Fuzzy Modeling of Priority and Preference in
Constraint Satisfaction Problems

D. Dubois!, H. Fargier' and H. Prade’

In classical Constraint Satisfaction Problems (CSPs), hard constraints restrict the possible
values of a set of variables. However, real world constraint problems are often flexible,
and classical CSPs are idealizations that do not account for the preference among feasible
solutions. Moreover, some constraints may have priority over others. This paper advocates
the use of fuzzy set and possibility theory as a realistic approach for the representation of
these two aspects: preference relations among possible instantiations and priorities among
constraints. In a Fuzzy Constraint Satisfaction Problem (FCSP), a constraint is satisfied to
a degree (rather than satisfied or not satisfied) and the acceptability of a potential solution
becomes a gradual notion. Even if the FCSP is partially inconsistent, best instantiations are
provided owing to the relaxation of some constraints.

INTRODUCTION

Classical Constraint Satisfaction Problems
(CSPs) only consider a set of hard constraints
that every solution must satisfy. This rigid rep-
resentation framework has several drawbacks.
First, some problems are over-constrained and
have no solutions. A relaxation of the less rigid
or important constraints must be performed
in order to obtain a solution. Discovering
that a problem has no solution may be time-
consuming and devising an efficient constraint
relaxation method is far from easy. Alterna-
tively, other problems lead to a large set of
equally possible solutions, although there often
exist preferences among them which remain
unexpressed. However, a standard CSP pro-
cedure will pick a solution at random. As
a matter of fact, in practice, constraints are
not always strict and it is desirable to extend

the CSP framework in order to accommodate
flexible constraints. Devising a framework
for representing the flexibility of constraints
will avoid artificially unfeasible problems (con-
straints being self-relaxable) and will avoid
the random choice of solutions to loosely con-
strained problems. By flexible constraints, it
is meant either soft constraints, which directly
express preferences among solutions (i.e. this
is a ranking of instantiations which are more
or less acceptable for the satisfaction of a soft
constraint), or prioritized constraints that can
be violated if they conflict with more prioritary
constraints.

In soft constraints, the flexibility accounts
for the possibility of going away from instan-
tiations that satisfy the constraints ideally.
Notice that the interest in soft constraints can
be traced back to the early CSP literature.
In 1975, Waltz [1] heuristically distinguished
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Taking a dual

point of view, Freuder [14] regards a flexible
problem as a collection of classical CSPs. A
metric can then be defined that evaluates the

distance between them.

Subsequently, the

question is how to “find the solutions to the

closest solvable problems”.

In order to take into account both types of
flexibility, a generalization of the CSP frame-
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work has been proposed, the Fuzzy Constraint
Satisfaction Problem framework (FCSP) [18],
based on Zadeh possibility theory [19]( see
[20] for an introduction). The main point
is that both types of flexible constraints are
regarded as local criteria that rank-order (par-
tial) instantiations and can be represented by
means of fuzzy relations. In a FCSP, constraint
satisfaction or violation are no longer an all-or-
nothing notion. An instantiation is compatible
with a flexible constraint to a degree (belonging
to some totally ordered scale). The notion of
consistency of a FCSP also becomes a matter
of degree. The question is then to combine the
satisfaction degrees of the fuzzy constraints in
order to determine the total ordering induced
over the potential solutions and to choose the
best ones. Moving a step further, the use of
this framework is proposed also for handling
more complex constraints, e.g. constraints with
safeguard.

From an algorithmic point of view, the
possibility of extending Waltz’ algorithm to
fuzzy constraints has been pointed out by
Dubois and Prade [21] and Yager [22]. As
shown in [23,24], all the classical CSP algo-
rithms (e.g. tree search, AC3, PC2) can be
easily adapted to FCSPs. More generally, our
framework reveals itself powerful enough to ac-
commodate the definitions of local consistency
of a problem (arc-consistency, 3-consistency, k-
consistency). Interestingly enough, investiga-
tions by the second author [23] indicate that
the theoretical results relating levels of local
consistency of a CSP to its global consistency
[25,26] remain valid in FCSPs.

