Curvature Scale Space Representation for
Robust, Silhouette-Based Object Recognition
with Occlusion

F. Mokhtarian!

A complete and practical system for object recognition with occlusion has been developed
which is very robust with respect to noise and local deformations of shape (due to limited
perspective projection, segmentation errors and soft surfaces) as well as scale, position
and orientation changes of the objects. A wide variety of 3-D (not flat) objects with
different shapes and surface properties have been used in order to test the system. No
restrictive assumptions have been made about the shapes of admissible objects. An industrial
application is envisaged where a fixed camera and a light-box are used to obtain images which
are segmented in order to get the object boundaries. Every 3-D object can be modeled by
a limited number of 2-D contours corresponding to the object’s resting positions on the
light-box. Note, therefore, that the system cannot be used for unconstrained 3-D object
recognition from arbitrary viewpoints. The Curvature Scale Space (CSS) technique is then
used to obtain a novel multi-scale segmentation of the image contour and the model contours
using curvature zero-crossing points. Object indexing is used to narrow down the search-
space. A local matching algorithm is utilized to select the best matching models. Efficient
transformation parameter optimization is used to map candidate models to the image space
and directly measures the model-data quality of match. It is also used to compute the optimal
pose for each selected model.

INTRODUCTION

Object representation and recognition is one
of the central problems in computer vision.
Normally, a reliable, working vision system
must be able to a) effectively segment the image
and b) recognize objects in the image using
their representations. This paper describes a
complete, working vision system which seg-
ments the image effectively using a light-box
setup and recognizes occluded objects in the
image reliably using their CSS representations
[1]. The CSS representation is based on the

scale space image concept introduced in [2]
and popularized by [3]. It is an organization
of curvature zero-crossing points on a contour
at multiple scales. Previous publications by
this author on the CSS representation [4,5]
contain descriptions of how to compute CSS
representations as well as theoretical investiga-
tions of the properties of those representations.
Furthermore, a complete and robust isolated
object recognition system based on the CSS
representation was described in [6,7]. That
system was designed specifically for recognition
of isolated objects and, as a result, the system
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design is substantially different from the system
presented here.
It is assumed that the recognition system
developed here may be used for recognition of
occluded three-dimensional objects. In particu-
lar, it is assumed that a number of 3-D objects
are placed on a light-box in front of a camera
(by a robot arm, for example) and that the task
is to recognize each object. This particular task
might be interesting for the following reasons:

e Despite the constraints placed on the envi-
ronment, no constraints haye been placed
on object shapes or types.| Furthermore,
environment constraints are|not difficult to
satisfy in many object recognition tasks
(such as in industrial setting

e Every three-dimensional object, when rest-
ing on a flat surface and viewed by a fixed
camera, has a limited number of classes of
stable positions such that each class can be
modeled using a two-dimensional contour.
Note that the camera should not be very
close to the objects. Furthermore, many 3-D
objects can be effectively modeled using a
finite number of characteristic 2-D views.

e Even with a light-box setup, recognition
of 3-D objects can become challenging due
to arbitrary shapes of those objects, noise
and local deformations of shape which can
be caused by perspective projection (when
the camera is relatively close), segmentation
errors and the soft surface ofl some objects.

