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Second-Order Displacement Functions
for Three-Dimensional Discontinuous

Deformation Analysis (3-D DDA)

S.A.R. Beyabanaki1;2;�, A. Jafari2 and M.R. Yeung3

Abstract. The development of second-order displacement functions for a Three-Dimensional Dis-
continuous Deformation Analysis (3-D DDA) is made by incorporating the complete second order terms.
Formulations of sti�ness and force matrices in second-order due to elastic stress, initial stress, point load,
body force, inertia force and �xed point are derived. Two illustrative examples of 3-D beams subjected to
various loads are used to validate the new formulations and code. By contrast, the results calculated for
the same model by use of the original �rst-order 3-D DDA are far from the theoretical solutions.

Keywords: Numerical method; Three-Dimensional Discontinuous Deformation Analysis (3-D DDA);
Second-order displacement functions; Rock mechanics.

INTRODUCTION

Numerical methods applicable to rock mechanics can
be placed in two main categories: (1) Continuum
approaches such as Finite Element Method (FEM)
and Boundary Element Method (BEM) in which the
e�ects of discontinuities are equivalently included in
a rock mass; (2) Discontinuum approaches such as
Distinct Element Method (DEM) and Discontinuous
Deformation Analysis (DDA) in which a rock mass
is regarded as an assemblage of discrete blocks. Al-
though rock mass discontinuities can be modeled in a
discrete manner with FEM and BEM using special joint
elements, the description of discontinuities is usually
di�cult and there are often restrictions on the degree
of deformation permitted [1]. Furthermore, the number
of discontinuities that can be handled is limited. On
the other hand, the Discrete Element Method (DEM)
is generally tailored for problems in which there are
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many material discontinuities placing special emphasis
on how the contacts are handled. It also allows
for large deformations along discontinuities and can
reproduce block movements (translation and rotation)
quite well [2].

The Discontinuous Deformation Analysis (DDA)
method is a recently developed technique that is a
member of the family of DEM methods. It is a
pioneering method used to analyze the mechanical
behavior of discrete blocks. In contrast, DDA as a
complete block kinematics (a key component in dealing
with interacting discrete blocks) guarantees the system
equilibrium at any time and is a real-time analysis.
Both static and dynamic analyses can be conducted
with the DDA method [3].

The method has the following major characteris-
tics [3]:

1. The principle of minimum total potential energy is
used to calculate an approximate solution similar
to FEM;

2. Dynamic and static problems can be solved by
applying the same formulations;

3. Any constitutive law can be incorporated;

4. Any contact criterion (i.e., Mohr-Coulomb crite-
rion), boundary condition (i.e., constraint displace-
ment) and loading condition (i.e., initial stress,
inertia force, volume force, etc.) can be modeled.
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Original DDA formulation utilizes �rst order dis-
placement functions to describe the block movement
and deformation. Therefore, stress or strain is assumed
constant through the block and the capability of block
deformation is limited. This may yield unreasonable
results when the block deformation is large and the
geometry of the block is irregular. In 2-D, to over-
come these limitations, some approaches have been
attempted. An approach to resolve this problem was
to glue small blocks together to form a larger block
using arti�cial joints [4-6] and sub-blocks [7-9]. Some
researchers added �nite element meshes in the blocks,
so that stress variations within the blocks could be
accounted for [10-12]. An alternative approach is to
include more polynomial terms in the displacement
function. Chern et al. [13] and Koo et al. [14] added
the second-order to DDA. Ma et al. [15] and Koo and
Chern [16] implemented the third-order displacement
function in the 2-D DDA method. Hsiung [17] de-
veloped a more general formulation of the 2-D DDA.
The high-order displacement functions made possible
the accurate modeling of complicated stress and strain
�elds in blocks.

In 3-D, there are some works but they use a linear
displacement function.

In this paper, the 3-D DDA with second-order
displacement functions is derived. The details for the
second-order 3-D DDA are given for program coding
and used to calculate three 3-D beams deformation
under various forces and an example of discontinuous
problem.

FUNDAMENTAL OF 3-D DDA

In the DDA method, the formulation of blocks is very
similar to the de�nition of a �nite element mesh. A
problem of the �nite element type is solved in which
all elements of physically isolated blocks are bounded
by pre-existing discontinuities. When the blocks are
in contact, Coulomb's law is applied to the contact
interfaces and the simultaneous equilibrium equations
are formed and solved at each loading or time incre-
ment. The large displacements are the accumulation
of incremental displacements and deformation at each
time step. Within each time step, the incremental
displacements of all points are small and, hence, the
displacements can be reasonably represented by the
�rst order approximation [18].

