RESEARCH NOTE

Average Distance and Routing Algorithms
in the Star-Connected Cycles
Interconnection Network

M.M. Azevedo!, N. Bagherzadeh!, M. Dowd! and S. Latifi?

The star-connected cycles (SCC) graph was recently proposed as an attractive interconnection
network for parallel processing, using a star graph to connect cycles of nodes. This paper
presents an analytical solution for the problem of the average distance of the SCC graph. The
cost of a route in the SCC graph is divided into three components and it is shown that one of
such components is affected by the routing algorithm being used. Three routing algorithms
for the SCC graph are discussed, which respectively employ random, greedy and minimal
routing rules. The computational complexities of the algorithms and the average costs of the
paths they produce, are compared. Finally, the problem of how each of the algorithms can
be used in association with wormhole routing is considered.

INTRODUCTION

An interconnection network is characterized by
four distinct aspects: topology, routing, flow
control and switching [1]. The topology of a
network defines how the nodes are intercon-
nected by links and is usually modeled by 2
graph. Routing determines the path selected by
a packet to reach its destination and is usually
specified by means of a routing algorithm. Flow
control deals with the allocation of links and
buffers to a packet as it is routed through the
network. Switching determines the mechanism
by which data is moved from an incoming
link to an outgoing link of a node (store-and-
forward, circuit switching, virtual cut-through
and wormhole routing are examples of switch-
ing techniques found in parallel architectures).

This paper continues the study of topolog-
ical and routing aspects of the star-connected
cycles (SCC) interconnection network [2], which
has been recently proposed as an attractive
extension of the star graph [3]. An SCC graph
is related to a star graph in the same way a
cube-connected cycles graph [4] is related to a
hypercube [5]. Namely, an SCC graph is formed
from a star graph by replacing the nodes of
the latter with cycles or rings of nodes. The
SCC graph constitutes an efficient architecture
for execution of parallel algorithms, which in-
cludes broadcasting [6] and FFT [7]. Mesh
algorithms are also supported in SCC graphs
via embeddings [8]. The SCC graph inherits
many of the interesting properties of the star
graph, while employing, at most, three I/O
ports per node. This last aspect categorizes
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these expressions produce a tight upper bound
on the average distance of the SCC graph.

It will be shown that the number of MB lo-
cal links is affected by the routing algorithm
being used and three different algorithms for
the SCC graph will be presented, including
random, greedy and minimal routing. The
algorithms are compared according to criteria
such as computational complexity (which af-
fects their implementation in hardware) and
average routing cost, for which figures were
obtained by means of simulation. The results
obtained with the minimal routing algorithm
provide exact numeric solutions for the average
distance of the SCC graphs. These simulations
indicate that the greedy routing algorithm per-
forms close to the minimal routing algorithm,
while requiring a smaller complexity. It will
be shown that the random routing algorithm
presents the smallest complexity among the
three algorithms described in this paper, also
average and worst-case routing cost metrics for
it will be provided. Finally, it is considered
how the three algorithms can be implemented
in combination with wormhole routing.

BACKGROUND

The Star Graph

An n-dimensional star graph, denoted by S,
contains n! nodes which are labeled with the
n! possible permutations of n distinct symbols.
In this paper, the integers {1,...,n} are used
to label the nodes of S,. A node # =
P1-..Di...Pn is connected to (n — 1) distinct
nodes, respectively labeled with permutations
T = Pi.o.Pic1P1Pig1---Pny 2 <1 < n (le., 7 is
the permutation resulting from exchanging the
symbols occupying the first and the i** position
in 7) [3]. Each of these (n—1) possible exchange
operations is referred to as a generator of S,,.
Two nodes 7 and m; of S,, are connected by a
link iff there is a generator g; such that 7-g; =
m;. The link connecting m and =; is referred to
as an i*"-dimension link and is labeled i. S, has
(n—1)-(n!/2) links. S, is a regular graph with
degree 6(S,) = n — 1 and diameter ¢(S,) =
[3(n—1)/2]. S, is vertex- and edge-symmetric
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1234

4231

3142 2143
Figure 1. A 4-star graph (S4).
and has hierarchical structure. The degree ((z,m), (¢, 7")) is a local link, ie, # = =
and diameter of S,, are sublogarithmic on the and min(jt — ¢|,n — 1 — |t — ¥|) = 1, or 2)

size of the graph [3], which makes the star
graph compare favorably with the hypercube.
Figure 1 shows S;.

