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Implementation and Comparison of a Generalized
Plasticity and Disturbed State Concept for the

Load-Deformation Behavior of Foundations

A.H. Akhaveissy1;�, C.S. Desai2, S.A. Sadrnejad3 and H. Shakib4

Abstract. A nonlinear �nite element method with an eight-noded isoparametric quadrilateral element
is used for the prediction of load-deformation behavior including the bearing capacity of foundations.
A Disturbed State Concept (DSC) with a Hierarchical Single-Surface (HISS) plasticity model with an
associated ow rule, and a Generalized Plasticity Model (GPM) with a non-associated ow rule are used
to characterize the constitutive behavior of soils. The DSC model, however, can allow for non-associative
behavior through the use of disturbance. Both models are able to simulate load-deformation including
softening behavior. However, the GPM is based on the continuum approach while the DSC can allow
for discontinuity due to factors such as microcracking. Predictions by both models show good agreement
with laboratory data. A comparison between the DSC/HISS and generalized plasticity model is presented
and it is found that the DSC/HISS model has certain advantages over the generalized plasticity model. A
modi�ed Terzaghi theory is developed for the bearing capacity based on the dependence of material behavior
and in-situ stress; it can be used to compute the bearing capacity a�ected by in-situ stress.

Keywords: Generalized plasticity; Hiss plasticity; Non-associated ow rule; Terzaghi theory.

INTRODUCTION

The main objective is to implement two available mod-
els in a �nite element procedure for load-deformation
behavior for geotechnical problems. The parameters
for both models for sand are derived from laboratory
triaxial stress-strain curves under various con�ning
pressures. Then, the models are validated at the
element level by comparison of the prediction with
laboratory data. For practical problems, the models
are validated with respect to the load-deformation
behavior of footing on sand.

Constitutive models to analyze geotechnical prob-
lems by the �nite element method are usually based
on von Mises and Drucker-Prager criterion (e.g. [1-
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5]). Although Drucker-Prager and von Mises models
are commonly used, they may not provide su�cient
generality in terms of stress path dependency and
coupling of the volumetric and shear responses. Desai
et al. in [3] analyzed a footing on arti�cial material by
use of the Drucker-Prager, critical state and modi�ed
cap model. They found that the modi�ed cap model
provided better results. Faruque and Desai [6] analyzed
a footing as three dimensional by using a generalized
constitutive model. Altaee et al. [7] analyzed footing
on arti�cial material by use of a bounding surface
model. They compared their results of the bounding
surface plasticity model with those of the Drucker-
Prager, critical state and modi�ed cap model, and
showed that the bounding surface results were better
than those from the other models. Lee and Salgado [8]
estimated the bearing capacity of circular footings
on sands based on the cone penetration test. They
used the elastic shear modulus in the analysis as a
function of the second invariant of deviatoric stress
in order to obtain load-deformation curves. In order
to describe failure and post-failure soil response, the
Drucker-Prager failure criterion was adopted by Lee
and Salgado. They obtained load-settlement curves
from �nite element analyses for di�erent footing sizes
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and relative densities (Dr = 30, 50, 70 and 90%). The
predicted load-settlement curves did not show a limit
load. Therefore, they adopted the load at a settlement
equal to 20% of the footing diameter as the limiting
bearing capacity of the footing. It was found that
both the relative density, Dr, and the lateral earth
pressure ratio, K0, are important factors a�ecting load-
deformation curves; the e�ect of K0 being greater for
lower Dr values. The allowable load at a 25 mm
settlement was also studied.

In this paper, the GP (Generalized Plasticity) and
the DSC/HISS (disturbed state concept/hierarchical
single-surface) plasticity model are implemented to
analyze a footing on sand. These models are able
to simulate softening behavior and provide predictions
of the load-deformation behavior of footings, which
are compared with laboratory data. The DSC/HISS
model possesses certain advantages over the generalized
plasticity model. Then, based on predicted load-
deformation curves, a formula is proposed to determine
the bearing capacity of footing as a�ected by in-situ
stress.