Block Deformation and Displacement
The motion of an arbitrary point in a 3-D block can be
divided into translations, rotations, normal strains and
shear strains as shown in Figure 1.

Hence, the unknown degree of freedom consists
of 12 unknowns, or 3 of each of these terms, to
describe the motion of a 3-D block. In addition, the

Figure 1. Three-dimensional displacements of block [18].

block displacements function is equivalent to the com-
plete �rst-order displacement approximation; constant
strains and stresses are assumed within each block.
The complete �rst-order displacement function has the
following form:8><>:u = a0 + a1x+ a2y + a3z

� = b0 + b1x+ b2y + b3z
w = c0 + c1x+ c2y + c3z

(1)

where, u; � and w are the displacements of a point
within the block in the X;Y , and Z directions; x; y,
and z are the coordinates of a point within the block;
a0; a1; a2; a3; b0; b1; b2; b3 and c0; c1; c2; c3 are unknown
parameters.

Assume that the coordinates xc; yc; zc are the
center of gravity of a block, and u0; �0; w0 are its dis-
placements; substituting them into Equation 1 results
in:8><>:uc = a0 + a1xc + a2yc + a3zc

�c = b0 + b1xc + b2yc + b3zc
wc = c0 + c1xc + c2yc + c3zc

(2)

Subtracting Equation 2 from Equation 1 gives:8><>:u = uc + a1(x� xc) + a2(y � yc) + a3(z � zc)
� = �c + b1(x� xc) + b2(y � yc) + b3(z � zc)
w = wc + c1(x� xc) + c2(y � yc) + c3(z � zc) (3)

The rotations of a block can be expressed as:8><>:rx = 1
2 (@w@y � @�

@z ) = 1
2 (c2 � b3)

ry = 1
2 (@u@z � @w

@x ) = 1
2 (a3 � c1)

rz = 1
2 (@�@x � @u

@y ) = 1
2 (b1 � a2)

(4)

The normal strains are given by:
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8><>:"x = @u
@x = a1

"y = @�
@y = b2

"z = @w
@z = c3

(5)

and the shear strains are given by:8><>:
1
2yz = 1

2 (@w@y + @�
@z ) = 1

2 (c2 + b3)
1
2zx = 1

2 (@u@z + @w
@x ) = 1

2 (a3 + c1)
1
2xy = 1

2 (@�@x + @u
@y ) = 1

2 (b1 + a2)
(6)

Hence, the parameters in Equation 1 can be computed
as:8><>:a1 ="x; b2 = "y; c3 = "z

c2 = 1
2yz+rx; b3 = 1

2yz�rx; a3 = 1
2zx+ry

c1 = 1
2zx�ry; b1 = 1

2yz+rz; a2 = 1
2xy�rz (7)

Equation 3 can be written as:24u(x; y; z)
�(x; y; z)
w(x; y; z)

35 = [T (x; y; z)]fDg; (8)

where:

[Ti] =241 0 0 �y0 0 z0
0 1 0 x0 �z0 0
0 1 1 0 y0 �x0

x0 0 0 y0=2 0 z0=2
0 y0 0 x0=2 z0=2 0
0 0 z0 0 y0=2 x0=2

35 ;
and:

x0 = x� x0; y0 = y � y0; z0 = z � z0;

[Di] = (u0; �0; w0; rx; ry; rz; "x; "y; "z; xy; yz; zx)T :

Using this equation, the displacements of arbitrary
points in a block can be calculated with fDg, indicating
a vector of unknowns or variables representing the
displacements and deformations of a block.

Simultaneous Equations
Since 3-D DDA conforms to the principle minimum
total potential energy, the total potential energy is
the summation of all potential energy sources for
each block such as those contributed by a) the elastic
deformation of the blocks; b) the initial stresses; c)
the point load on a block; d) the inertia forces; e)
the constraint displacement points. The �xed point is
the point where the prescribed constraint displacement
equals zero in DDA.

For a system with N blocks, the total potential
energy can be expressed in matrix form as follows:

� =
1
2
�fD1gT fD2gT fD3gT � � � fDNgT �2666664

[K11] [K12] [K13] � � � [K1N ]
[K21] [K22] [K23] � � � [K2N ]
[K31] [K32] [K33] � � � [K3N ]

...
...

...
. . .