The Star-Connected Cycles (SCC)
Graph

An n-dimensional SCC graph, denoted by
SCC,, is a bounded-degree variant of S, [2].
SCC,, is formed by replacing each node of S,
with a supernode, i.e., a ring of (n — 1) nodes.
The connections between nodes inside the same
supernode are referred to as local links. Each
supernode is connected to (n — 1) adjacent
supernodes, using lateral links inherited from
S,. Figure 2 shows SCC,.

Nodes in SCC,, are identified by a label
(i,7), where 7 is an integer, such that 2 <
i < n and 7 is a permutation of n symbols.
Two nodes (i,7) and (i',n’) are connected by
a link ((s,7),{i",7')) in SCC, iff either: 1)

((z,7), (&', 7')) is a lateral link, i.e., i = ¢ and
7 differs from 7' only in the first and the 7"
symbols, such that 7(1) = «'(:) and 7(z) =
7'(1).

For similarity with S,,, the label of the
supernode containing nodes (2,7),... ,{n,n) is
w. Also, the lateral link connected to node
(i,7) is labeled ¢. For simplicity, supernode and
lateral link labels are not shown in Figure 2.

SCC, contains (n — 1) - n! nodes, (n —
1) - n! local links and (n — 1) - (n!/2) lateral
links. Thus, the size of SCC,, is comparable
to that of S,41. Local links account for 2/3
of the links of SCC, and can be laid out
very efficiently due to the ring topology of
the supernodes. Moreover, SCC, has about
n times fewer lateral links than S,,;, which
further reduces the complexity of a VLSI layout
for SCC, when compared to S,;;. SCC, is
vertex-symmetric and has degree §(SCC,) =2
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Figure 2. The SCC, graph.

(for n > 4). In
is given by [2}:
forn=3

for even n

for odd n>5.

(1)

AVERAGE DISTANCE OF THE SCC

GRAPH

Preliminaries

Let the cost of a route P between node (i, 7)
and the identity node (ig, 7o) = (2,12...7) in
SCC, be d = lat + lo¢, where lat and loc,

respectively, denote the number
and the number of local links
SCC, is vertex-symmetric, its a

of lateral links
in P. Because
verage distance

can be computed by finding minimal cost routes
to the identity from every node in the graph and

averaging those over (n — 1) - nl.

Before the average distanc
be derived, some definitions re

e of SCC, can
lated to lateral

links are needed. The symbols of permutation
7 may be organized as a set of r-cycles, i.e.,
cyclically ordered sets of symbols with the
property that each symbol’s desired position is
that occupied by the next symbol in the set.
These r-cycles provide a convenient means to
represent permutations [13] and should not be
confused with physical cycles or rings, which
constitutz the supernodes of SCC,. In this
paper, all r-cycles are written in canonical form
[13] (i.e., the smallest symbol appears first in
each 7-cycle). For example, a permutation
m = 265431 can be written in cyclic format as
(1 2 6)(3 5)(4). Note that a symbol already
in its correct position appears as a 1-cycle.

Let C; = (ig ... i,-1) be an r-cycle in
7w, 2 <r <n. Let m- R, be the permutation
produced from 7 by moving the symbols in C;
to their correct positions. The execution of an
r-cycle C; is, by definition, a minimal sequence
of lateral links R;, leading from supernode 7
to supernode 7 - R; (note that local links are
not an issue here). Throughout the paper, the
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notation of an r-cycle is distinguished from that
of a sequence of lateral links by using commas
in the latter. R; can be expressed by [14,15]:

Ao {(z'l,z'z,...

