an elitist strategy is used for
pheromone updating, the trail intensities on all the
options available at an arbitrary decision point are
nearly zero except for the option corresponding to the
best found solution. MMAS calculates the lower bound
of the trail intensities for a given value of pbest and
raises the near-zero value of all options to this value.
At this moment, all the options except one will have
the same non-zero trail intensity. This will of course
increase the chance of other options to constitute part
of the next iteration solutions but in a random fashion.
The ants will be required to take a random walk in an
arti�cially widened search space around the dominating
solution. And, �nally, the MMAS introduces some
additional free parameters such as pbest, Tgb and �
in addition to �, �, �, Q and m, which are used
by all ACO algorithms. While some heuristics are
derived for the �rst set of parameters [19], the setting
of the second set is subject to trial and error. The
value of these parameters should be tuned for the
best performance of the algorithm prior to the main
application of the method. This, of course, adds to
the computational requirements of MMAS compared
to those of the original ant system.

To introduce the proposed method, �rst consider
the role of the additional parameters, pbest, Tgb and �
used in MMAS. Parameters pbest and � are both meant
to introduce exploration into the algorithm as de�ned
earlier. The exploration increases with the decreasing
value of pbest and the increasing value of �. These
parameters are not, however, independent. Assuming
that the PTS operation de�ned by Equation 8 is
followed by the implementation of Equation 7 using
prede�ned pbest, then it is highly probable that for
large enough values of PTS parameter, �, the smoothed
pheromone trails calculated by Equation 8 will be
higher than the lower bound �min de�ned by Equation 7
leading to the redundancy of this equation. If, on
the other hand, the PTS operation is preceded by the
implementation of pbest, then the PTS mechanism leads
to a mere constant scaling of the calculated minimum
pheromone trails, �min, on the options which do not
constitute a part of the dominating solution. This
e�ect can be clearly achieved by using a lower value
of pbest without having to use the PTS mechanism. It
can, therefore, be argued that only one of these two
mechanisms is needed to introduce the required explo-
ration into MMAS. Parameter pbest has the advantage
of easier setting as it carries a physical meaning, i.e.
the probability that the best solution is created by
all ants. It is, therefore, reasonable to disregard the
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Table 2. Pipe and nodal data for New York tunnel network.

Pipe Data Nodal Data

Pipe Start Node End Node Length
(m)

Existing Diameter
(mm)

Node Demand
(l/s)

Min.
(ft)

Total Head
(m)

1 1 2 3535.6 4572 1 Reservoir 300 91.4

2 2 3 6035.0 4572 2 2616 255 77.72

3 3 4 2225.0 4572 3 2616 255 77.72

4 4 5 2529.8 4572 4 2497 255 77.72

5 5 6 2621.2 4572 5 2497 255 77.72

6 6 7 5821.6 4572 6 2497 255 77.72

7 7 8 2926.0 3353 7 2497 255 77.72

8 8 9 3810.0 3353 8 2497 255 77.72

9 9 10 2926.0 4572 9 4813 255 77.72

10 11 9 3413.7 5182 10 28 255 77.72

11 12 11 4419.6 5182 11 4813 255 77.72

12 13 12 3718.5 5182 12 3315 255 77.72

13 14 13 7345.6 5182 13 3315 255 77.72

14 15 14 6431.2 5182 14 2616 255 77.72

15 1 15 4724.4 5182 15 2616 255 77.72

16 10 17 8046.7 1829 16 4813 260 79.25

17 12 18 9509.7 1829 17 1628 272.80 83.15

18 18 19 7315.2 1524 18 3315 255 77.72

19 11 20 4389.1 1524 19 3315 255 77.72

20 20 16 11704.3 1524 20 4813 255 77.72

21 9 16 8046.7 1829

PTS operation by assuming a value of zero for �
and only tune pbest for balancing the exploitation and
exploration of the MMAS.