FORMULATION

For analysis of a soil-footing system, a generalized plas-
ticity theory and disturbed state concept are applied
by using the �nite element program in SSINA2D [9]
(Soil Structure Interaction Nonlinear Analysis, two
Dimensional). Descriptions of the two models are given
below.

Generalized Plasticity Model

Zienkiewicz et al. [10] applied a bounding surface
theory as the generalized plasticity model for analysis
of the static and transient loading on soils. They used
the critical state yield surface and modi�ed plastic
modulus, and de�ned a plastic modulus as being the
product of a function of the derivative of the yield
surface with respect to plastic strain and a nonlinear
function of distance between the current yield surface
and the bounding surface. The method of analysis
for sand is described in [11]. Chen and Baladi [12]
expressed stress-strain relations in terms of the hydro-
static and deviatoric components of strain and stress;
this relation can be used simply if there are plasticity
moduli and components of the ow rule vector in
terms of the hydrostatic and deviatoric components of
stress. Pastor et al. [13] proposed a plastic modulus and
ow rule dependent on the dilatancy of soil without
using special yield and potential surfaces [13]. They
de�ned components of the ow rule in the directions
of volumetric and shear deformations. Therefore, the
analysis of geotechnical problems can be implemented
by expressed relations in [12,13]. Liu et al. [14,15]

proposed some changes in the plastic modulus for
analysis of cyclic loading on soils.

In the present work, the relations are reformulated
as general, and the unit vector normal to yield and the
potential surface are determined from the yield and
potential surface, while Pastor et al. [13] de�ned ow
rule as a function of dilatancy without using the yield
and potential surface. The ow rule was de�ned in the
direction of the volumetric (nv) and shear strain (ns)
as [13]:

n = (nv; ns); (1a)

nv =
dp

(1 + d2)
; (1b)

ns =
1p

(1 + d2)
; (1c)

where d represents the dilation in soil and is expressed
as:

d =
d"pv
d"ps

= (1 + �)(M � �); (2a)

� =
q
p
; (2b)

where M can be used as Mg and Mf , which are as
the slopes de�ning zero dilatancy (Figure 1) and � is
the material parameter. The yield (f) and potential
surfaces (g) are found using Equations 1 and 2 as [13]:

f = q �Mf � p� (1 + 1=�)�
�

1�
�
p
pe

���
; (3a)

g = q �Mg � p� (1 + 1=�)�
�

1�
�
p
pg

���
: (3b)

These surfaces are shown schematically in Figure 1,
where p = I1 and q =

p
3J2D. pe and pg are the mean

of initial normal stresses and I1 and J2D are the �rst

Figure 1. Schematic yield and potential surfaces.
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invariant of the stress tensor and the second invariant
of the deviatoric stress tensor, respectively.

The unit vectors normal to yield (f) and potential
surface (g) can be de�ned as:

n =
@f
@�h

@f
@� : @f@�

i 1
2
; (4a)

ng =
@g
@�h

@g
@� : @g@�

i 1
2
: (4b)

The derivatives in Equation 4 can be written as:

@f
@�

= C1
@I1
@�

+ C2
@
p
J2D

@�
+ C3

@J3D

@�
; (5)

where J3D is the third invariant of the deviatoric stress
tensor. Mf and Mg depend on the Lode angle [13]
but, here, they are assumed as a constant; therefore,
the derivative of the yield surface with respect to J3D,
C3, is zero. C1 and C2 are as follows:

C1 =
@f
@I1

= (1 + �)
�
Mf

3
�
p

3J2D

I1

�
; (6a)

C2 =
p

3: (6b)

IfMg is substituted instead ofMf , coe�cient C1 relates
to the potential surface. The increment of stress can be
determined in the �nite element method as follows [13]:

d� =
�
Ce � Ceng:nTCe

H + nTCeng

�
d"; (7)

where H is the plastic modulus [13]. The plastic
modulus for the loading case requires 6 parameters:
Initial plastic modulus (H0); slope of phase change
line (Mf , Mg); three parameters that de�ne the plastic
strain expansive (�, �0, �1) and two parameters for the
unloading case (Hu0, u). Also, two parameters de�ne
the elastic strain increment (E; �). Therefore, the
increment of stress can be found by using Equations 4
to 7. It must be noted that the sign of the volumetric
component of the vector perpendicular on the potential
surface was altered in [13] as a constraint, but in the
present work, in accordance to Equations 5 and 6, the
sign of the vector is not changed.