(i07i17°‘ E

air—1)7 lfZO =1

7ir—1)i0)7 lf Z'0 7& 1. (2)

In the case i, # 1, C; can actually be
executed with r different sequences of lateral
links [14,15]. Hence, for j : 0 — 7 — 1, such
sequences can be expressed as:

y Yj4+r—1)modrs ijodr)-

(3)

(’ijodra Z(j+1)modra s

The minimum number of lateral links in a
route from supernode 7 to 7y does not depend
on the order chosen to execute the r-cycles in
7 and is given with [3]:

c+m, if n’s first symbolis 1
lat =

c+m—2, if 7’s first symbol is not 1,

(4)

where ¢ is the number of r-cycles of length
at least 2 in 7 and m is the total number of
symbols in these r-cycles.

Routes in SCC,, often consist of sequences
of lateral links interleaved with local links. In
what follows, some definitions that relate to
local links are given.

Recall that loc denotes the contribution of
the local links to the total cost of a route P
from (i, 7) to (i, mo). loc can be further divided
into two components, which are denoted by
MI(loc)and MB(loc)and are defined as follows:

e MI(loc) — the number of move-in (MI) local
links existing in the route from (i,7) to
(i9,To). By definition, these are local links
that must be traversed between two lateral
links belonging to the execution sequence of
an r-cycle in .

e MB(loc) — the number of move-between
(MB) local links existing in the route from
(i,7) to {(ip,m). By definition, MB local
links are: 1) local links that must be tra-
versed between the executions of two consec-
utive r-cycles in 7, 2) local links that must

be traversed in supernode m and are required
to move from (i,7) to the lateral link that
initiates the execution of the first r-cycle of
7 and 3) local links that must be traversed in
supernode 7y and are required to move from
the lateral link that finishes the execution of
the last r-cycle of 7 to (io, o).

Thus, d = lat + loc = lat + MI(loc) +
MB(loc). As an example, consider routing from
(3,34125) to (2,12345) in SCCs. The cyclic
representation of permutation 34125 is (1 3)(2
4)(5). One possible route uses the sequences of
lateral links (2,4,2) and (3). Figure 3 shows
the MI local links and the MB local links in
such a route.

Note that from the topological viewpoint
there is no distinction between MI and MB lo-
cal links. A particular local link used by a route
in SCC,, is considered to be either an MI or
an MB local link, depending on the conditions
stated above. Therefore, the same local link
can be classified as an MI local link for some
routes and as an MB local link for others.

The cost components lat, MI(loc) and
MB(loc) exist in any route in SCC,, (although
in some short routes one or more of these com-
ponents may be null). Due to vertex symmetry,
one can derive the average distance of SCC,, by
computing the average numbers of lateral links,
MTI local links and MB local links in a route
from (i, 7) to (ip,m). Such average numbers
are denotated by lat, MI(loc) and MB(loc),
respectively. The average distance of SCC,,
denoted by #(SCC,), can then be expressed
by:

#(SCC,) = lat + MI(loc) + MB(loc).  (5)

Supernode labels

—_\

734125 43125 23145 32145 __12345\
7 4 ~ 7 3\
N~ ¢ pod N
4 3 4 3 4 3 4 3 4 3
5 2 5 2 : 5 24 5 2 A 5 2
7/ Ve
\_i/ \___2_/
Legend: O Source node M Destination node

— — Lateral link = «-eeeee- MI local link == MB local link

Figure 3. Types of links in a route in SCCs.
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Finally, the average numh

existing in a route from (i, 7

er of local links
) to (g, m) in

SCC, is, by definition, loc| = MI(loc) +
MB(loc).
Average Number of Lateral Links

The number of lateral links in th
any node of SCC, and the i
exactly equal to the cost of th
route in the underlying n-star g
fore, lat is exactly equal to the
of S, which is given by [16]:

— 2
lat=n+ H, + — — 4,
n

where H, = 7 1%

% is the
number [13].