The existing literature on shape repre-
sentation and recognition is quite large. A
detailed analysis or review is beyond the scope
of this paper. A survey of some recent work
can be found in [8]. Linear features such as
points, lines and planes were| used for 3-D
object matching in [9]. Alignment was used
for recognizing 3-D objects in|2-D images in
[10]. An object recognition system was de-
veloped for bin-picking tasks|in [11] which
organized faces in an aspect graph. A data
structure referred to as the feafure sphere was
developed in [12]. The Cresceptron framework
was utilized in [13] for learning recognition
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of 3-D objects from 2-D images. Extended
Gaussian images were used to determine object
attitude in [14,15]. Registration of 3-D shapes
was addressed in [16]. Sparse 3-D position
and orientation measurements were utilized for
object recognition in [17]. A Hopfield neu-
ral network was used for object recognition
in [18]. Curved objects were recognized in
[19] using a spherical representation. Interest
features were used to create a hash-table in
[20] which was utilized in conjunction with a
generalized Hough transform technique. Shape
polynomials were used in [21] to represent and
compare shapes. The 2-D model-based object
recognition system described in {22] employed
transformation sampling. Symmetry-seeking
models were made use of in [23] for 3-D object
recognition. Overlapping parts were localized
in [24] by searching the interpretation tree.
An adaptive 3-D object recognition system
was developed in [25] using multiple views.
INlumination planning was employed in [26] for
object recognition in structured environments.

In general, a shortcoming of some object
representation techniques mentioned above is
that the features extracted from the objects and
used for matching are too local and, therefore,
the resulting system is not robust with respect
to noise and local deformations of shape. In
those systems in which less local features are
used, the utilized features are not necessarily
inherent features of the object and, therefore,
have weak discriminative power.  Another
problem with some of these techniques is the
limiting assumptions placed on the shapes of
admissible objects. This paper presents a novel
technique which addresses the shortcomings
listed above by dealing effectively with free-
form objects.

The first seven sections of this paper ex-
plain various aspects of the object recognition
system developed. The order of presentation
of these sections is the same as the order in
which the tasks they explain are carried out by
the system. The first section briefly explains
how the processing of an image using a light-
box system is accomplished. The next section
reviews the CSS representation as a multi-scale
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organization of the inherent features of a planar
curve. The third section shows how multi-
scale segmentation of a two-dimensional con-
tour using curvature zero-crossing points may
be accomplished. The fourth section describes
a fast, local matching algorithm. The fifth
section proposes a procedure for estimating the
transformation parameters. The sixth section
shows how the image-model curve distance can
be computed and the last section describes
a procedure for efficient optimization of the
transformation parameters. Finally the results
and an evaluation of the system, as well as the
concluding remarks, are presented.

IMAGE PROCESSING

The use of a light-box setup makes the process-
ing of the image reasonably straightforward.
The same threshold value T was used to effec-
tively segment all input images. Any pixel with
a value less than T was classified as a 1-pixel,
otherwise as a 0-pixel. A salt-and-pepper noise
removal procedure was applied to the resulting
binary image in order to remove isolated noise.
This procedure sets any 1-pixel to zero which
has more than 5 zero 8-neighbors and sets any
0-pixel to one which has more than 5 one 8-
neighbors. It is applied to the image serially.
This procedure is also referred to as median
filtering. The next step is to apply a process
of region growing followed by shrinking to the
image in order to fill in cracks and small holes.
This step corresponds to the application of
mathematical morphology functions of dilation
and erosion. The resulting binary image always
has only one connected region of 1-pixels which
corresponds to the objects. Next, boundary
pixels belonging to the region of 1-pixels are
detected: Any 1-pixel which has at least one
zero 4-neighbor retains its value. Otherwise,
it is set to zero. This procedure is applied in
parallel. The final step is to recover the image
coordinates of the boundary points. Here, this
was done in a clockwise order. The image
is scanned until the first boundary point 1s
encountered. The eight neighbors of that point
are searched in clockwise order starting with
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the top neighbor until a new neighbor is found.
This procedure is repeated until the starting
point is reached. The complete boundary curve
is available.

THE CURVATURE SCALE SPACE
REPRESENTATION

A CSS representation (or image) is a multi-
scale organization of the invariant geometric
features (curvature zero-crossing points and/or
extrema) of a planar curve (here, only curvature
zero-crossings were used). It is, therefore, very
suitable for representing the shapes of free-form
objects. Curvature zero-crossings are points
where the curvature function of a planar curve
changes sign from positive to negative or from
negative to positive. The CSS image of a planar
curve represents this with - uniquely modulo
scaling and a rigid motion [27]. To compute
it, the curve T is first parametrized by the arc
length parameter u [28]:

I'(u) = (x(u), y(u)).