Disturbed State Concept with HISS Model

In the DSC model, a deforming material element is
assumed to be composed of two reference states: The
Relatively Intact (RI), and the Fully Adjusted (FA)
(Figure 2). The observed behavior is expressed in terms
of that of RI and FA states, using the disturbance

Figure 2. Disturbance as coupling between RI and FA
states [16].

function, D, which acts as a coupling or interaction
mechanism between RI and FA states (Figure 2).
Disturbance grows as the material deforms and the
plastic strain increases. Thus, DSC is the only model
that includes the coupling intrinsically in which the
micro cracked or fully adjusted part also contributes to
the response of the material. The RI and FA states can
be de�ned by using various models. The continuum
elasticity or plasticity can be used for modeling the
response of the RI state while the FA state can be
assumed to carry only hydrostatic stress, or it can
be modeled by using the critical state model [16].
Following is a brief description of the models for the
RI and FA states used in this research.

Relative Intact (RI) and Fully Adjusted (FA)
States
The Hierarchical Single-Surface (HISS) plasticity mod-
els provide a general formulation for the elastoplas-
tic characterization of the material behavior. These
models, which can allow for isotropic and anisotropic
hardening and associated and nonassociated plasticity
characterizations, can be used to represent the material
response, based on the continuum plasticity theory [16].
Usually, the RI state is de�ned by the associated
plasticity model in a Hierarchical Single-Surface (HISS)
approach. The yield function, F , is given by [16]:

F = J2D � (��Jn1 + J2
1)(1� �Sr)�0:5 = 0; (8a)

J2D =
J2D

p2
a
; (8b)

J1 = (J1 + 3R)=pa; (8c)

Sr =
p

27
2
:
J3D

J1:5
2D
; (8d)

where J3D and J2D are the third and second invariant
of deviatoric stress; J1 is the �rst invariant of stress;
pa is the atmospheric pressure and R is the bonding
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stress used mainly to include the cohesive strength
(c) (Figure 3).  and � parameters are related to
the ultimate condition and the hardening or growth
function can be expressed as:

� =
a1

��1
; (9)

where a1 and �1 are material parameters and � is the
trajectory of plastic strains. Using F , Equation 8a, the
stress-strain equations are derived as [16]:

d� =

24Ce � Ce
�
@Q
@�

� �@F
@�

�T Ce�@F
@�

�T Ce �@Q@� �� @F
@� F

35 d"; (10a)

F =

"�
@Q
@�

�T �@Q
@�

�#1=2

: (10b)

Ce is the elastic constitutive matrix and here it is
adopted as the associated ow rule (F = Q). By the
use of Equation 10, the increment of stress for RI is
found.

The FA state can be modeled by using the critical
state model [16,17]. The material is assumed to shear
under a constant volume or a constant void ratio.

Disturbance (D)
Disturbance, D, for the interaction between relatively
intact and fully adjusted parts can be de�ned in terms
of the plastic strain as:

D = Du[1� exp(�A�ZD)]; (11)

where Du is the ultimate disturbance (often assumed
to be unity), �D is the trajectory of deviatoric plastic
strains, and A and Z are disturbance parameters.

The RI and FA states both contribute to the
material response with disturbance (D) as the coupling
function. Following DSC equations in the incremental
form, this coupling is shown mathematically [16].

d�aij = (1�D)d�iij +Dd�cij + dD(d�cij � d�iij); (12)

Figure 3. HISS yield function in
p
J2D � J1 space [16].

where d denotes the increment or rate, �ij is the stress
tensor and the superscripts i, a, and c represent RI,
observed and FA states, respectively.

Comparison of DSC/HISS and Generalized
Plasticity Model

The DSC/HISS and generalized plasticity models are
able to simulate hardening and softening behavior. The
generalized plasticity model is able to simulate lique-
faction and cyclic mobility phenomena for undrained
sand [13]. DSC/HISS is applicable to many materials
including soils, rocks, concrete, alloys and silicon [16].
The DSC/HISS model allows for discontinuities in-
duced during deformation. However, most plasticity
models, including GPM, are based on a continuum
approach. Hence, the DSC/HISS model is considered
to be an improvement over GPM when softening as
degradation occurs.

