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Application of a Compact Genetic Algorithm
to Pipe Network Optimization Problems

M.H. Afshar1

Abstract. This paper presents the application of a compact Genetic Algorithm (cGA) to pipe network
optimization problems. A compact genetic algorithm is proposed to reduce the storage and computational
requirements of population-based genetic algorithms. A compact GA acts like a standard GA, with a
binary chromosome and uniform crossover, but does not use a population. Instead, the cGA represents
a virtual population for a binary GA by a vector of probabilities representing the chance that the optimal
solution has a one at each bit position. The application of the cGA to pipe network optimization problems
is considered in this paper and the results are presented for two benchmark examples and compared with
existing solutions in the literature. The results show the ability of the cGA to locate the optimal solution
of problems, considered with a computational e�ort, comparable to improved population-based GAs and
with much fewer storage requirements.
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INTRODUCTION

Genetic Algorithms (GAs) are a class of optimization
algorithms motivated by the theory of natural selection
and genetic recombination. They have been success-
fully used in a wide variety of applications in business,
engineering and science [1,2]. A GA tries to �nd
better solutions by the selection and recombination of
promising solutions. It works well in wide varieties of
problem domains. However, sometimes, simple selec-
tion and crossover operators are not e�ective enough to
get an optimum solution, as they might not e�ectively
preserve important patterns (known as building blocks
or partial solutions) in chromosomes. This often
happens in problem domains where the building blocks
are loosely distributed. The search for techniques to
preserve building blocks has led to the emergence of
a new class of algorithms called Probabilistic Model
Building Genetic Algorithms (PMBGA) [3], also known
as Estimation of Distribution Algorithms (EDA) [4].
The principle concept in this new technique is to
prevent the disruption of partial solutions contained
in a chromosome by giving them a high probability of
being presented in the child chromosome. This can be
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achieved by building a probabilistic model to represent
a correlation between variables in a chromosome and
by using a built model to generate the next population.
PMBGA is a developing area in the �eld of evolutionary
and genetic algorithms.

The PMBGAs are often categorized into three
di�erent classes by their used probability models, i.e.
Univariate, Bivariate and Multivariate [5,6]. Uni-
variate algorithms do not consider any dependencies
among variables in an individual, i.e. they consider
building blocks of order one. Due to its simplicity, the
algorithms in this category are computationally very
e�cient and perform excellently in linear problems,
such as function optimization, where the variables
are not signi�cantly interdependent. However, these
algorithms fail in complex problems, where variables in-
teract with each other. Population Based Incremental
Learning (PBIL) [7], Univariate Marginal Distribution
Algorithms (UMDA) [4] and compact Genetic Algo-
rithms (cGA) [8] use the univariate model of a prob-
ability distribution. Recently, Rastgar and Hariri [9]
developed a theoretical framework for studying the
cGA from the convergence point of view, in which
they modeled the cGA by a Markov process and ap-
proximated its behavior using an Ordinary Di�erential
Equation (ODE).

Bivariate algorithms consider pair wise depen-
dencies among variables in a chromosome, i.e. they
consider the building blocks of order two. Similarly,
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the probability model becomes more complex than
that of the univariate model and takes the form
of a probabilistic network between variables. This
class of algorithm performs better in problems with
a pair wise interaction among the variable, however,
it fails in problems with multiple variable interactions.
Mutual Information Maximization for Input Clustering
(MIMIC) [10], Combining Optimizers with Mutual In-
formation Trees (COMIT) [11] and Bivariate Marginal
Distribution Algorithms (BMDA) [12] use the bivariate
model of probability distribution.

Multivariate algorithms are those algorithms
which take into account the interdependency between
variables of an order of more than two. The probability
network representing the interdependency of variables
obviously becomes more complex and the computation
time to construct such a network hugely increases,
making it almost impossible to search through all
possible models. Due to its simplicity, most of the
algorithms in this class use a greedy heuristic to search
a good model; however, greedy heuristics does not
always guarantee accuracy. Some other complex search
algorithms have also been successfully used for this
purpose and much current research in PMBGAs is
focused on �nding good heuristics. Extended Compact
Genetic Algorithms (ECGA) [13], Factorised Distribu-
tion Algorithms (FDA) [14,15], Bayesian Optimization
Algorithms (BOA) [6], Learning Factorised Distribu-
tion Algorithms (LFDA) [14] and the Estimation of
a Bayesian Network Algorithms (EBNA) [16] use a
multivariate model of the probability distribution.