...
[KN1] [KN2] [KN3] � � � [KNN ]

3777775
2666664
fD1gfD2gfD3g

...
fDNg

3777775
+
�fD1gT fD2gT fD3gT � � � fDNgT �2666664
fF1gfF2gfF3g

...
fFNg

3777775+ C;
(9)

where fDig represent the displacement variables and
fFig indicates the loading and moments caused by
the external forces and stress acting on block i. The
sti�ness submatrices [Kii] depend on the material
properties of block i with [Kij ]i 6=j , being de�ned by
the contacts between blocks i and j; and C is the
energy produced by the friction force. There are 12
displacement variables for each block. As a result, fDig
and fFig are 12 � 1 matrices and [Kij ] is a 12 � 12
matrix.

By minimizing the total energy, the simultaneous
equations can be expressed in matrix form as follows:2666664

[K11] [K12] [K13] � � � [K1N ]
[K21] [K22] [K23] � � � [K2N ]
[K31] [K32] [K33] � � � [K3N ]

...
...

...
. . .

...
[KN1] [KN2] [KN3] � � � [KNN ]

3777775
2666664
fD1gfD2gfD3g

...
fDNg

3777775 =

2666664
fF1gfF2gfF3g

...
fFNg

3777775 : (10)

For only one block, the equilibrium equations for each
time step are derived by minimizing the total potential
energy, �, in each variable. For block i the following
equations:

@�
@u

= 0;
@�
@�

= 0;
@�
@w

= 0; (11)

represent the equilibrium of all loads and contact
forces acting on block i along X;Y and Z directions,
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respectively. The following equations:

@�
@rx

= 0;
@�
@ry

= 0;
@�
@rz

= 0; (12)

represent the moment equilibrium of all loads and con-
tact forces acting on block i. The following equations:(

@�
@"x = 0; @�

@"y = 0; @�
@"z = 0;

@�
@yz = 0; @�

@zx = 0; @�
@xy = 0; (13)

represent the equilibrium of all external forces and
stresses on block i.

The di�erentiations:

@2�
@dri@dsj

; r; s = 1; 2; � � � ; 12; (14)

form a 12� 12 submatrix, which is submatrix [Kij ] in
global Equation 10. The di�erentiations:

�@�(0)
@dri

; r; s = 1; 2; � � � ; 12; (15)

are the free terms of the equilibrium equations derived
by minimizing the total energy, �. Therefore, all terms
of Equation 15 form a 12 � 1 submatrix, which is the
submatrix fFig in Equation 10.

APPROXIMATION OF SECOND-ORDER
DISPLACEMENTS IN 3-D DDA

The complete second-order displacement functions
have the following form:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

u(x; y; z) = u1 + u2x+ u3y + u4z+
u5xy + u6yz + u7xz + u8x2+
u9y2 + u10z2;

�(x; y; z) = �1 + �2x+ �3y + �4z+
�5xy + �6yz + �7xz + �8x2+
�9y2 + �10z2;

w(x; y; z) = w1 + w2x+ w3y + w4z+
w5xy + w6yz + w7xz + w8x2+
w9y2 + w10z2:

(16)

where u(x; y; z); �(x; y; z) and w(x; y; z) are the dis-
placements of a point within the block in the X, Y
and Z directions; x; y and z are the coordinates of a
point within the block; ui(i = 1; 2; � � � ; 10), �i(i =
1; 2; � � � ; 10) and wi(i = 1; 2; � � � ; 10) are unknown
parameters.

Writing in matrix form, the displacement �eld can
be expressed as:24u(x; y; z)

�(x; y; z)
w(x; y; z)

35
3�1

= [C(x; y; z)]3�30fDg30�1; (17)

in which [C(x; y; z)] may be expressed as:

[C(x; y; z)] = [C1 C2]; (18)

that:

[C1] =

241 0 0 x 0 0 y
0 1 0 0 x 0 0
0 0 1 0 0 x 0

0 0 z 0 0 xy 0 0
y 0 0 z 0 0 xy 0
0 y 0 0 z 0 0 xy

35 ;
[C2] =

24yz 0 0 xz 0 0 x2

0 yz 0 0 xz 0 0
0 0 yz 0 0 xz 0

0 0 y2 0 0 z2 0 0
x2 0 0 y2 0 0 z2 0
0 x2 0 0 y2 0 0 z2

35 ;
and the displacement variable vector, fDg, is:

fDg =�
u1 �1 w1 u2 �2 w2 � � � u10 �10 w10

	T : (19)

It is necessary to point out that [C(x; y; z)] and fDg
matrices in the second-order are much di�erent from
[T (x; y; z)] and fDg in the �rst-order 3-D DDA.