NUMERICAL SIMULATION OF
LOAD-DEFORMATION OF FOUNDATION

Laboratory Material Test

Arti�cial soil [7], Tehran sand [18] and Houston sand
are used for the analysis of a footing system, but only
the results of arti�cial soil and Tehran sand [18] are
considered herein. Figures 4a and 4b show laboratory
triaxial stress-strain curves under various con�ning
pressures, �3, for arti�cial soil and Tehran sand,
respectively. The parameters of both DSC/HISS and
GPM are determined for triaxial stress-strain curves,
as shown in Figure 4.

Determination of Parameters

A brief explanation to determine HISS model parame-
ters follows:

1. Ultimate parameters,  and �. The parameter,
, represents the asymptotic ultimate stress. The
yield surface becomes, approximately, a straight
line in the J1 �

p
J2D space when the hardening

parameter, �, is zero. The parameter, �, controls
the shape yield surface in the octahedral plane.
Three compression tests are used to determine the
value of parameters  and �. The corresponding
asymptotic values of J1 and

p
J2D for all the three

tests are used to calculate the ultimate parameters,
 and �, by a least square procedure program.
The parameters for Tehran sand are determined in
Figure 5. � can be found in Equation 8a when � is
zero.

2. Phase change parameter n. The value of n can be
found from the slopes of the phase change line, t,
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Figure 4. Laboratories triaxial test data for (a) Arti�cial
soil [7] and (b) Tehran sand [18].

Figure 5. Asymptotic state for Tehran sand.

and the ultimate line, , [16], as follows:

t


=
�
n� 2
n

�0:5

: (13)

3. Hardening parameters, a1 and �1. The proposed
hardening function, �, is expressed in terms of the
plastic strain trajectory, or the accumulated plastic
strain. Taking the natural logarithm on both sides
of Equation 9 leads to:

ln(�) = ln(a1)� �1 ln(�): (14)

From each compression test, the values of � are
calculated for several stress points, using the yield
function, F = 0. Knowing � and �, one can
determine the best �t line for the set of points
[ln(�); ln(�)], in order to evaluate the values of
parameters a1 and �1. For example, Figure 6 shows
the ln(�) vs. ln(�) plot for the compression test of
Tehran sand with con�ning pressure 1 kg/cm2.

In this study, the parameters for generalized
plasticity and DSC/HISS plasticity models are deter-
mined, based on conventional triaxial compression tests
(Figure 7 and Tables 1 and 2). Ultimate disturbance,
Du = 1, and atmospheric pressure, pa = 101:3 kPa,
are adopted.

Validations

The models are validated at the element level by using
the parameters in Tables 1 and 2 and Equations 7
and 12. Figure 7 shows a comparison between the
predictions from the models and the laboratories data
for the two sands.

It is clear in Figure 7 that the results from both
models are in good agreement with laboratory data.

Applications

Numerical simulations of footing load response and
bearing capacity are considered for di�erent sands,
based on parameters given in Tables 1 and 2. In the
�rst step, analyses of footing on arti�cial soil are ob-
tained and the results are compared with observed data
in the laboratory. In the next step, load-displacement
behavior and bearing capacity are determined for a
footing on Tehran and Houston sands for di�erent in-
situ stresses using DSC/HISS and GPM models. Then,
the results are also compared with those using PLAXIS
7.2 [9], which is a program to analyze geotechnical
problems. Based on these results, an expression is
derived to determine the bearing capacity of footings.

Figure 6. Determination of parameters a1 and �1 for
Tehran sand.
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Table 1. Parameters for Generalized Plasticity Model (GPM).