Average Number of MI Lo

The number of MI local links
SCC, can be calculated as follows.

routing from (i, 7) to the identi
and let the number of r-cycles o
2 in 7 be c
of these r-cycles and let R; b

Let Ci = (ZO

le route between
dentity node is
e corresponding
raph [2]. There-
werage distance

(6)

nth Harmonic

cal Links

in a route in
Consider
ty node (39, 7g)
f length at least
i,_1) be one
e an execution

sequence for C; (Equation 2). Moving between

two consecutive lateral links 7,

d(iq,%,) MI local links, where [2]:

d(ia,’ib) = min(|ia - ib|,n -1

» in R; requires

- ,ia - ibl)'

(7)

The total number of MI local links that

must be traversed during the e

xecution of Cj,

denoted by MI(loc, C;), is, therefore, the sum
of the distances d(i,,i,) between all pairs of

consecutive lateral links (i,, ;)

r—1

D d(ijoy,is),
MI(loc, C;) =4 772

Z d(ij—lvijmo

=1

Lemma 1

n R;:
ifig=1
i), if 49 # 1.
(8)

The number of MI local links| that must be

traversed in a route between
of SCC, is independent of th

any two nodes
¢ order chosen

to execute the r-cycles existing | between those

nodes.
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Proof

It is first shown that MI(loc,C;)does not de-
pend on the sequence of lateral links R; chosen
to execute C;. 1If iy = 1, there is only
one such sequence (Equation 2). If iy # 1,
there are r different possible sequences (Equa-
tion 3). However, due to the cyclic nature of
these sequences, they all have the same cost
MI(loc, C;)(Equation 8). By extension, the
total number of MT local links in the route,
MI(loc), must also be an invariant. O

An immediate consequence of Lemma 1
is that the number of MTI local links between
two nodes of SCC, can be derived without
further considerations about routing. (Assum-
ing, of course, that routing is accomplished in
adherence to Equations 2 and 3, as is the case
with all routing algorithms presented in this
paper.) As an example, consider an r-cycle
C;=(264) and let n = 7. C; can be executed
with a sequence of lateral links R; = (2,6, 4, 2).
The number of MT local links required in the
execution of this sequence is MI(loc,C;) =
d(2,6) +d(6,4) +d(4,2) =2+2+2=6.

Theorem 1

The average number of MI local links that must
be traversed in a route in SCC,, is:
n_—IJ

W:(n_l)lﬂl 2

n

(9)

Proof

The average number of local links that must be
traversed between two adjacent lateral links is:

o - Ddid) LB

n—2 n—2

The average number of local links that
must be traversed in the execution of an r-cycle

Ci = (7'0 . 7:7‘—1) is:
d(loc) - (r—2), ifig=1
MI(loc,C;) = _
d(loc) - T, if 45 # 1.
(11)

Over all n! possible permutations of n
symbols and for each integer r, 2 < r < n,
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there is a total of (n — 1)! r-cycles that include
symbol 1 (ig = 1) and n!/r — (n — 1)! r-cycles
that do not include symbol 1 (i # 1). The
average number of MI local links over all n!
permutations is therefore:

d(loc)- S, (n=1)1- (r=2) + (2 = (n=1)!) r)

n!

Wy - ym- _-0l3 15
n n

Average Number of MB Local Links
Recall that MB local links are needed to move
between execution sequences of adjacent 7-
cycles (2 < r < n), to move into the first lateral
link and to move out of the last lateral link in
a route in SCC,,.

Theorem 2

The average number of MB local links that
must be traversed in a route in SCC,, under
a random ordering of r-cycles, is:

wtoerond = 3|7 (G Swer)
(12)

Proof

Over all n! possible permutations of n symbols
and for each integer r, 2 < r < n, there is
a total of n!/r r-cycles. The total number of
r-cycles of length at least 2 in the n! possible
permutations of n symbols is, therefore, N, =
Sy (nt/r) = nl- (H, 1),

The average number of r-cycles, 2 < r < n,
in a permutation of n symbols is T = N,/n! =
H, — 1. The average number of MB local
links that must be traversed between these r-
cycles is MB(loc,mid) = (7 — 1) - d(loc) =
13] [25] (H - 2)

'Le7tl (i,m) be the source node and let the
first lateral link in the route be i, 2 <1, < n.
The average number of local links that must be
traversed between (i,7) and (ix,w) is d(in) =

2] 155

1 n .
n_____lz:i=2 d(z’ 2) - n — 1
Note that d(in) differs from d(loc) (Equa-
tion 10), since to compute d(in) the case i =

must be considered. Similarly, the average
number of local links that must be traversed
between the last lateral link in the route and the
destination node is d(out) = d(in). Then, the
average number of MB local links that must be
traversed in a route in SCC,,, assuming a ran-
dom ordering of r-cycles, is MB(loc,rand) =
d(in) + MB(loc, mid) + d(out). The theorem
follows. O