Now, consider the e�ect of Tgb as used in Equa-
tion 5. This equation states that the global-best
path should be reinforced every Tgb iteration. For
very large values of this parameter, only iteration-best
solutions are used to update the pheromone trail. In
this situation, it is possible that the search does not
converge on a single solution or otherwise converge
to a solution di�erent from the global-best solution,
depending on the value of the evaporation factor, �,
used. For the values of � close to 1.0, MMAS may fail to
converge and for small enough values of �, stagnation
at the sub-optimal solution may occur. In the �rst
case, implementation of Equation 7 will be redundant,
since this mechanism comes into e�ect when stagnation
starts to take place. Implementation of Equation 7
in the second case will lead to a search around a
sub-optimal solution, which will clearly be ine�cient.
Small values of Tgb, with a minimum value of one,
result in higher exploitation of the global-best solution,
which is often re
ected in the colony being dominated
by the current global-best solution. In other words,

the role of the Tgb is merely to ensure that the path
with maximum pheromone intensity corresponds to the
current global-best solution at all stages of the search.
An experiment is carried out at this stage to verify
this interpretation of Tgb. The example problem is
solved with di�erent values of Tgb = 1; 10 and 1 for
�xed values of other parameters, � = 1, � = 0:25,
� = 0:98, m = 50 and pbest = 1:0. These values
are chosen following heuristics suggested by Zecchin et
al. [19] and some preliminary runs. Figures 2 to 5 show
the variations of the averaged number of Global-Best
Solutions (GBS) and Maximum Pheromone Intensity
Solutions (MPIS) during the search process for di�erent
values of Tgb obtained from ten runs using di�erent
initial colonies. It is clearly seen from Figure 2 that for
a large value of Tgb = 1, the number of GBS and
MPIS are di�erent during the search process. The
di�erence increases as the solution corresponding to
maximum pheromone intensity dominates the colony.
This di�erence indicates that a pheromone updating
rule that only uses iteration-best solutions may lead
to domination of a solution di�erent from the global-
best solution. It is obvious that implementation of
Equation 7 with pbest < 1 will be ine�cient in this
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Figure 2. Variation of the average number of GBS and
MPIS with the number of evaluations for ten runs
(Tgb =1).

Figure 3. Variation of the average number of GBS and
MPIS with the number of evaluations for ten runs
(Tgb = 10).

situation. The di�erence between the number of GBS
and MPIS decreases with a decreasing value of Tgb as
illustrated in Figures 3 and 4. It can, therefore, be
argued that the main e�ect of reinforcing the global-
best path in MMAS is to make sure that the solution
corresponding to maximum pheromone intensity is the
current global-best solution of the search. In this
situation, implementation of Equation 7 with pbest < 1
will result in a colony of solutions constructed on
and around the global-best solution of the search.
This, of course, increases the chance of improving
the current GBS compared to a situation in which
the colony is constructed on and around an inferior
solution; a situation which happens for larger values of
Tgb. It is also instructive to note that small values
of Tgb (reinforcing the global-best path more often)
will result in more exploitation, which is re
ected in
faster stagnation of the search; an e�ect similar to that
expected from the evaporation factor. This means that
both evaporation factor � and Tgb play an exploitative
role in MMAS. A successful implementation of the

Figure 4. Variation of the average number of GBS and
MPIS with the number of evaluations for ten runs
(Tgb = 1).

Figure 5. Variation of the average GBS cost for di�erent
values of Tgb.