Kind of
Sand

Con�ning
Pressure

E v Mf Mg H0 �0 �1 � Hu0 u

Arti�cial 69 (kPa) 15000 (kPa) 0.35 1.0 1.38 125 0.5 0.2 0.4 2000 0.005

103 (kPa) 15000 (kPa) 0.35 1.0 1.38 125 0.5 0.2 0.6 2000 0.005

Houston 350 (kPa) 229000 (kPa) 0.37 0.8 0.88 2800 2.55 0.4 0.57 125000 0.005

Tehran 1 (kg/cm2) 850 (kg/cm2) 0.35 0.75 0.86 270 0.8 0.85 0.34 100 0.1

2 & 3 (kg/cm2) 850 (kg/cm2) 0.35 0.7 0.95 80 3.6 0.12 0.13 100 0.1

Table 2. Parameters for DSC model.

Kind of
Sand

Con�ning
Pressure

HISS Parameters DSC
Parameters

�3 E v  � n R a1 �1 A Z

Arti�cial 69
(kPa)

15000
(kPa)

0.35 0.0950 0.000 5.200 0.000 2.4e-4 0.8371 - -

103
(kPa)

15000
(kPa)

0.35 0.0950 0.000 5.200 0.000 4.0e-5 0.8371 - -

203
(kPa)

229000
(kPa)

0.37 0.0838 1.34e-3 6.97 31.53 1e-9 0.8371 - -

Houston
Sand

350
(kPa)

229000
(kPa)

0.37 0.0838 1.34e-3 6.97 31.53 1.35e-10 0.8371 - -

500
(kPa)

229000
(kPa)

0.37 0.0838 2.31e-5 6.97 31.53 2e-11 0.8371 - -

1
(kg/cm2)

850
(kg/cm2)

0.35 0.0539 0.042 4.759 0.408 4.37E-6 0.8881 1317.1 3.67

Tehran 2
(kg/cm2)

850
(kg/cm2)

0.35 0.0539 0.0162 4.759 0.408 8.00E-7 1.0314 579.6 3.19

3
(kg/cm2)

850
(kg/cm2)

0.35 0.0539 0.0162 4.759 0.408 2.40e-7 1.0314 579. 6 3.19

Footing on Arti�cial Sand

The �nite element program is used to analyze the
behavior of a model-scale footing; the details of the
model-scale footing test were reported in [7]. A rigid
rectangular box of size 114 � 203 � 876 mm is used
as a container. The footing is 76 mm wide, 19 mm
thick and 114 mm long, as shown in Figure 8, and
is placed at the center of the box. A vertical load
is applied on the footing in increments at the center
of the footing. Measurements are taken for vertical
displacements corresponding to each load increment.

Initial in-situ vertical stresses in the soil mass are
calculated on the basis of the soil density (2000 kg/m3).
Horizontal stresses are taken equal to vertical stress
(K0 = 1), as reported in [7], where K0 is the coe�cient
of earth pressure at rest. The model scale footing is
analyzed with the plain strain idealization. Because
of the symmetry, only one half of the soil-footing
system is considered. Figure 9 shows the �nite element

mesh used in the analysis, it consists of 253 eight-
noded isoparametric quadrilateral elements, whereas
120 elements were used in [7].

The observed load-displacement relation of the
model-scale footing from laboratory data and the
results of the �nite element analysis in the present
study are compared in Figure 10, which also includes
the results of reported �nite element analyses in [7],
together with results obtained by using critical state,
bounding surface, Drucker-Prager and modi�ed cap
models. Comparisons show that the generalized plas-
ticity and HISS (here, only the HISS plasticity model
is used) models are able to simulate the behavior of
the footing-soil system. As illustrated in Figure 10,
the best result is obtained from generalized plasticity
and HISS plasticity models. Also, Drucker-Prager gives
a small settlement before the limit load, because it
behaves as elastic prior to the limit load and the critical
state shows a sti�er behavior than that of the modi�ed
cap model. The critical state model is based on a
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mathematical relation, while the modi�ed cap model
has been obtained from many test data in laboratories.
Therefore, the modi�ed cap model provides better re-
sults than the critical state model. Also, the hardening
rule, in both the critical state and modi�ed cap model,
is de�ned as a function of the plastic volumetric strain,

Figure 7. Comparison predictions and laboratory data
for (a) Arti�cial soil and (b) Tehran sand.

Figure 8. Layout of model-scale footing [7] (dimension is
in mm).