It is assumed that the input curve is initially
represented by a polygon with possibly many
vertices. Therefore only the coordinates of
the vertices of the polygon need be given.
If the distances between adjacent vertices of
the polygon are all equal, then an arc length
parametrization of the curve is already avail-
able. Otherwise, that polygon is sampled to
obtain a new list of points such that the dis-
tances between points adjacent on the list are
all equal on the original polygon. An evolved
version I', of I' can then be computed. I', is
defined by [29}:

I, = (X(u,0),Y(u,0)) ,
where,

X(u,0) = z(u) @ g(u,0) ,

Y(u,0) =y(u) ®9(u,0)

where ® is the convolution operator and g(u, o)
denotes a zero-mean Gaussian of width ¢ [30].
o is also referred to as the scale parameter.
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The process of generating evol
I', as o increases from 0 to

ved versions of
oo is, referred

to as the evolution of I This technique is

suitable for removing noise from
Evolving contours can be consid
form of active contours (snakes)
are similar in behavior to snak
external constraints.

The CSS representation
ture zero-crossings or extrema
evolved versions of the input ¢
to find such points, curvatur
computed accurately and directl
version I', of a planar curve. I
that curvature x on I', is given

 Xu(u,0)Yu(u,0) =X,

a planar curve.
ered as an early
[31], since they
es without any

contains curva-
extracted from
urve. In order
e needs to be
y on an evolved
t can be shown

by [5]:

L(u,0)Y, (u,0)

(Xu(u,0)? + Y, (

Xu(1,0) = <-(a(u) @ glu, )

= z(u) © gulu,0) ,

Xuu(u,0) = 57

=z(u) @ guulu, c) ,

Yo(u,0) = y(u) © gu(u, 0) ,
and:

Y,u(u,0) = y(u) ® guu(u, o).
The function defined implicitly

k{u,0) =0,

9 (o) © glu, )

)

L, 0_)2)1.5

is the CSS image of I'. Note the following:

e As its name suggests, the

CSS image is

stored as a binary image in which each row
corresponds to a specific value of ¢ and

each column corresponds to
of u.

2 specific value

Therefore, a curvature zero-crossing

detected at scale o at a contour point with
arc-length value u is mapped to location

(u,0) in the CSS image.
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(a) Africa (b) Smoothed at o = 4

(c) Smoothed at o = 8

Figure 1. Africa during evolution.

e A brute force computation of a CSS image
will, in general, require the evaluation of
a large number of convolutions which can
slow the system down. The method usually
used is to track the zero-crossings in the
CSS image: at each scale during computa-
tion, curvature is computed only in a small
neighborhood of each location where a zero-
crossing was detected at the previous scale.
This is possible since for a small change in o,
the change in location of any curvature zero-
crossing point on the curve is also small.

e For all values of ¢ larger than o, evolved
curves I', will be simple and convex. This
suggests that the computation can stop as
soon as o, is reached or as soon as no more
curvature zero-crossings are detected on I',
[32-34].

Figure 1 shows the coastline of Africa and
two evolved versions of it. Figure 2 shows
the CSS representation of Africa. For further
examples of CSS images, see [5,35].

MULTI-SCALE SEGMENTATION OF
2-D CONTOURS

The basic idea behind the segmentation scheme
is to divide the input contour into primitive seg-
ments to be used by a local matching algorithm
(described in the next section). Curvature zero-
crossing points are the natural feature points
to divide the contour, since their locations are
invariant with respect to rotation, scaling and
translation of the contour. The main issue,
therefore, is the issue of scale: which scale
should be chosen for the detection of curvature
zero-crossing points on the input contour? If
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Figure 2. Curvature scale space representation of
Africa.

the scale chosen is too small, the segmentation
may be affected by noise and local distortions of
shape and if it is too large, important structure
on the contour may be lost.