The next section deals with representation
issues concerning flexible constraints. Fuzzy
subsets on Cartesian products of domains, i.e.
fuzzy relations, are used to model soft and/or
prioritized constraints. An illustrative example
is provided. The agreement of this repre-
sentation with the preferential semantics of
possibility theory is emphasized. Then, the ex-
tension (resp. projection) of fuzzy constraints
to larger (resp. smaller) Cartesian products of
domains is recalled as well as the conjunctive
or disjunctive combinations of fuzzy relations
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for representing compound constraints. Finally,
this section discusses the modeling of more
sophisticated constraints, namely, prioritized
constraints with safeguard (in order to guar-
antee the satisfaction of a weaker constraint
in case of violation of the prioritized one).
The third section formally defines the FCSP
framework and compares it to other approaches
related to flexibility in CSP. This section then
presents the essentials of a Branch and Bound
algorithm performing the search for the best
solutions. Nonmonotonic aspects of FCSPs are
also outlined.

REPRESENTING FLEXIBLE
CONSTRAINTS

A hard constraint C relating a set of decision
variables {z1,...,Z,} ranging in respective do-
mains D, ..., D, is classically described by an
associated relation R. R is the crisp subset
of D, x --- x D, that specifies the tuples d =
(dy,...,d,) of values which are compatible with
C. The set {z1,...,%,} of variables related by
R will be denoted by V(R).

Fuzzy Model of a Soft Constraint

A soft constraint C will be described by means
of an associated fuzzy relation R [27], i.e. the
fuzzy subset of Dy X --- x D, of values that
more or less satisfy C. R is defined by a
membership function pr which associates a
level of satisfaction pg(dy,...,d,) in a totally
ordered set L (with top denoted 1 and bottom
denoted 0) to each tuple (dy,...,dn) € D =
D, x---x D,. This membership grade indicates
to what extent d = (dy,...,d,) is compatible
with (or satisfies) C. Thus, the notion of
constraint satisfaction becomes a matter of
degree:

pr(dy,...,d,) =1

means (dy, ..., d,) totally satisfies C,
pr(di,...,dn) =0

means (dy,. . .,d,) totally violates C,
0< pr(dy,....dn) <1

means (dy, ..., d,) partially satisfies C .
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Hard constraints are particular cases of soft
constraints, since they only involve levels 0
and 1. A soft constraint involving preferences
between values is regarded as a local crite-
rion, ordering the instantiations of C, prefer-
ence levels being represented in the scale L.
pr(dy,. .., dy) > pr(dy,...,d,) means that the
first instantiation is preferred to the second
one. Interpreting the preference degrees as
membership degrees leads to representation of
a soft constraint by a fuzzy relation.

The assumption of a totally ordered satis-
faction scale underlying the above setting may
be questioned. The very use of a satisfaction
scale instead of just an ordering relation is
crucial when it comes to the aggregation of local
satisfaction levels. Indeed due to the famous
Arrow theorem (e.g. [28]), it is very difficult to
merge several ordering relations that are not
commensurate. The satisfaction scale need not
be totally ordered, strictly speaking, since a
complete lattice will do as well. In the follow-
ing, it is assumed that L is a totally ordered set,
i.e. a chain. However, the scale of membership
need not be numerical, as pointed out years ago
[29]. A qualitative scale makes sense on finite
domains. However, on continuous domains,
as in the case of temporal constraints with
continuous time, it is much more natural and
simpler to assume that the satisfaction scale
is the unit interval; then, levels of satisfaction
reflect distances to ideal values in the domain.