As will be described in the next section,
a properly designed routing algorithm can op-
timize the ordering of the r-cycles and reduce
the average number of MB local links further
below the value provided by a random ordering
of r-cycles (Equation 12). The average number
of MB local links, considering that the shortest
route between any two nodes of an SCC graph
is determined by a minimal routing algorithm,
is, therefore, bounded by:

MB(loc) < MB(loc, rand). (13)

Average Distance in the SCC Graph
Theorem 3
The average distance of SCC,, is bounded by:

FSCC,) <t Hut = ~4
+tEJ [n—l} <n2+1+Hn—2>
2 2 n2—n n—2 (14)

Proof

Proof follows directly from Equations 5, 6, 9,
12 and 13. O

ROUTING ALGORITHMS IN THE
SCC GRAPH

Ordering of r-Cycles

Consider the problem of routing from 7, to my
in S,. Because 5, is vertex-symmetric, there is
an automorphism that fixes 7, to the identity
node my = 12...n. The same automorphism
maps 7, by conjugation to a permutation 7y,
such that finding a path from 7, to m4 becomes
equivalent to routing from my, to mo. The
desired automorphism can be expressed as a
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symbol renaming operation, wh

ich is selected to

fix the destination node to my. For example, let

7w, = 45231 and 7, = 31245. Tqg
symbols 3, 1 and 2 are rename
respectively. This symbol rena
when applied to =, yields 7y,

This discussion can be ext
as follows. Permutations 7, 7,
viewed as labels of supernodes

map 74 into 7,
das 1, 2 and 3,
ming operation,
= 45312.

ended to SCC,,
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in SCC,, such
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(ia;Tq) in SCC,, becomes equiv
from (i, m45) to (ig, mp).

Let P(¢; — ¢;) denote a ro
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The total cost of P(¢; — () is

[P(ly = Lp)] = f +d(is, &)

-1

alent to routing

ute from (i,, )
BTSes a sequence
(b1, 8y, ... Ls).
given with:

+ Z d(l;, Ca) + d(Ly,14)

j=1

(15)

Depending on the order chosen to execute
the r-cycles in 7y, different routes P(¢; — £y)
are produced. As explained in the previous
section, a common feature to any of these routes
is that they all have the same number of lateral
links (lat) and MI local links (MI(loc)). Find-
ing the shortest route from (i ,7,) to (i, my)

is, therefore, a matter of choo

sing an 7-cycle

ordering which minimizes the number of MB lo-

cal links (MB(loc)). In this se

minimal routing algorithms are

tion, two non-

described. A

minimal (but more complex) routing algorithm

is given in [17] and is briefly d
paper.

To illustrate the different ¢
in a route and how they are

Iscussed in this

st components
affected by the

order chosen to execute the r-cycles, assume

routing from node (3, 34125) to

node (2,12345)

i SCC5. A route along the sequence R(2 —
3) = (2.4,2,3) contains four lateral links, four
MI local links and three MB lpcal links (i.e.,

sequence of lateral links R(3
is used, a route with four lat

However, if the
2) =(3,2,4,2)
eral links, four

MI local links and one MB lo¢al link results
(i.e., |[P(3 ) =44+4+1=09).
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In some cases, the number of MB local
links in a route from (i,,7,) to (24, 74) can
be further reduced by interleaving (rather than
executing separately) the r-cycles in 7,,. For
example, some possible sequences of lateral
links from supernode 74, = 23154 = (12 3)(4 5)
to supernode 7y = 12345 in SCCs are (2, 3,
4,5, 4), (2, 3, 5, 4, 5), (4, 5, 4, 2, 3), (5, 4,
5,2, 3), (2, 4, 5, 4, 3) and (2, 5, 4, 5, 3).
The last two of these sequences interleave r-
cycles (1 2 3) and (4 5). All of the routing
algorithms discussed in this paper account for
the possibility of interleaving r-cycles.