The solution used here was motivated by
the main underlying concept of the CSS rep-
resentation: utilize information from multiple
scales rather than prefer a single scale. There-
fore, the segmentation of the input contour
is also carried out at multiple scales. The
procedure is as follows:

e Start the segmentation at the lowest scale of
the CSS image and end at a medium scale,
since the segments discovered at high scales
are not useful for local matching.

e Segment the contour using the curvature
zero-crossing points detected at the lowest
scale and add all segments (defined by their
left and right endpoints expressed in arc-
length values) to a segment-list. As each
higher scale is considered, again detect all
curvature zero-crossing points at that scale
but add a new segment if it does not already
exist in the segment-list (i.e., no segment can
be found in the segment-list such that its left
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and right endpoints are close to the left and
right endpoints of the new segment).

Care must be taken to account for the
movement of curvature zero-crossing points
in the CSS image. Therefore, an auxiliary
segment-list is also used which always records
the updated values (across scales) of the left and
right endpoints of each segment in the original
segment-list. To check for existence, the auxil-
jary segment-list is searched. When extracted
segments are written to the output file, the
original segment-list is used, since the segments
in the auxiliary segment-list become very small
at the maximum of the corresponding CSS zero-
crossing contour.

As will be seen later, this multi-scale seg-
mentation scheme is substantially more robust
with respect to noise and local shape differ-
ences.

LOCAL MATCHING THROUGH
CURVATURE SCALE SPACE

Due to occlusion, the matching algorithm em-
ployed is a local one and consists of several
stages. The subsections of this section describe
those stages in the sequence in which they are
carried out.

Rescaling

Model contours are rescaled so that they just
fit in a unit square. They are further rescaled
so that they reflect the relative sizes of model
objects when viewed at the same distance.
The aspect ratios of the model contours are
not changed in the process. Model contour
rescaling is carried out off-line. The image
contour is also rescaled so that it just fits
in a unit square (the image contour touches
the square at 3 points or more). The aspect
ratio of the contour is not changed in the
process (note that only the outermost image
contour is used for matching to demonstrate
the recognition power of the system). As a
result of image and model contour rescaling,
the possible scale changes from model contours
to the image contour become predictable which
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helps to define an admissible space for the scale-
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Due to occlusion, all possible
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local matches
ever, that very
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avoid an exhaustive search of all model contour
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segmentation, each model cont
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candidate, segment-dist is defined as the av-
erage point distance between the image-model
contour segments (see the sixth section) and is
used as a measure of the goodness of fit between
the two segments. A number of candidates
with relatively low segment-dist values are then

selected for further processing.

Candidate Merging

Initial candidates correspond to simple seg-
ments delimited by neighboring curvature zero-
crossing points. Nevertheless, it is possible for .
the visible boundary of an object in the input
Image to be divided into several neighboring or
even overlapping segments. It is, therefore, nec-
essary to merge those initial candidates which
satisfy several criteria intended to measure
candidate compatibility. It follows that two
candidates c; and ¢, will be merged if they
satisfy the following criteria:

e ¢ and c; must be valid (not previously
merged) and different candidates.

e c; and ¢y must correspond to the same
model.

o The transformation parameters of ¢; and
co should be roughly the same. It must
be emphasized that the test used here was
not strict, since local matches can result
in significantly different parameters even for
compatible candidates.

e The corresponding segments of ¢, and c,
must be neighboring or overlapping.

e The scale factor associated with the new
merged candidate must be in the admissible
space mentioned in the last subsection.

e The new candidate must have a low segment-
dist value.