Fuzzy Model of a Prioritized Constraint

Fuzzy relations also offer a suitable formalism
for the expression of prioritized constraints.
When it is possible to, a priori, exhibit a total
preorder over the respective priorities of the
constraints, these priorities will be represented
by levels in another scale V. A priority degree
Pr(C) is attached to each constraint C and
indicates to what extent it is imperative that
C be satisfied. First, consider the case of
hard constraints. Pr(C) = 1 means that C
is an absolutely imperative constraint, while
Pr(C) = 0 indicates that it is completely
possible to violate C' (C has no incidence in
the problem). Given two constraints C and C",
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Pr(C) > Pr(C') means that the satisfaction of
C' is more necessary than the satisfaction of C'.
If C"and C' cannot be satisfied simultaneously,
solutions compatible with C' will be preferred
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Figure 1. A hard (or crisp) constraint C with

priority Pr(C) = o when ¢(z) = 1
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prdy, ... d,) =c(0) =1

if (dy,...,d,) satisfies C ;
palds, . d,) = e(Pr(C))

if (dy,...,d,) violates C .

Note that when Pr(C) = 1, the characteristic
function of C' is recovered, while when Pr(C) =
0 the constraint C degenerates into the whole
domain D.

Conversely, a soft constraint C, where
preferences are described in terms of a finite
number of satisfaction degrees 0 = ay < ay <
~+ < a, < 1in ascale L, can be represented
by a finite set of priorjtized constraints {C;,0 <
J < p} using the scale L put upside down as a
priority scale, via an order-reversing map c:

Pr(C;) = c(a;) defining R; = {(dy,...,d,),

/LR<d1,... ,dn) 2 Oéj+1},j = 0,p — ]. .

If, moreover, it is assumed that ¢ is invo-
lutive, that is c(c(a)) = a (this hypothesis
is made throughout the whole paper), then
it is straightforward to reconstruct the soft
constraint C' by means of the set of prioritized
constraints {(C;, Pr(C;)),0 < j < p}, as shown
in Figure 2, where:

pr(d) = min; max(c(Pr(C;)), pr, (d))

for every tuple d = (dy,...,d,) . (1)

ajalf i
|

T
|

l

|
i
| - 1
|

.
S

b = (d1,-. -, dn)
Valuessatisfying Cp,priority l-ap I

!
!
| L |
I
|

Values satisfying Cj, priority 1 — o

Values satisfying CO, priority 1 —ag =1

Figure 2. Decomposition of a soft constraint into
a family of prioritized constraints when
clzy=1-=z.
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Finally, a prioritized soft constraint C corre-
sponds to the following fuzzy relation:

pr(d) = maX(C(PT(C))aMR(d)) )

where R is the fuzzy relation describing the
preferences of C only. Viewing the soft con-
straint expressed by R as a family of nested pri-
oritized constraints, the global priority Pr(C)
attached to the soft constraint C' means that
the priorities higher than Pr(C) are neglected
in the expression of R since:

max(c(Pr(C)), j(d)) =
max(c(Pr(C)), min max(c(Pr(C,)), un, (d))) =

mjin max(c(min(Pr(C), Pr(Cj))), ir,(d)) -

To conclude with representation issues,
prioritized and soft constraints can be cast in
a unique setting that is called “flexible con-
straints”, modeled by fuzzy sets, where flexibil-
ity means the capability of self-relaxation. This
capability is locally imbedded in the description
of the constraint, thus avoiding the necessity
of a specific constraint relaxation procedure
to be triggered when a set of constraints is
found inconsistent. This unification presup-
poses a strong link between levels of constraint
satisfaction and levels of constraint priority,
using a single ordered scale L for both priority
and satisfaction and an order-reversing map c
that changes one notion into the other. For
simplicity, L = [0,1] and ¢(x) = 1 — z are
sometimes used in the following. However,
all results to be presented remain valid on a
qualitative scale.