This paper describes the application of one of
the promising univariate PMBGA models, known as
the compact Genetic Algorithm (cGA) [8], to pipe
network optimization problems. In what follows, the
basics of the cGA are �rst described. The problems
of pipe network optimization are then formulated and
presented in the next section. The application of the
cGA to two benchmark examples in the literature is
illustrated in the third section and the results are
compared with the existing solutions in the literature.
The paper ends with the concluding remarks.

COMPACT GENETIC ALGORITHM (CGA)

A Compact Genetic Algorithm is motivated by previ-
ous works done in the �eld of random walk models [8]
and assumes no overlapping building blocks are con-
tained in the chromosomes, i.e. considers only building
blocks of order 1. A Compact GA acts like a standard
GA (sGA) with a binary chromosome and uniform
crossover, but does not use a population. Instead,
the cGA represents a virtual population for a binary
GA by a vector of probabilities, P = [p1; p2; � � � ; pi; ::],
representing the chance that the optimal solution has
a one in position i. To begin the cGA, all entries of the

probability vector are initialized to one half. Because
this vector represents the probability that each gene has
a value of 1, it can be used to randomly generate �tourn
candidate solutions or chromosomes, bj = fbji jj =
1; � � � ; �tourn; i = 1; � � � ; Nbits; bji 2 [0; 1]g, where Nbits
is the number of bits in a chromosome. These solutions
are then decoded, evaluated and compared, very much
as in the tournament selection of a standard GA. The
best candidate solution (winner) generated (call it b1
without loss of generality) is then compared, bit by
bit, to all other candidate solutions to update the
probability vector. For each of the �tourn � 1 looser
chromosomes, bj , j = 2; � � � ; �tourn, the probability
vector is updated in those positions i, where bji 6= b1i
according to the following rule:

pi �! pi � 1=Npop; if b1i = 0;

pi �! pi + 1=Npop; if b1i = 1; (1)

where Npop is an integer that simulates the population
size. The updated probability vector is then used
to generate �tourn new candidate solutions, and the
process continues iteratively. If any of the pi becomes
less than 0 or greater than 1 during the search, it is
assumed to be 0 or 1, respectively, for the purpose of
generating new candidates. The algorithm converges
when either pi � 0 or pi � 1 for all Nbits entries of
the probability vector. This algorithm has been shown
to be a simple, low-memory alternative to the sGA in
its own right, but it can also be used to determine the
resilience of a given problem to GA optimization [8].
A note has to be added regarding the role of the
population size, Npop. Population size Npop plays
an important role in balancing the explorative and
exploitative features of the method. For small values of
the population size, it is highly likely that the method
converges faster without giving the method enough
chance to explore the search space. For big values
of population size, on the other hand, exploration
dominates the search, leading to a random walk in
the search space. A proper value of the population
size is, therefore, vital for the best performance of the
method. It can be expected, however, for the proper
value of the population size to be proportional to the
tournament size, as Equation 1 is used �tourn�1 times
at each iteration of the method. Here, a modi�ed form
of Equation 1 is used, where Npop is replaced by the
product N�pop�tourn to reduce the computational e�orts
required for tuning purposes.