algorithm, therefore, requires a careful tuning of these
parameters to ensure that a) the colony has enough
time to explore the search space before domination
of MPIS, and b) the MPIS is the same as GBS so
that the colony is dominated by the current GBS and
not any other inferior solution. It is instructive to
see the performances of MMAS for di�erent values of
parameter Tgb. Figure 5 shows the variation of average
GBS costs of ten runs using di�erent initial colonies for
Tgb = 1; 10,1 and pbest = 0:05. The best performance
of the MMAS is achieved for Tgb = 10 in terms
of convergence characteristics and the quality of the
solution. The algorithm shows the worst performance
for Tgb = 1 due to higher exploitation which is not
balanced by the exploration introduced via the use of
pbest = 0:05. MMAS using Tgb = 1 shows not only
inferior, though close, convergence behavior to MMAS
using Tgb = 10, but also a lower success rate of 1 in
ten runs in locating the global solution of the problem,
with a cost of $38.63M compared to the success rate of 3
achieved by the latter. This can be attributed to the
fact that in the latter case, the maximum pheromone
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intensity path does not correspond to the GBS in all
ten runs as shown earlier in Figure 2. To complete
the observations, another experiment is carried out to
examine the convergence behavior of the algorithm for
� = 1, pbest = 1 and Tgb = 1; 10 and 1. The results,
not shown here, indicated that irrespective of the level
of exploitation, the value of Tgb, the algorithm is not
convergent when no evaporation is present (� = 1).
For all values of Tgb used, the average number of GBS
and MPIS was always below 2% of the colony size at all
stages of the search. It is obvious that the introduction
of further exploration via implementation of Equation 7
with pbest < 1 will be redundant in this situation. It
can, therefore, be argued that in MMAS, evaporation
(� < 1) guarantees convergence; reinforcement of GBS
with a proper value of Tgb ensures that the algorithm
converges on the GBS; and �nally the adjustment of
the lower pheromone bound with pbest < 1 enlarges
the search space around the GBS, providing the ants
with the means to improve current GBS.

The proposed Elitist-Mutated Ant System
(EMAS) uses the same decision policy as that
of AS and a pheromone updating rule in which
only iteration-best solutions are reinforced at each
iteration. To ensure that the algorithm only converges
to the GBS, EMAS uses a simple but e�ective
parameter-free Pheromone Replacement Mechanism
(PRM) in which the pheromone intensity of the GBS
is replaced with that of the path de�ned by maximum
pheromone intensity and vice versa whenever a new
GBS is located. This will guarantee that the current
global-best solution has the maximum pheromone
trail and, therefore, has a very high chance of being
selected as the iteration-best solution of the iteration
to be used in the pheromone updating process. An
experiment is carried out at this stage to verify the
e�ectiveness of the proposed PRM. Figure 6 shows
the average number of GBS and MPIS of ten runs

Figure 6. Variation of the average number of GBS during
the search for di�erent values of evaporation factor using
PRM.

versus the number of iterations for three values of
evaporation factor � = 1, 0.995 and 0.99, with other
parameters chosen as � = 1, � = 0:25, m = 50 and
pbest = 1:0. It should be noted that each curve in
Figure 6 is representative of both the number of GBS
and MPIS as these have been found to be virtually the
same. It is interestingly seen that the PRM introduces
enough exploitation into the algorithm, even when no
evaporation, � = 1, is introduced into the algorithm.
The algorithm shows faster stagnation with decreasing
values of evaporation factor as expected. The
algorithm, however, has enough chance to explore
the search space before stagnation starts, when no
evaporation is used. The proposed PRM seems to
be very advantageous, as it simulates the e�ect of
both GBS reinforcement and evaporation without
introducing any free parameter. It can therefore be
expected that PRM with no or little evaporation
performs better as the resulting search process will
have enough time to explore the search space before
stagnating at the current global-best solution. This
expectation is indeed ful�lled as shown in Figure 7
where the average GBS cost is seen to decrease with
an increasing value of the evaporation factor. The
minimum average solution cost, in fact, is obtained
when no evaporation is used. The proposed PRM,
therefore, ensures enough exploitation and convergence
of the method to the GBS solution irrespective of
the amount of evaporation used. The averaged GBS
costs and the success rate of the algorithm for the
values of evaporation factor � = 1, 0.995 and 0.99 were
$39.61M,2, $39.82M,1 and $39.93M,1, respectively.