Figure 9. Finite element mesh for the footing.

Figure 10. Comparison of load-displacement curves for
di�erent models.

whereas the HISS and generalized plasticity model is
de�ned as a function of the plastic volumetric and
plastic shear strain. In accordance with failure surfaces
in soil below a foundation, shear deformation is more
e�ective than volumetric deformation in determination
of the ultimate load and load-displacement behavior
of the footing system. Also, the yield surface of
the HISS and generalized plasticity model grows with
continuous hardening and, �nally, approaches ultimate
yield. Therefore, predictions by both generalized
plasticity and HISS models show good agreement with
laboratory data.

Footing on Tehran Sand
The �nite element procedure is used to analyze a strip
square footing of 200 cm width on Tehran sand for
di�erent in-situ stress. It is assumed that the in-situ
stress is constant with depth. Figure 11 shows the
boundary condition of the problem; 200 eight-noded
isoparametric quadrilateral elements are used to model
the soil. A soil density of 1.73 gr/cm3 and a friction
angle of 31 degrees were reported in [18]. For Tehran
sand, analyses are obtained for both generalized plas-
ticity and DSC/HISS models by using the parameters
in Tables 1 and 2 for Tehran sand.

Figures 12 and 13 show the results of �nite
element analyses for in-situ stress equal to 1.0 and
3.0 kg/cm2, respectively. This problem also is analyzed
by PLAXIS 7.2 [9] for friction angle of 31� and both
in-situ stresses. The Mohr-Coulomb criterion is used
to analyze the footing by PLAXIS. Predictions by

Figure 11. Boundary condition of footing-soil system.
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Figure 12. Load-displacement curve for in-situ stress
equal to 1.0 kg/cm2.

Figure 13. Load-displacement curve for in-situ stress
equal to 3.0 kg/cm2.

GPM, DSC/HISS and Mohr-Coulomb are compared in
Figures 12 and 13.

GPM and DSC/HISS models are able to simulate
the softening behavior of sand for dense sand. Both
models (Figures 12 and 13) show that the bearing ca-
pacity is essentially the same. Due to elastic-perfectly
plastic behavior, Mohr-Coulomb and Drucker-Prager
give less deformation prior to ultimate load than
other models. In other words, there is no plastic
deformation prior to the limit load (Figures 10, 12
and 13). The bearing capacity predicted by the Mohr-
Coulomb model is greater than that predicted by
DSC/HISS and GP models. Also, the Mohr-Coulomb
model does not accurately account for the change in
bearing capacity with in-situ stress. For example, as
shown in Figures 12 and 13, a change in the in-situ
stress from 1 kg/cm2 to 3 kg/cm2 shows an increase
in the predicted bearing capacity. The Mohr-Coulomb
model predicts the bearing capacity to be increased
from 5.0 kg/cm2 to 15.0 kg/cm2 when the in-situ stress
changes from 1.0 kg/cm2 to 3.0 kg/cm2. However,
DSC/HISS and GP models predict an increase from
4 kg/cm2 to 10 kg/cm2 for the same increase in the in-

situ stress. This subject shows the e�ect of softening
and plastic deformation on the limit load. According to
these results, load-displacement curves for Tehran sand
are compared in Figure 14 for di�erent in-situ stresses,
which were assumed constant with depth.

In considering Figure 14, it is clear that plastic
deformations occur before the limit load according to
the stress-strain behavior curve of sand (Figure 7).
Therefore, it is necessary to consider plastic defor-
mation in the allowable load and displacement. If
allowable displacement is accepted equal to 2.5 cm ac-
cording to [8], the allowable load according to allowable
displacement and safety factors is expressed based on
the DSC/HISS and generalized plasticity models in
Table 3. The safety factor is computed as ultimate
load and allowable load [19].