PIPE NETWORK OPTIMIZATION

The problem of network optimization requires the
determination of pipe sizes from a set of commer-
cially available diameters ensuring a feasible least-cost
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solution. Various methods with di�erent degrees of
success have been devised by di�erent researchers to
solve this problem. These methods can be grouped
into three classes: Enumeration, mathematical pro-
gramming and random search methods. Enumeration
methods, capable of �nding a global optimum solution
to a pipe network design problem, are very costly
and cannot be used for the optimization of real-world
networks [17,18]. On the other hand, mathematical
programming methods are very e�cient from a compu-
tational point of view, but are often trapped in saddle
points in their search for the global optimum of the pipe
network design problem. The computational e�ciency
of mathematical programming methods is, of course,
limited to continuous solutions, which are not favored
from an engineering point of view [19-25]. Stochastic
search methods have shown to logically balance be-
tween computational e�ciency and the capability of
approaching a global optimum. Among the stochastic
search methods, GA has gained more popularity for
pipe network optimization in recent years. The early
research was primarily concentrated on developing a
methodology for applying GA to pipe network opti-
mization problems using simple genetic algorithms [26-
30]. More recent investigations on the application
of GA to pipe network optimization have focused on
the development of new genetic algorithms to yield
less costly solutions than those of already existing
algorithms. These improvements are mostly achieved
via modi�cations of the simple genetic algorithm or
introducing new operators and features to the basic
algorithms [31-37].

The optimal design of a pipe network with a pre-
speci�ed layout in its standard form can be described
as:

minCo =
NX
i=1

CiLi; (2)

in which N is the number of existing pipes; Li and
Ci are length and per unit cost of the ith pipe,
respectively, and Co represents the total cost of the
pipes in the network.

subject to:

1. Hydraulic constraints:X
i2 in (k)

qi � X
i2 out (k)

qi = Qk; k = 1; � � � ;K;
(3)X

i2p
Ji = 0; p = 1; � � � ; P; (4)

Ji = �Li
�
qi
chi

��
d�
i ; (5)

where K and P are the number of existing nodes
and loops in the network, respectively; qi is the

ow rate in pipe i; Qk is the required demand
at consumption node k; Ji is the head loss in
the ith pipe; di is the diameter of pipe i and chi
is the Hazen-Williams coe�cient for the ith pipe;
� = 1:852, 
 = 4:871 and � = 10:667 for q in
cubic meter per hour and d in inches (equivalent
to � = 4:727 for D in feet and Q in cubic feet per
second) are Hazen{Williams constants as used in
EPANET 2.0.

2. Nodal head and pipe 
ow velocity constraints:

Hmin � Hk � Hmax; k = 1; � � � ;K; (6)

Vmin � Vi � Vmax; i = 1; � � � ; N; (7)

in which Hk is the nodal head; Hmin and Hmax are
minimum and maximum allowable nodal head; Vi
is the pipe 
ow velocity; and Vmin and Vmax are
minimum and maximum allowable 
ow velocity.

3. Pipe size availability constraints:

di 2 d; i = 1; � � � ; N; (8)

in which di is the diameter of pipe i; and d denotes
the set of commercially available pipe diameters.

A penalty method is often used to formulate the
optimal design of a pipe network as an unconstrained
optimization problem, in which head and velocity
constraints are included in the objective function,
leading to a new problem de�ned by minimization of
the following penalized objective function, subject to
the constraints de�ned in Equation 8.

Cp =
NX
i=1

CiLi + �p CSV;

CSV =

(
NX
i=1

�
1� Vi

Vmin

�2

+
NX
i=1

�
Vi
Vmax

� 1
�2

+
KX
k=1

�
1� Hk

Hmin

�2

+
KX
k=1

�
Hk

Hmax
� 1
�2
)
;
(9)

where CSV represents a measure of the head and
velocity constraint violation of the trial solution and
�p is the penalty parameter, with a large enough value
to ensure that any infeasible solution will have a higher
total cost than any feasible solution. It should be noted
that in calculating the CSV, the summation ranges
over those nodes and pipes at which a violation of
constraints 6-7 occurs, i.e. the terms in parenthesis are
positive. Here, the penalty parameter is taken as the
cost of the most expensive network, i.e. a network with
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all its pipes having the largest possible diameter. The
hydraulic constraints (constraints 3-5) are satis�ed, via
the use of a simulation program, which explicitly solves
the set of hydraulic constraints for nodal heads [38].
It should be remarked here that the formulation of
the pipe size design of pipe networks de�ned by Equa-
tions 2-9, is valid for gravitational systems under single
loading. The extension of the formulation to real world
networks with pumping systems and dynamic loading
requires the modi�cation of Equation 2, by including
the pumping system and corresponding energy cost, the
modi�cation of Equation 4 via including the pumping
head and, �nally, enforcing constraints 3-7 for each
loading pattern.