Random Routing Algorithm

A simple routing algorithm for SCC,, consists
of choosing a random order to execute the -
cycles in my,. Particularly, a possible algorithm
that can be used for this purpose is the routing
algorithm of the star graph [14]:

Algorithm 1 (Non-Deterministic
Routing in the Star Graph)

Repeat until 7y, = 7y:

1. If the first symbol in 74, is 1, then exchange
1t with any symbol not in its correct posi-
tion.

2. If the first symbolin 74, is x # 1, then either
exchange it with the symbol at position z,
or exchange it with any symbol in an r-cycle
of length at least two, other than the r-cycle
containing .

Algorithm 1 requires at most ¢ + m steps
of complexity O(1) each, and, therefore, its
complexity is O(c +m), or O(n), since 0 < ¢ <
[n/2] and 1 < m < n.

Greedy Routing Algorithm

A simple approach to minimizing the number
of MB local links in the route between nodes
(is,ms) and (i4,74) consists of using a greedy
algorithm. Such an algorithm uses the following
data structures and variables:

o S, —the set of r-cycles of length at least 2 in
Tds-

e S, —asubset of the symbols of 7, such that:
1)if (143 ... i,_1) is an r-cycle of my,, 2 <
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r < n, then i; € S and 1,49,... ;%1 g 8,
and 2) if (ip ... %,—1) Is an r-cycle of mys,
2 < r < n, such that ip,... ;%1 # 1, then

10y -+ 5 r—1 S SS.

e i, — an integer variable initialized to ¢; = i.

Algorithm 2 (Greedy Routing in the

SCC Graph)

1. If m,, = 7o, then route inside the supernode
and exit.

2. Identify the 7-cycles of length at least 2 that
exist in 74, and initialize S, S, and ;.

3. Choose a symbol i, € S, such that d(i;,70)
is minimal. Let C, be the r-cycle that
contains symbol i,. Once i, is chosen, make

'l,j = lq-
4. If C, has the form (1 %4 15 --. i,_1), then
make S, = S — { (1 tn 5 --- ie_1)

{(Lig ... i,1)} and 8o = S —{ia} +{is}.
Otherwise, make S, = S, — {C,} and S, =
S, — {symbols(C,)}, where symbols(C,) de-
note a function that returns the set of
symbols in r-cycle Cj.

5. Repeat Steps 3 and 4 until S, = 0.

6. If i; # 14, then route locally inside the
destination supernode.

The greedy approach used by Algorithm 2
consists of choosing the 7-cycle that has the
minimum distance from 7; as the next one to
be executed. If the selected r-cycle C, includes
symbol 1, then only the first lateral link of C,, is
taken, which allows for an interleaved execution
of that r-cycle. If C, does not include symbol 1,
then C, is executed completely. The complexity
of the greedy routing algorithm is O(em) or
O(n?) since 0 <c < |n/2] and 0 < m < n. The
ordering of r-cycles chosen by this algorithm,
however, may not produce a minimal route.

Minimal Routing Algorithm

A detailed description of a minimal routing al-
gorithm for SCC,, is given in [17] and is avoided
in this paper due to space constraints. Because
the minimal routing algorithm achieves exact
numerical solutions for the average distance of

SCC graphs, its simulation results are included
in this paper. Furthermore, these results con-
stitute a useful reference for comparisons with
the random and greedy routing algorithms.
The main characteristics of the minimal
routing algorithm can be summarized as fol-
lows. The algorithm performs search on a
weighted tree structure and employs selective
heuristics to constrain tree branching. To
guarantee that a minimal path is always found,
the heuristics are constantly monitored against
a path cost threshold. A backtracking mecha-
nism is triggered when active branching options
do not meet the current path cost threshold.
In this case, it is possible that a previously
discarded branching option will be actively
pursued by the algorithm again. Backtrack-
ing also causes the path cost threshold to be
reevaluated. The algorithm has an average
computational complexity of O(n?).

SIMULATION RESULTS

The performance of routing algorithms for
SCC, was evaluated with simulation programs
which compute the route of all (n — 1)n! nodes
of the graph to the identity. The routing
algorithms that were tested are: 1) a random
routing algorithm that generates all possible
routes to the identity with equal probability,
which is based on Algorithm 1, 2) Algorithm 2
and 3) the minimal routing algorithm given
in [17]. The simulations were carried out for
3 < n<9. Alog of worst-case routes that may
result from the random routing algorithm was
also made.