Example

A course must involve 7 sessions, namely x
lectures, y exercise sessions and z training
sessions (C;). There must be about 2 training
sessions (Cy), i.e. ideally 2, possibly 1 or 3.
Dr. B, who gives the exercise part of the course,
wants to manage 3 or 4 sessions (C3). Prof. A,
who gives the lectures, wants to give about 4
lectures (Cy), i.e. ideally 4 lectures, possibly 3
or 5. The request of Dr. B is less important than
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the one of Prof. A and is itself less important
than the imperative constraints C; and Cs. In
this example, flexibility is modeled using a five
level scale L = (ap = 0 < a; = clag) < ap =
clay) < ag = c(ay) < ag = 1), where c is the
order-reversing operation. The priorities of Cs
and C; are respectively as and az(ay < as).
The domain of variables x,y and z is the set
{0,1,2,3,4,5,6,7}. The following model can
be used:

C, : classical hard constraint:
NR;(Iay,Z) =1 1f1‘+y+z =7 :
wr, (z,y,2) = 0 otherwise.

C, : soft constraint (see Figure 3a):

wr,(z) = 0 otherwise .

C, : prioritized constraint Pr(C3) = oy (see
Figure 3b):

pr,(y) =1ify=3ory=4;
pr,(y) = c(az) = ay otherwise .

C, : soft and prioritized constraint Pr(C,) =
ag (see Figure 4):

prr)=1ifz=4;
pr, () = max(az, c(az)) = as
ifr=30rzx=25;

pr,(x) = c(og) = oy otherwise .

1 HR, 14 HR3
as o3 |
@2 24
a) a1+
Lttt —
01 23 4 5 6 7 012 3 45 6 7

Y

(@) (&)

Figure 3. Modeling of C3(a) and C3(b) by means
of fuzzy unary restriction.
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Operations on Fuzzy Relati
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=
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fuzzy relations. The usual operations on crisp
relations can be easily generalized to fuzzy

relations [26]. To do so, the f.
totally ordered, the satisfactio

act that, being
n scale L is a

complete distributive lattice, where the mini-

mum and the maximum of two

elements make

sense is exploited. The following definitions
extend classical set-theoretic notions used in
constraint-directed problem-solving:

o A fuzzy relation R’ is said to be included into

R if and only if (see Figure 5):

Y(d,, ...

/LR/(dl,...

,dn) S /LR(dl,...

adn)EDlx"'Xl)na

).

This definition is a generalization of the clas-

sical set inclusion. In terms
C’ is tighter than C and C
(or a weakening) of C".

e The projection of a fuzzy
{2k, ) € V(R) is a

of constraints,
s a relaxation

relation R on
fuzzy relation

RH{=ao2end on {xy, ... @, } such that:
'U’R“”h RRETN (dkl yeae 7dknk)
= Sup{d/dl(wkl ----- wk"k)}:(dkly---,dknk) luR(d) )

1 “R
KRt
HR

0
Figure 5. R CRand R" ¢ R .

—-d=(dy, ..., dn)
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where di{erw7003  denotes the classi-
cal restriction of d = (di,...,d,) to
{zk,,--. 2k, }. This definition is a gener-
alization of the projection of ordinary rela-
tions. ppicen, o, (diys- .., di., ) estimates
to what level of satisfaction the instantiation
(dky,- -+, dyx,,) can be extended to an instan-
tiation that satisfies C.

o The cylindrical extension of a fuzzy relation

R to {xy,,...,zx,,} 2 V(R) is a fuzzy re-
lation RM=ei2huc} on {ay ... , Tk, } such
that:
uRT("ﬁ"“‘I‘Cuk)(dkl’ e 7dknk)
= #R((dkl gy dknk)lV(R)) .

This definition is a generalization of
the cylindrical extension of ordinary re-
lations.  pprier,m 1 (diyy ooy di,, ) esti-
mates to what extent the instantiation
(diys ..., dx,, ) satisfies C.

¢ The conjunctive combination (or join) of two
fuzzy relations R; and R; is a fuzzy relation
R; @ R; over V(R)UV(R;) = {z,...,2;}
such that (see Figure 6):

trior,(di, ..., di)
= min(pg, ((di,...,d,)VE),
pr,((di, ..., di )V R)))
Brior,(di,...,dy) estimates to what extent
(di,...,di) satisfies both C; and C;. When

V(R;)) = V(R;),® is a generalization of
classical set intersection.  All properties
of the standard intersection (associativity,
commutativity, etc.) hold as long as nega-

tion is not involved; in particular, there holds
(R.L ® Rj)lV(RJ g Ri and (RI ® Rl) = Rl

!