When two candidates are merged, the cor-
responding segments will be the union of the old
segments. The old candidates are invalidated.
‘T'he algorithm described above will continue
merging candidates until no two candidates can
be found which satisfy the merging criteria.
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Candidate Extension

In general, the intersection point of two object
boundaries in the input image does not coincide
with an endpoint of a curvature zero-crossing
segment. Therefore, in order to find the exact
location of such intersection points, it is neces-
sary to gradually extend the contour segments
associated with the merged candidates as long
as a good fit between the image and model
segments can be observed. Extension is first
carried out at the right endpoint until mismatch
error is too large and then carried out at the
left endpoint. It is assumed that in general,
object intersection points are a subset of the
curvature maxima on the image contour (this is
true except in hypothetical situations). First,
all curvature extrema are located on a slightly
smoothed version of the input image contour.
Then, the following procedure is applied at cach
endpoint of each candidate:

e Extend the image contour segment to the
next curvature maximum on the image con-
tour.

e The corresponding model contour segment is
extended accordingly to determine its new
endpoint.

e Determine new transformation parameters
and the new value of segment-dist for the
candidate being extended.

e Determine the number of points k in a small
neighborhood of the endpoint which are far
from the image contour.

Extension stops if at least one of the
following conditions comes true:

e New candidate no longer has a low segment-
dist value.

e New value of segment-dist rises sharply com-
pared to previous value.

e k rises above an acceptable limit.

When extension stops, tests are carried out
to detect a borderline case (k is just above
the acceptable limit or value of segment-dist
is just above the cut-off threshold). If so, the
current endpoint becomes the final endpoint.
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Otherwise, the previous endpoint becomes the
final endpoint.

Candidate Grouping

The next step in matching is to group compat-
ible but disjoint candidates. The tests applied
to determine compatibility are the same as the
tests in the previous subsection except that the
fourth test is not applied.

It is certainly possible that, due to oc-
clusion, an object in the scene may appear as
two or more disjoint components in the input
image. The goal of this step is to identify such
situations to aid the process of recognition as
will be described in the next section.

Candidate Selection

What remains is to select the best candidates
using an appropriate criterion. As stated earlier
the value of segment-dist for each candidate is
the average point distance between the contour
segments associated with that candidate. This
is a suitable measure of how well the shapes
of those contour segments match. Another
measure of the significance of a candidate is 1ts
support. Candidate support is defined as the
length of the image contour segment associated
with the candidate (note that if two disjoint
candidates are found in the last subsection to
be compatible, the support of each candidate
is increased by the length of the image contour
segment associated with the other candidate).
Therefore, the cost of each candidate is defined
as following:

segment-dist

candidate-cost = - .
candidate-support
Note that a candidate with a lower cost is a
better candidate. The following procedure 1s
then used to select the best candidates:

e Determine the cost of each candidate.

e Select the valid candidate with the lowest
cost.

e Disqualify all candidates whose correspond-
ing image contour segment overlaps with
the image contour segment of the chosen
candidate or the image contour segment of
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any candidate compatible (see the previous
subsection) with the chosen candidate.

¢ Find any image contour segments delimited
by negative curvature minima (which are
a subset of maxima of absolute value of
curvature) which do not overlap with the
image contour segments associated with any
chosen candidates or candidates compatible
with them and which fit well|with the model
associated with the chosen candidate. Ex-
amples are straight line segments which do
not occur in valid candidates.

e Disqualify all candidates whose correspond-
ing image contour segment overlaps with any
of the image contour segments discovered in
the previous step.

o Determine the final fit of the model asso-
ciated with the chosen candidates using all
relevant image contour segments and map
the model to the image space.

e Disqualify the chosen candidate and all can-
didates compatible with it.

o If any valid candidates rempain, go to the
second step above, otherwise| STOP.

Note that this procedure stops automat-
ically and is independent of the number of
objects in the input image.