TEST PROBLEMS

The �rst problem to be considered is a two-loop
network with 8 pipes, 7 nodes and one reservoir, as
shown in Figure 1 [39]. All the pipes are 1,000-m
long and the Hazen-Williams coe�cient is assumed
to be 130 for all the pipes. The minimum nodal head
requirement for all demand nodes is 30 m. There are

Figure 1. Two loop network.

14 commercially available pipe diameters as listed in
Table 1. Figure 2 shows the maximum, minimum
and average solution cost of ten runs using di�erent
initial populations against the amount of network
analysis required. These solutions are obtained with
a tournament size of 10 and a population size of 60.
The best ever solution of 419,000 units is obtained
at the expense of 3,000 evaluations. This compares
favorably with � 250; 000 evaluations required by
the method of Savic and Walters [33], � 53; 000
evaluations required by the method of Cuncha and
Sousa [40], 9,201 evaluations required by the Fast
Messy Genetic Algorithm of Boulos et al. [35], and
7,467 evaluations required by the Fast Messy Genetic
Algorithm of Wu et al. [37], in order to get the least
cost solution of 419,000 units. Table 2 compares

Figure 2. Maximum, minimum and average solution
costs versus the number of network evaluations for two
loop networks.

Table 1. Cost data for the two-loop network.

Diameter (inch) 1 2 3 4 6 8 10 12 14 16 18 20 22

Cost (units/m) 2 5 8 11 16 23 32 50 60 90 130 170 300

Table 2. Optimal pipe diameters along with some of the available discrete results for a two loop network.

Pipe Present
Work

Abebe and
Solomatine [39]

Wu et al.
[37]

Savic and
Walters [33]*

cGA GA FMGA GA2 GA1
1 18 18 18 20 18
2 10 14 10 10 10
3 16 14 16 16 16
4 4 1 4 1 4
5 16 14 16 14 16
6 10 1 10 10 10
7 10 14 10 10 10
8 1 12 1 1 1

Cost (units) 419000 424000 419000 420000 419000
Evaluations 3000 7467 250000 250000

* These solutions are obtained using di�erent numerical conversion constants for head loss equations.
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the results produced by the presented method to
some of the stochastic search results available in the
literature.

The second test problem concerns the rehabili-
tation of the New York City water supply network,
with 21 pipes, 20 demand nodes and one reservoir as
shown in Figure 3 [31]. The commercially available
pipe diameters and their respective costs are listed in
Table 3, while the pipe and nodal data of the existing
network are shown in Table 4. A more thorough study
was carried out on this problem to assess the e�ect
of the tournament size and population size on the
quality of the solutions obtained. Table 5 shows the
minimum and average solutions obtained during ten
runs using di�erent initial populations for a range of
tournament and population sizes. It is clearly seen that
the method was able to locate the optimal solution of
38.64 $M ten times out of twelve runs using di�erent
tournament and population sizes. The method shows
its best performance for a tournament size of 20 using
di�erent population sizes of 35, 45 and 55. Figures 4
to 6 show the convergence curves of the method for a
tournament size of 20 and population size of 35, 45

and 55. It is clearly seen that the convergence of the
method is slower for increasing values of population

Figure 3. New York tunnel network.

size. The method is able to �nd the optimal solution
of 38.64 $M in just 7,760 network evaluations using
the tournament and population sizes of 20 and 35,
respectively. This compares favorably with � 200; 000
evaluations required by the method of Murphy et
al. [27] to get the solution of 38.80 $M, � 46; 000
evaluations required by Lippai et al. [41] to get their

Figure 4. Maximum, minimum and average solution costs
versus the number of network evaluations for New York
network (tournament size of 20, population size of 35).