An explorative feature can now be introduced to
balance the exploitation embedded in the algorithm,
via use of PRM, to replace the lower bound scaling
(Equation 7) of MMAS. This is achieved using the
mutation mechanism commonly used in GAs on the
sub-colony of current global-best solutions created at
each iteration once the stagnation is started. Two

Figure 7. Variation of the average GBS cost for di�erent
values of evaporation factor using PRM.
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mutation procedures, one deterministic and the other
stochastic are introduced and used here. In the
deterministic method, a one-bit mutation is carried out
on (Mgb �m:Pgb) of the global-best solutions at each
iteration where Pgb is the ratio of the number of global-
best solutions surviving the mutation set by the user
and Mgb is the number of global-best solutions created
at each iteration. With the PRM used, the number
of global-best solutions can be easily calculated by
checking the colony against the maximum pheromone
intensity path. In the second, stochastic method,
all the Mgb global-best solutions undergo a uniform
mutation with probability Pm de�ned as:

Pm = 1�
�
m
Pgb
Mgb

� 1
n

; (11)

where n denotes the number of decision points of the
problem and m is the colony size as de�ned earlier. The
probability of mutation ensures that, on average, m:Pgb
of global-best solutions survive the mutation. It can
be seen that the mutation mechanism is activated only
when Mgb > m:Pgb in both of the methods. It should
be noted that Pgb carries a meaning similar to that of
Pbest used in MMAS. An experiment is now carried out
to verify the e�ciency of the proposed mutation mech-
anisms. Figure 8 compares the variation of the average
GBS cost, using �rst and second mutation mechanisms
denoted by EMAS1 and EMAS2, respectively, with
that of the best performing MMAS. EMAS results
were obtained using �ve parameter values: � = 1,
� = 0:25, � = 1:0, Pgb = 0:05 and m = 50, while
MMAS required the tuning of six parameters as � = 1,
� = 0:25, � = 0:98, Tgb = 10, pbest = 0:05 and
m = 50. Considering the exploitative behavior of
EMAS with no evaporation, there is actually no need
to tune for the evaporation factor. The number of
free parameters of EMAS, therefore, reduces to four,
compared to six for MMAS. It is seen that the average

Figure 8. Variation of the average GBS cost for the best
performing MMAS and proposed EMAS.

GBS cost obtained by EMAS1 ($39.44M) is marginally
inferior to that of MMAS ($39.32M) while EMAS2 with
an average GBS cost of $39.20M performs marginally
better than MMAS. All three methods had a success
rate of 3 out of ten in locating the optimum solution of
$38.64M, which has been reported by other researchers
using di�erent methods [18,23]. It is obvious that the
mutations introduced are responsible for improving the
average GBS cost and the success rate of the PRM from
$39.61M,2 to $39.44M,3 and $39.20M,3 obtained by
EMAS1 and EMAS2, respectively. It is also instructive
to compare the number of average global-best solutions
for three algorithms as shown in Figure 9. It is clearly
seen that both of the mutation mechanisms used in
EMAS were successful to control the number of GBS
around m:Pgb = 2:5 while this number is very high
for MMAS. This is, in fact, another feature of the
proposed EMAS enabling the method to compete with
MMAS using less tuning parameters. The proposed
EMAS is, therefore, computationally less demanding
than MMAS while producing comparable results.

CONCLUDING REMARKS

A new ACO algorithm was presented as an alternative
to the Max-Min Ant System. The method exploits
automatically balanced exploitative and explorative
features. The exploitation of the method is provided
by a simple but e�ective free-parameter procedure in
which the global-best solution pheromone intensity is
replaced by the current maximum pheromone trail,
each time the global-best solution is updated. This pro-
cedure was shown to introduce enough exploitation into
the method ensuring the convergence of the search to
the global-best solution, irrespective of the value of the
evaporation factor. The method o�ers the advantage of
exactly predicting the number of global-best solutions
of the iteration without requiring calculation of the cost
of the trial solutions. Two mutation mechanisms, one

Figure 9. Variation of average number of GBS for best
performing MMAS and proposed EMAS.
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deterministic and the other stochastic, were then used
on the predicted global-best solutions to introduce a
balancing exploration into the algorithm. The deter-
ministic approach uses a one-bit mutation on a number
of global-best solutions while in the stochastic one, all
the global-best solutions undergo a uniform mutation
process with an automatically calculated probability.
Both of the mutation procedures were devised such that
a prede�ned number of global-best solutions survive the
mutation. The proposed algorithm was tested against a
benchmark example in the water distribution network
optimization literature and the results compared with
that of MMAS. The results show that the proposed
algorithm produces solutions comparable to that of
MMAS, while introducing less free parameters to be
tuned.
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