SOLVING FOR THE
TRANSFORMATION PARAMETERS

When mapping a model curve jsegment to an
image curve segment, it is possible to obtain
many pairs of points on those segments in
order to compute an initial approximation for
the transformation parameters,| since the cor-
respondence between arc length values on the
curve segments is known. It iy assumed that
the transformation to be solved for consists of
uniform scaling, rotation and translation in z
and y. Let:

X = (xjayj) s
be a set of  points on the image curve and let:

E= (é.j’wj) >
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be the set of corresponding points on the
model curve. The parameters of the following
transformation:

Ty = af; + b e, y; = =b&; +ay; +d,

(1)

must be solved for. A least-squares estimation
method is used to estimate values of a, b, ¢
and d. Let the dissimilarity measure 2 which
measures the difference between the model
curve segment and the image curve segment be
defined by:
. 2
Q=3 (z - =) + () —u)",
=1

.

where (z5,7¢) is the closest point on the image
curve to transformed model curve point (%, 3%).
Using Equation 1 to eliminate % and y! yields:

Q=3 (a&; +by; +c—2¢)’

n
=1

[

+ (=b&; + ap; +d — y5)?
Let:
P = (a,b,¢c,d) ,

be the vector defined by the transformation
parameters. The solution of:

o0

5 =
is the least-squares estimate of those parame-
ters. To compute that estimate, determine the
partial derivatives of Q2 with respect to each of
a, b, c and d and set those partial derivatives
to zero. The result is a linear system of four
equations with four unknowns which is solved
to obtain estimates for a, b, ¢ and d:

azZéﬂi U - s G~ Y LW
PR DI AE-D IO IE-D I ID I
N RN R P DI DI PN
P ML HE-D DI DI I DI DI
LT a3 g — by
n

S+ —axy,
n

0,
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MEASURING IMAGE-MODEL
CURVE DISTANCES

Once an estimate of the transformation param-
eters is available, it is possible to map the model
curve to the space of the image curve. It is
then useful to measure the image-model curve
segment distance for two reasons:

e As described in the previous sections, differ-
ent model curves are mapped to the image
curve in order to determine which model
curve is locally closest to the image curve.
This is accomplished by measuring image-
model curve segment distances.

e The computation of the image-model curve
segment distance is essential to transforma-
tion parameter optimization as described in
the next section.

The following procedure is used to deter-
mine the image-model curve segment distance.

1. Let k =1, 7 = number of vertices on model
curve segment and ¢ = 0.0.

2. Determine the closest point on the image
curve segment (not necessarily a vertex)
to vertex k of the model curve using the
procedure described in Step 3.

3. Locate the closest vertex of the image curve
segment to vertex k of the model curve.
(All vertices of the image curve can be
considered but to speed up the algorithm,
only a small number in a neighborhood on
the image curve segment into which vertex k
maps, are considered.) Let that be point Q
(Figure 3). Let points P and R be the image
curve vertices which occur before and after
Q on the image curve segment, respectively.
Let point X be vertex k on the model curve
segment. X can be any one of the points
A, B, C or D in Figure 3. Cosines of the
angles §; = ZXQP and 6, = ZXQR can be
computed using the definitions for the dot
product of two vectors. Depending on the
signs of the cosines, four cases are possible:

e cos(6;) and cos(f;) are both negative.
Point X is the same as point A in Figure
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Figure 3. Closest point detection.

3. In this case, the closest image point is
point Q.

e cos(f,) is positive and cos(f;) is negative.
Point X is the same as point B in Figure
3. In this case, the closest image point
lies on line segment P¢. Since cos(d;)
is known, the location of that point as
well as its distance to point B can be
computed.

e cos(f;) is negative and cos(f,) is positive.
Point X is the same as point C in Figure
3. In this case, the closest image point
lies on line segment QR. Since cos(f,) is
known, the location of that point and its
distance to point C can be computed.

e cos(f;) and cos(6,) are both positive.
Point X is the same as point D in Figure
3. In this case, the closest image point
lies on either PQ or QR. Compute the
distances to both segments and choose
the shorter distance and the correspond-
ing point.

4. Let § = 6+ distance computed in the previ-
ous step. Let k = k+1. If £ > n then return
§/n as the average point distance between
the image and model curve segments and
STOP. Otherwise, go to Step 2.