Using the second-order displacement functions, it
is possible to approximate the stress �eld by the linear
stress.

SUBMATRICES OF EQUILIBRIUM
EQUATION DERIVATIONS

In this section, the sub matrices of the equilibrium
equation using the second-order displacement functions
are derived as follows.

Submatrix of Block Sti�ness
The strain energy of the elastic stresses of block i is:

�e =
ZZZ
V

1
2
f"igT :f�igdxdydz; (20)

where:

f"g =
�
"x "y "z yz zx xy

	T ; (21)

and:

f�g =
�
�x �y �z �yz �zx �xy

	T : (22)
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Assume the blocks are linearly elastic. Denote:

[Ei] =
Ei

(1� �2
i )(1� 2�i)

�

26666664
1� �i �i �i
�i 1� �i �i
�i �i 1� �i
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1
2 � �i 0 0

0 1
2 � �i 0

0 0 1
2 � �i

37777775 ; (23)

that Ei is Young's modulus and �i is Poisson's ratio.
Therefore, the relationship between stress f�ig and
strain f"ig is expressed as Equation 24:

f�ig = [Ei]:f"ig: (24)

Hence, the strain energy of Equation 20 can be ex-
pressed as:

�e =
ZZZ
V

1
2
f"igT :[Ei]:f"igdxdydz; (25)

the strains can be approximated by:

f"ig = [Bi(x; y; z)]6�30:fDig30�1: (26)

Therefore, the elastic strain energy of the ith block can
be written in matrix form as:

�e =
1
2

ZZZ
V

fDigT

:[Bi]T :[Ei]:[Bi]:fDigdxdydz: (27)

By minimizing the strain energy, it leads to the sti�ness
matrix of the ith block:

[Kii] =
ZZZ
V

[Bi(x; y; z)]T

:[Ei]:[Bi(x; y; z)]dxdydz: (28)

[Kii] is a 30� 30 matrix, which is added to the global
sti�ness matrix.

Submatrix of Initial Stress
In DDA, the computed stresses of the previous time
step will be transferred to the next step as initial stress
loading. For block i, the initial stresses are given by:

f�0
i g = [Ei]:f"0

i g; (29)

then:

f�0
i g = [Ei]:[Bi(x; y; z)]:fD0

i g: (30)

Therefore, the potential energy of the initial stress, ��0 ,
is given by:

��0 =
ZZZ
V

f"igT :f�0
i gdxdydz

= fDigT
0@ZZZ

V

[Bi]T :[Ei]:[Bi]dxdydz

1A fD0
i g:
(31)

After minimizing ��0 , the following 30 � 1 vector is
calculated as follows, then, added to vector Fi in the
global force vector:

fFig = �
ZZZ
V

[Bi]T :[Ei]:[Bi]dxdydzfD0
i g: (32)

Submatrix of Point Loading
For 3-D DDA, the point loading force (Fx; Fy; Fz) can
act on any point (x0; y0; z0) of block i. The potential
energy of the point loading (Fx; Fy; Fz) is simply:

�p = �(Fxu+ Fy� + Fzw)

= �fDigT :[Ci]T :
8<:fxifyifzi :

9=; : (33)

After minimizing �p, the following 30� 1 submatrix is
added to submatrix fFig in the global equation:

Fi = [Ci(x0; y0; z0)]T

8<:fxifyifzi
9=; : (34)

Submatrix of Fixed Points
At point (x0; y0; z0) of the block i, the computed
displacements from the displacement variable fDig of
block i are uc; �c; wc. The strain energy, �f , is:

�f =
Kf

2
(u2
c + �2

c + w2
c ); (35)

therefore:
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�f =
Kf

2
fDigT [Ci(x0; y0; z0)]T [Ci(x0; y0; z0)]fDig:

(36)

By minimizing the potential energy, �f , the following
matrix can then be added to submatrix [Kii] in the
global sti�ness matrix:

[Kii]30�30 = Kf [Ci(x0; y0; z0)]T [Ci(x0; y0; z0)]: (37)

Submatrix of Inertia Forces
Denote (u(t); �(t); w(t)) as the time dependent dis-
placement of any point (x; y; z) of the ith block. The
force of inertia is:

8<:fxfyfz
9=; = �M

0BBBBB@
@2u(t)
@t2

@2�(t)
@t2

@2w(t)
@t2

1CCCCCA ; (38)

where M is the unit mass. The potential energy of the
inertia force of the ith block, �i, is given by:

�i = �
ZZZ
V

(u; �; w)

8<:fxfyfz
9=; dxdydz

=
ZZZ
V

M
@2fDi(t)g

@t2
fDigT [Ci]T [Ci]dxdydz: (39)

Using the Taylor approximation, the following equation
can be obtained:

fDig=fDi(�)g=Di(0)+�
@Di(0)
@t

+
�2

2
@2Di(0)
@t2

;
(40)

where � is the time interval of this time step and fDig
is the displacement at the end of this time step. The
displacement at the beginning of time step Di(0) is
zero. This equation becomes:

fDig = �
@2Di(0)
@t

+
�2

2
@2Di(0)
@t2

: (41)

Assuming a constant acceleration at each time step, we
have:

@2D(t)
@t2

=
2

�2 fDig � 2
�
@Di(t)
@t

=
2

�2 fDig � 2
�

[V0];
(42)

where @2Di(t)
@t2 is the velocity, [V0], at the beginning of

the time step. Thus, Equation 37 becomes:

�i =M
2

�2 fDigfDigT
0@ZZZ

V

[Ci]T [Ci]dxdydz

1A
�M 2

�
fDigT

0@ZZZ
V

[Ci]T [Ci]dxdydz

1A [V0]:
(43)

Hence, the contribution to the global matrix is pre-
sented as:

[Kii]30�30 =
2M
�2

ZZZ
V

[Ci]T [Ci]dxdydz; (44)

and:

[Fi]30�1 =
2M
�

0@ZZZ
V

[Ci]T [Ci]dxdydz

1A [V0]: (45)

It is worth noting that the integration;ZZZ
V

[Ci(x; y; z)]T [Ci(x; y; z)]dxdydz;

is much di�erent from the �rst-order 3-D DDA.

VALIDATION

Four problems are chosen to verify the modi�ed
method. Three of them are related to the behavior
of a single beam under various loading conditions and
one of them is an example of block sliding.

Beam Subjected to Three Loads
As shown in Figure 2, an 8-m long and 1-m deep beam
with unit thickness subjected to three loads at the end
of the beam was used for the validation test. The
material properties of the beam were assumed to be
E = 108 ton/m2 and � = 0:2.

Figure 2. Beam subjected to three forces.
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The axial deformation along the axis of a beam
subjected to an axial load is [19]:

� =
Px
AE

; (46)

where � is the axial deformation, x is the distance
from the �xed end, P is a concentrated load acting
at the middle point of the free end, A is the cross-
sectional area, and E is the Young's modulus of the
beam. The problem was solved by a 1st-order and
the new 2nd-order 3D DDA programmed code. The 3-
D DDA modeling results and the theoretical solutions
along the axis of the beam are presented in Figure 3.

It can be seen from this �gure that the DDA
modeling with the �rst order displacement function
does not give accurate results until a polynomial
displacement function having a second-order is used for
modeling.

The approximate deection of the axis of the
beam is:

� =
P

6EI
(2L3 � 3L2x+ x3); (47)

where L is the length of the beam and I is the
moment of inertia of the cross section of the cantilever.
Deection of the cantilever axis, calculated using Equa-
tion 47, is plotted in Figures 4 and 5 along with a 3-D
DDA solution.

As can be observed, the �rst order approximation
for the displacements in the block is not suitable for
the modeling of bending in related problems. The
modeling results are improved substantially when the
second order polynomials are used. The calculated
deection at the free end is about 73% of the theoretical
value, which could be further improved if third-order
polynomials were used.

This example shows that the derived formulations
and programmed code are working well.

Figure 3. Results of 3-D DDA modeling along the axis of
the beam.

Figure 4. Results of 3-D DDA modeling of beam
deection in Y -direction.

Figure 5. Results of 3-D DDA modeling of beam
deection in Z-direction.

Simply Supported Beam
Figure 6 illustrates a simply supported beam with
details on beam length, material properties and the
load applied. The height of the beam is 1 m. A
concentrated load of 100 tons is applied to the middle
span of the beam.

The deection of the beam axis for this case is:

� = � Px
48EI

(3L2 � 4x2); 0 � x � L
2
; (48)

where P is the concentrated load acting at the middle
span of the beam, E is the Young's modulus of the
beam, I is the moment of inertia of the cross section of
the beam and L is the length of the beam.

The deection of the axis for the simply supported
beam computed from Equation 48 is presented in
Figure 7.