Table 1 and Figure 4 show the simulation
results obtained with the minimal routing al-
gorithm. Values for lat and MI(loc) match ex-
actly the theoretical values provided by Equa-
tions 6 and 9. Also, the simulation results
obtained for MB(loc) under a minimal routing
algorithm are closely bounded by Equation 12.

As expected, only the average number
of MB local links varied among the different
routing algorithms that were tested. Figure
compares simulation results for MB(loc). Note
that the results for the random routing algo-
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Table 1. Ayerage distance of SCC graphs under minimal routing.
n 3 4 5 6 7 8 9
Graph Size ((n - 1) - nl) 12 72 480 3600 30240 | 282240 | 2903040
Graph Diameter (¢(SC(,.)) 6 8 16 19 31 34 50
Average Number of 1.500 | 2.583 | 3.683 | 4783 | 5.879 | 6.968 | 8.05
Lateral Links (lat) ' ' ’ ’ ' ' 0ol
Average Number of M| |\ o0l 200 | 5.000 | 7.714 | 10.500 | 14.222
Local Links (MI(loc) ' ' ' ' ' ’ ’
Average Number of MB | 01 s | 4 925 | 2.337 | 2924 | 3334 | 3873
Local Links (MB(loc)) i ' ) ' ' ' '
Average Number of
. —_— 1.500 | 2.722 | 5.125 | 7.337 10.638 | 13.834 18.096
Local Links (loc)
Average Distance (¢(SCC,)) | 3.000 | 5.306 | 8.808 | 12.121 | 16.517 | 20.802 | 26147
30 \ rithm are very close to the theoretical values
& =48 Average distance } i
ol Avora e tocal linlke ' pr0v1d_ed by Equatl(_)n 12. The model - used
0-—-0 Average number of Ml local links e to derive that equation seems to result in an
#*---% Average number of lateral links , . ' . . . .
20| ®— Average number of MB lochl links " error proportional to 1/n!, which is negligible

Distances

Figure 4. Average distances undet
routing.

minimal

Average number of MB local links

Figure 5. MB(loc) vs routing algor

&-—8 Random routing (worst-case)
¥——% Random routing (average,si
¢ ~-~0 Random routing (average,thl
*---x Greedy routing

B—=& Minimal routing

,

mulation)
eoretical) /'/

ithms.

considering that Equation 12 is still a close
upper bound for MB(loc). As expected, both
the greedy and the minimal routing algorithm
outperform the random routing algorithm, as
far as the average number of MB local links is
concerned. Also observe that, for 3 < n < 4,
the greedy routing algorithm performs as well
as the minimal routing algorithm. Besides, the
results presented here indicate that the perfor-
mance of these algorithms is quite similar for
5 < n <9, which makes the less complex greedy
routing algorithm particularly attractive.

Average costs of paths produced by the
three routing algorithms are summarized in
Table 2. The random routing algorithm has
a complexity of O(n) and performs reasonably
well on the average. Utilization of such an
algorithm may, however, result in variations in
the average cost of routes up to the worst-case
values shown in Table 2.

Figure 6 shows distribution curves compar-
ing the three routing algorithms in the case of
an SCCy graph. A point (D;,N;) in one of
these curves indicates that the corresponding
routing algorithm will compute a route of cost
D; to the identity for N; nodes in the SCC
graph. The average distribution for the random
routing algorithm is shown, but the results
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Table 2. Average costs vs routing algorithms.

n | Minimal | Greedy Random Routing
Routing | Routing | Theoretical | Simulation | Worst-Case

3 3.000 3.000 3.000 3.084 3.167
4 5.306 5.305 5.500 5.514 5.694
5 8.808 8.812 9.261 9.264 9.775
6 12.121 12.215 12.858 12.858 13.662
7 16.517 16.707 17.660 17.660 19.100
8 20.802 21.109 22.332 22.332 24.324
9 26.147 26.570 28.168 28.168 31.043
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Figure 6. D; x N, distribution curves for SCCy.

for that algorithm may actually vary from the
minimal to the worst-case distribution curves
due to the non-deterministic nature of the
algorithm. It is also interesting to observe
that the greedy routing algorithm provides a
distribution curve which is close to that of the
minimal routing algorithm, presenting, how-

ever, a smaller complexity.