OPTIMIZING THE
TRANSFORMATION PARAMETERS

The least-squares estimate of the transforma-
tion parameters computed in previous sections
is, in general, not the optimal estimate. This
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is because the image-model point correspon-

dences are not precise due to
shape distortions. Nevertheless

noise and local
, it is possible to

optimize those parameters using the following

procedure:

o Let D, = oo.

e Compute the least-squares

estimate of the

parameters using the technique described

previously and use it to map
to the image curve.

o Determine a new set of corre

the model curve

sponding points

on the image curve as described previously

and compute the new ima
distance D,,.

e If D,— D, <e¢, then STOP
o Let D, = D, and go to {

above.

In this system, it is poss
the optimal parameters with les

ge-model curve

he second step

ble to compute
s than 1% error

using at most 10 iterations of the procedure

described above.

RESULTS AND DISCUSSION

A total of fifteen model obj
input images were used to eval
recognition system described in

ects and seven
uate the object
this paper. Six

of those images and the system’s correspond-

ing output are shown in this
model objects are as follows
fork, key, monkey wrench (two

section. The
bottle, clip,
model contours

were used ), panda, two connector cases, screw-
driver, scissors, spoon, vase, wire-cutter and
two regular wrenches (two model contours were

used for each). Therefore, a t
model contours were used. Fig

htal of eighteen
ure 4 shows the

model objects used to test the system. Each
model contour was acquired off-line by either

manually reading and entering

the coordinates

of points on the contour or obtaining an image

of the isolated model object,
image and recovering the conto

contour was represented by 200 points.

segmenting the
ur. Each model
The

segmentation of each model contour was also

computed off-line.

The exact

same starting
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(a) Key (b) Vase: (c) Panda (d) Clip

o745

(f) Monkey wrench (g) Wrench 1

(k) Connector case 2 (1) Fork

(=

(e) Spoon

=

(h) Wrench 2 (i) Bottle

(j) Connector case 1

e P

N R

(n) Wire-cutter

(m) Scissors (o) Screw-driver

Figure 4. Model contours used to test the system.

scale and final scale were used to compute the
segmentation of each model contour. About 10-
20 segments were extracted from each model
contour.

Due to the light-box setup used, the im-
ages obtained had high contrast. As a result,
thresholding followed by preprocessing was suc-
cessful in properly segmenting each of the ipput
images after which the bounding contours were
recovered. Figures 5 through 10 show the
initial processing of six input images. In each
of those figures, sub-figure a shows the original
input image and sub-figure b shows only the
outermost contour recovered from that image
after thresholding, processing and boundary
detection (see the first section). Note that only
the outermost contours were used by the systeim

\ T
\\.,//\\\ \
)

(a) Input Image 1 (b) Outermost contour from Image 1

Figure 5. Initial processing of input Image 1.
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v

(a) Input Image 2 (b) Outermost contour from Image 2

Figure 6. Initial processing of input Image 2.

(a) Input Image 3 (b) Outermost contour from Image 3

Figure 7. Initial processing of input Image 3.

%

(a) Input Image 4 (b) Outermost contour from Image 4

Figure 8. Initial processing of input Image 4.

(a) Input Image 5
Figure 9. Initial processing of input Image 5.

(b) Outermost contour from Image 5

(a) Input Image 6 (b) Outermost contour from Image 6

Figure 10. Initial processing of input Image 6.

to arrive at recognition results, even though
the inner contours are visually significant to
human viewers. This was done to demonstrate
the recognition power of the system. Each
image contour was represented by 300 points.
The exact same starting scale and final scale
were used to compute the sc j.nentation of each
image contour. About "°-40 segments were
extracted from each imagc contour.