A comparison of the allowable load for in-situ
stress equal to 1.0 and 5.0 kg/cm2 (Table 3) shows a
growth of 48% of the allowable load. It is noted that
the bearing capacity for an in-situ stress of 1.0 kg/cm2

(Figure 14) was equal to Terzaghi's bearing capacity
by Equation 15 [19] for Tehran sand and, also, the
ultimate load from a �nite element analysis was equal
to Terzaghi's bearing capacity for Houston sand with
an in-situ stress of 100 kPa. Therefore, comparisons
between predictions from the models and Terzaghi's
equation are valid for an in-situ stress of 1 kg/cm2 or
100 kPa. The bearing capacity, by Terzaghi's equation,
may be expressed for di�erent in-situ stresses corre-

Figure 14. Load-displacement curves for di�erent in-situ
stresses for Tehran sand.

Table 3. Allowable load according to 2.5 cm
displacement.

In-situ
Stress

(kg/cm2)

Ultimate
Load

(kg/cm2)

Allowable Load
According 2.5 cm

Displacement

Safety
Factor

1 3.96 1.62 (kg/cm2) 2.44

2 7.13 1.72 (kg/cm2) 4.14

3 10.1 1.95 (kg/cm2) 5.18

5 16.9 2.4 (kg/cm2) 7.04
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sponding to di�erent depths. The obtained ultimate
load from such a simulation is greater than the �nite
element results. Therefore, in-situ stress cannot be
assumed equal to equivalent depth. Table 4 shows
a comparison between Terzaghi's bearing capacity for
di�erent depths, consistent with increasing stress levels
and �nite element results for Tehran sand.

qult = cNc + DfNq + 0:5BN ; (15)

where qult is the ultimate bearing capacity, C is the
cohesion of soil, Nc, Nq, N are Terzaghi's bearing
capacity factors,  is the e�ective unit weight of soil, Df
is the distance from ground surface to base of footing
and B is the width of square footing.

Table 4 shows that Terzaghi's equation should be
modi�ed, with respect to the in-situ stress. Figure 15
shows the bearing capacity from the �nite element to
the bearing capacity of the Terzaghi theory [19] ratio
for both Tehran and Houston sands with friction angles
of 31� [18] and 38� [20], respectively, versus in-situ
stress (p) to atmospheric pressure (pa) ratios.

In accordance with Figure 15, the following for-
mula is suggested to determine the bearing capacity,
based on in-situ stress for sand:

qu = 0:5 �  �B �Nnew
 ; (16a)

Nnew
 = N �

�
p

pa � tan(')

�( p
pa
�n)

; (16b)

Table 4. Comparison between Terzaghi's bearing capacity
for di�erent stress level and the �nite element results.

In-Situ
Stress

Terzaghi's
Bearing
Capacity

Finite
Element
Results

1 3.63 3.96

2 23.63 7.13

3 43.63 10.1

5 83.63 16.9

Figure 15. Variation of bearing capacity versus in-situ
stress.

Figure 16. Variation of n versus in-situ stress.

where, N is the same as that expressed by Terza-
ghi [19], ' is the friction angle obtained from a triaxial
test in a laboratory, p is the in-situ stress, pa is the
atmospheric pressure, B is the width of footing,  is the
unit weight of soil and n is determined from Figure 16.

It can be used to interpolate the value of n for dif-
ferent friction angles. Therefore, the bearing capacity
of footings on sand can be obtained by Equation 16.
This relation is interesting for practicing engineers.

CONCLUSION

A nonlinear �nite element method with an eight-
noded isoparametric quadrilateral element is used for
the prediction of load-deformation behavior, including
the bearing capacity of footings. A disturbed state
concept, with the HISS plasticity model with asso-
ciated ow rule, and a generalized plasticity model
with non-associated ow rule, is used to characterize
the constitutive behavior of soils. Both models are
able to simulate load-deformation, including softening
behavior, and they both give comparable results for
the footing problems. The Drucker-Prager model
predicts small deformation prior to ultimate load. This
is because the initial elastic zone of the model is
larger, in compressive I1 � pJ2 space, than that of
other models. Comparisons of load-deformation curves
between critical state, Drucker-Prager, modi�ed cap,
generalized plasticity and DSC/HISS models show that
both GPM and DSC/HISS models give better results
than others. In accordance with the obtained results
of �nite element analyses, the Terzaghi theory was
developed for the bearing capacity based on di�erent
in-situ stresses. Therefore, engineers will be able to
determine the bearing capacity for sand as a�ected by
in-situ stress.
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