Also, 3-D DDA results, using the �rst- and the
second-order polynomial displacement functions, are
shown in the �gure. It can be observed that signi�cant
improvement can be made by replacing the original
�rst-order polynomial displacement function with the
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Figure 6. Simply supported beam.

Figure 7. Results of 3-D DDA modeling for simply
supported beam.

second-order approximations. The 3-D DDA modeling
using a second-order displacement function gives much
more precise prediction results. The predicted deec-
tion at the middle span of the beam is 0.0% and 36%
of the theoretical value for the �rst- and second-order
polynomials, respectively.

Short Span Beam
The last veri�cation problem is related to a short span
beam subjected to a concentrated load perpendicular
to the beam axis at the free end. The geometry
and material properties of the beam are provided in
Figure 8.

The approximate deection of the axis of the
beam at the free end of the beam is:

� =
PL3

3EI

�
1 +

3E
10G

h2

L2

�
; (49)

where P is the concentrated load, E is the Young's
modulus of the beam, I is the moment of inertia of the
cross section of the beam, G is the shear modulus of
the beam and h and L are the height and length of the
beam, respectively.

In this example, �ve di�erent short span beams
are analyzed using the original and second-order 3-D

Figure 8. Short span beam.

DDA. The deection at the free end of the beams,
calculated using Equation 49 and obtained using �rst
and second-order 3-D DDA, are plotted in Figure 9.
Information regarding the beams and obtained errors
for the original and second-order 3-D DDA modeling is
presented in Table 1. It would appear that using the
second-order displacement functions in 3-D DDA can
give much better results.

Sliding of a Block along a Frictionless Inclined
Plane
In this example (Figure 10), the sliding of a block along
an inclined plane is examined. The interface between
the two blocks is assumed to be frictionless. The values
for the density, Young's modulus and Poisson ratio of
the two blocks are assumed to be 2500 kg/m3, 10 GPa
and 0.2, respectively. The top block is assumed to start
its motion from at-rest conditions (i.e., � = 0). Under
the action of gravitational force, the displacement, s,
of the block along an inclined plane at an angle, �, is
determined analytically as a function of time t, given

Figure 9. Results of 3-D DDA modeling of the short
span beams deection in Z-direction.
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Table 1. Information of the modeled short span beams and obtained errors.

Point Load Beam Beam Beam Theoretical 1st-Order 2nd-Order
no. (kg) Width (m) Height (m) Length (m) Solution (cm) Error (%) Error (%)

1 500 1 1 4 -0.13 96.04 29.26

2 3000 1 2 8 -3.22 98.84 31.59

3 5000 1 2.5 10 -8.38 99.18 31.87

4 7000 1 3 12 -16.88 99.36 32.02

5 9000 1 3.5 14 -29.55 99.47 32.12

Figure 10. Sliding of a block on a frictionless slope.

as:

s(t) =
1
2
at2 =

1
2

(g sin�):t2: (50)

The path of the centroid of the top block, calculated
by the 3-D DDA with second-order displacement func-
tions, is compared with the analytical solution for
a slope inclined at 25�. The results are shown in
Figure 11. It shows that the analytical solution agrees
well with the results computed by the second-order 3-D
DDA.

CONCLUSIONS

In this paper, 3-D DDA with second-order displace-
ment functions is presented. The formulations of
sti�ness and force matrices in second-order due to
elastic stress, initial stress, point load, body force,
inertia force and �xed point are derived. The results of
validation tests show that the second-order approxima-
tion can obtain much better results than the �rst order
polynomials. Such work will bene�t the development
of 3-D DDA as well as other numerical methods. This
approach is suitable for many problems; however, it
may encounter a few di�culties. First, using high-order
displacement functions may be inadequate when the
size of the block is very large or the variation of stress
and strain very rapid. In addition, block faces may
deform and not remain as a plane anymore; existing
3-D DDA contact detection schemes cannot be used

Figure 11. Displacements calculated by analytical
solution and 3-D DDA.

directly. To deal with this di�culty, there is a simple
possible solution. A curved surface can be divided into
areas and may be approximated with at polygons. It
is clear that the accuracy of the proposed technique
depends on the number of polygons. In fact, a curved
face can be de�ned by some at polygons, named sub-
faces here. Each sub-face can be considered as a plane
in the original �rst-order 3-D DDA and its contact may
be detected conventionally.

It is clear that more research on the implementa-
tion of higher order displacement functions in 3-D DDA
is needed to obtain more accurate results.
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