CONSIDERATIONS ON WORMHOLE
ROUTING

In this section, it is briefly described how
the algorithms presented in the paper can be
combined with wormhole routing [11], which is
a popular switching technique used in parallel
computers.

All three algorithms can be used with
wormhole routing, when implemented as
source-based routing algorithms {1]. In source-

based routing, the source node selects the entire
path before sending the packet. Because the
processing delay for the routing algorithm is
incurred only at the source node, it adds only
once to the communication latency and can be
viewed as part of the start-np latency. Source-
based routing, however, has two disadvantages:
1) each packet must carry complete information
about its path in the header, which increases
the packet length and 2) the path cannot
be changed while the packet is being routed,
which precludes incorporating adaptivity into
the routing algorithm.

Distributed routing eliminates the disad-
vantages of source-based routing by invoking
the routing algorithm in each node to which
the packet is forwarded [1]. Thus, the decision
on whether a packet should be delivered to the
local processor or forwarded on to an outgoing
link is done locally by the routing circuit of a
node. Because the routing algorithm is invoked
multiple times while a packet is being routed,
the routing decision must be taken as fast as
possible. From this viewpoint, it is important
that the routing algorithm can be easily and
efficiently rendered in hardware, which favors
the random routing algorithm over the greedy
and minimal routing algorithms.

Besides being the most complex algorithm
discussed in this paper, the minimal routing
algorithm includes a feature which precludes
its distributed implementation in association
with wormbhole routing, namely its backtracking
mechanism. Distributed versions of the random
and greedy algorithms, however, can be used in
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combination with wormhole r
minimal distributed routing
supports wormhole routing ¢
by removing the backtracking
the minimal algorithm given
an algorithm is likely to have

puting. A near-
algorithm which
an be obtained
mechanism from
in [17].  Such
> computational

complexity and average cost that lie between
those of the greedy and the minimal routing

algorithm.
Due to its non-determini
random routing algorithm als

stic nature, the
seems to be a

good candidate for the SCC networks employ-
ing distributed adaptive routing [1]. Adaptivity
is desirable, for example, if the routing algo-

rithm must dynamically resp

ond to network

conditions such as congestion and faults. Some

degree of adaptivity is also
greedy and minimal routing al

possible in the
corithms, which

in some cases can decide between paths of equal

cost.

CONCLUSION

This paper compared the average cost and the
complexity of three different routing algorithms

for the SCC graph.
into three components (lateral
links and MB local links) an
that only the number of MB

Routes were divided

links, MT local
1 it was shown
local links may

be affected by the routing algorithm being

considered. Exact expressions
number of lateral links and the
of MI local links were presented

for the average
average number
Also, an upper

bound for the average number of MB local

links was derived, considering a

random routing

algorithm. As a result, a tight upper bound

on the average distance of the
obtained.

SCC graph was

Simulation results for a random, a greedy
and a minimal routing algorithm were pre-
sented and compared with theoretical values.
The complexity of the proposed algorithms is
respectively O(n), O(n?) and O(n?), where n is
the dimensionality of the SCC, graph. The

results under minimal routing

produce exact

numerical values for the average distance of

SCC,,,for3<n <9.

Results for the greedy algorithm match

Scientia Iranica, Vol. 3, No. 4

those of the minimal algorithm for 3 < n < 4.
The greedy algorithm also performs close to
minimality for 5 < n < 9 and is an interesting
choice due to its O(n?) complexity. The random
routing algorithm has an O(n) complexity and
performs fairly well on the average, but may
introduce additional MB local links in the route
under worst-case conditions.

Finally, it was discussed how each of
the routing algorithms can be used in asso-
clation with the wormhole routing switching
technique. Directions for future research in
this area include an evaluation of requirements
for deadlock avoidance (e.g., number of virtual
channels).
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