Figure 5. Maximum, minimum and average solution costs
versus the number of network evaluations for New York
network (tournament size of 20, population size of 45).

Figure 6. Maximum, minimum and average solution costs
versus the number of network evaluations for New York
network (tournament size of 20, population size of 35).
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Table 3. Pipe cost data for New York network.

Diameter (inch) 0 36 48 60 72 84 96 108
Cost ($/ft) 0 93.5 134.0 176.0 221.0 267.0 316.0 365.0

Diameter (inch) 120 132 144 156 168 180 192 204
Cost ($/ft) 417.0 469.0 522.0 577.0 632.0 689.0 746.0 804.0

Table 4. Pipe and nodal data for New York tunnel network.

Pipe Data Nodal Data

Pipe Start
Node

End Node
Length

(ft)

Existing
Diameter

(inch)
Node Demand

(Cft/s)

Min Total
Head
(ft)

1 1 2 11600 180 1 Reservoir 300

2 2 3 19800 180 2 92.4 255

3 3 4 7300 180 3 92.4 255

4 4 5 8300 180 4 88.2 255

5 5 6 8600 180 5 88.2 255

6 6 7 19100 180 6 88.2 255

7 7 8 9600 132 7 88.2 255

8 8 9 12500 132 8 88.2 255

9 9 10 9600 180 9 170 255

10 11 9 11200 204 10 1 255

11 12 11 14500 204 11 170 255

12 13 12 12200 204 12 117.1 255

13 14 13 24100 204 13 117.1 255

14 15 14 21100 204 14 92.4 255

15 1 15 15500 204 15 92.4 255

16 10 17 26400 72 16 170 260

17 12 18 31200 72 17 57.5 272.8

18 18 19 24000 60 18 117.1 255

19 11 20 14400 60 19 117.1 255

20 20 16 38400 60 20 170 255

21 9 16 26400 72

Table 5. Maximum, minimum and average solutions of ten runs using di�erent values of tournament and population sizes
for New York network.

Tournament 10 20 30 40

Population 65 75 85 35 45 55 25 35 45 15 25 35

Maximum ($M) 42.77 43.32 42.28 44.98 41.64 41.13 45.51 42.69 44.15 50.51 45.49 43.94

Average ($M) 40.58 40.51 40.94 40.72 40.08 39.89 41.13 39.96 40.39 42.16 41.29 40.33

Minimum ($M) 38.64 38.64 39.19 38.64 38.64 38.64 38.64 38.64 38.64 39.63 38.64 38.64

Evaluations 10,210 12,770 11,170 7,760 9,540 12,240 8,220 10,500 12,660 4,640 9,480 12,080

solution of 37.83 $M, � 1; 000; 000 evaluations required
by the method of Savic and Walters [33] to get the
solutions of 40.42 $M and 37.13 $M, 37,186 evaluations
required by the Fast Messy genetic algorithm of Boulos
et al. [35] and Wu et al. [37] to get the solutions of

37.83 $M and 37.13 $M and �nally 13,928 evaluations
required by the ACOA of Maier et al. [42] to get the
solution of 38.64 $M. The solution to this problem is
shown in Table 6, along with some of the available GA
solutions.
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Table 6. Optimal duplicate pipe diameters by di�erent methods for New York network.

Present Lippai et al. Savic and Walters Wu et al. Wu et al. Maier et al.
Pipe Work [41] [33] [37] [37] [42]

cGA NYD1 GA1 fmGA2 fmGA1 ACOA

7 144 132 108 108 124 144

15 0 0 0 0 0 0

16 96 96 96 96 96 96

17 96 96 96 96 96 96

18 84 84 84 84 84 84

19 72 72 72 72 72 72

20 0 0 0 0 0 0

21 72 72 72 72 72 72

Cost ($M) 38.64 38.13* 37.13* 37.13* 37.83* 38.64

Evaluations 7,760 46,016 1,000,000 37,186 37,186 13,928

* Infeasible solution due to the use of di�erent numerical conversion constant for the head loss equations.
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