In order to discover the correct scale,
Jocation and pose of each model matching the
data, the system must consider all possible
local matches (as indicated by the index-table)
between all models and the data occurring at
any scale in the admissible space. In doing
so, quite frequently the system discovers locally
plausible matches which are globally incorrect.
Such situations are, in general, unavoidable and
make the recognition task more challenging.
Figure 11 illustrates this point. Figure 11a
shows the bottle matched at an incorrect scale
to the contour from Figure 7b. The correct
model is the key. Figure 11b shows the panda

N

(a) Incorrectly matched bottle (b) Incorrectly matched panda

Figure 11. Locally plausible but incorrect
matches.
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matched to the contour from [Figure 5b. This

example shows that even two
panda and vase), which appe

objects (such as
ar to have very

different shapes, can match well locally at the

right scale and orientation. Nof
these were not the lowest-cost
sen by the system. The lowest,
were in fact the correct ones,
matches illustrated in Figure
close to the lowest-cost candid

The input images depicte
ing complexity. Image 5a depic
with 2 objects. Images 6a and

e, however, that
candidates cho-
-cost candidates
lowever, the two
11 ranked quite
ates.

1 scenes of vary-
ts a simple scene
7a each show 4

objects and can be considered to be of medium

complexity. Images 8a, 9a and
6, 7 and 8 objects, respectively.
of as difficult images. The sy

10a which show
can be thought
stem was tested

on each of the images 5a through 10a. Each of
the objects in each input image was recognized

correctly by the system which
the correct scale, location and

also determined
pose of each ob-

ject. Note that none of the internal parameters

of the program were modified
the next: the exact same syste

from one run to
m produced the

correct result for each input image. The system

was implemented in C and r

Graphics Crimson workstation.

times obtained are given in Tal
These running times ind
system is very fast given the co

an on a Silicon

The running
le 1 in seconds.
icate that the
mplexity of the

tasks it must perform. Figures 12a through

17a show the recognition results
system for the six input image
each figure the model contours

reached by the
5. Note that in
are shown using

a thin line and the image contour is shown using

a thick line. The system was
each case despite the presence o
deformations of shape due t

very robust in
f noise and local
D segmentation

Table 1. System running times on input images.

Figure | Time (set)
5b 3.5
6b 3.6
7b 3.9
8b 12.0
9b 10.1
10b 13.1

Scientia Iranica, Vol. 3, No. 4

(a) Without segmentation (b) With segmentation

Figure 12. Matching result for Scene 1.

(a) Without segmentation (b) With segmentation

Figure 13. Matching result for Scene 2.

(a) Without segmentation (b) With segmentation

Figure 14. Matching result for Scene 3.

(a) Without segmentation (b) With segmentation

Figure 15. Matching result for Scene 4.

(a) Without segmentation (b) With segmentation

Figure 16. Matching result for Scene 5.
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(a) Without segmentation

(b) With segmentation

Figure 17. Matching result for Scene 6.

errors, the soft surface of some objects (such
as the bear) and limited perspective projection
(due to proximity of the camera). Figures 12b
through 17b again show the same recognition
results with segmentation points also displayed.
In almost all cases, the system was able to
determine the exact locations of segmentation
points.

CONCLUSIONS

This paper presented a complete and practical
system for object recognition with occlusion
which is very robust with respect to noise and
local deformations of shape (due to limited
perspective projection, segmentation errors and
the soft surface of some objects) as well as scale,
position and orientation changes of the objects.
The system was tested on a wide variety of
3-D objects with different shapes and surface
properties. A light-box setup was used to
obtain silhouette images which are segmented
to obtain object boundaries. The Curvature
Scale Space technique was then used to obtain
a multi-scale segmentation of the image contour
and the model contours using curvature zero-
crossing points. This method made the system
robust with respect to noise and local shape
differences. A local matching algorithm applied
candidate generation, selection, merging, ex-
tension and grouping to select the best match-
ing models. Efficient transformation parameter
optimization is used to map candidate models
to the image space and directly measure the
model-data quality of match. It is also used
to compute the optimal pose for each selected
model.
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