BR;
MR,
\_>d=(d1, L dg)

== MR, ®R;

Figure 6. Conjunctive combination of two fuzzy
relations R; and R, .
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HR;
~

KR,

o d —(dy, ... ,dg)

— LR;®R;

Figure 7. Disjunctive combination of two fuzzy
relations R; and R; .

Note that the use of the combination
rule, allowed by the presence of a unique
satisfaction scale, underlies an assumption of
commensurability between satisfaction levels
pertaining to different constraints. The user
who specifies the constraints must describe
them by means of this unique scale L, or by
means of the dual scale LY. For instance, in
the example given previously, the satisfac-
tion level a3 of C4 for z € {3,5} is assumed
to be equal to the satisfaction level for z €
{1,3} and oy < c(Pr(Cs)) < c(Pr(Cy))
Although natural and often iriplicit, this
assumption must be emphasized.

e The disjunctive combination of two fuzzy
relations R, and R, is a fuzzy relation R;®R;
over V(R;,)UV(R;) = {x1,-..,2x} such that
(see Figure 7):

KR®R,; (di,- .-, di)

= max(ug, ((d1,- -, de )V *),

I’I’Rj((d17 v 7dk)lV(Rj))) .

prior, (di;--- ,di) estimates to what extent
(dy,...,dy) satisfies either C; or C;. When
V(R;) = V(R;), ® is a generalization of clas-
sical set union. All properties of set union
(associativity, commutativity, distributivity
over intersection, etc.) hold, if negation is
not involved.

Prioritized Constraints with Safeguard

The framework of fuzzy constraints offers a
convenient tool for representing more sophis-
ticated constraints than the previously encoun-
tered ones, for instance prioritized constraints
with safeguard as well as nested conditional
constraints [24]. Indeed, one may like to express

319

that a constraint C, even with a rather low
priority Pr(C) = «, can never be completely
violated, in the sense that if C is violated, at
least a more permissive, minimal, constraint C’
is still satisfied. Let R and R’ be the fuzzy
relations associated with C' and C’, respec-
tively, with R C R’ (C’ is more permissive than
C, ie. C' is a relaxation of C). The whole
constraint C* corresponding to the pair (C,C")
can be viewed as the conjunction of a prioritized
constraint (C) and a weaker but imperative,
possibly soft, constraint (C'). This conjunction
is represented by the fuzzy relation R*, pictured
in Figure 8, and expressed by:

Yde Dy x---x D,,

pr- (d) = min(max(pr(d), c(a)), pr (d)) -

This is a particular case of the decomposition
of a soft constraint into prioritized ones when
C and C' are hard. Indeed, such constraints
express both a requirement with priority o less
than 1 and a weaker requirement with priority
1 and R* is of the form of Statement 1:

fr-(d)
max(pp (d), c(Pr(C"))))withPr(C') = 1.

= min(max(ug(d), c(a)),

See [30] for the use of such constraints in
fuzzy database querying systems. Interestingly
enough, R* can be decomposed either as a
disjunction or as a conjunction of two fuzzy
relations, depending on which fuzzy relation,
R or R, the priority weight is combined with.
Indeed:

pr-(d) = min(max(ur(d), c(a)), pr (d))
= min(max(pr(d), ¢(@)),
max(pg(d), pr (d))) since RC R’
= max(pr(d), min(c(a), pr:(d))) -
1—Pr(C)p= =

d':(dly---ydn)

Figure 8. Representation of a prioritized fuzzy
constraint with safeguard.
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Figure 9. Modeling of Cs by fuzzy constraint

with safeguard constraint.

It expresses that satisfying a constraint with
safeguard corresponds to either satisfying its
stronger form C or its weaker form C’, the

satisfaction degree being upper-
second case by c(a).

For instance, a flexible C;
scribing:

bounded in this

constraint pre-

“Prof. A wants to give about four

lectures; anyway, he will never accept giving no
lecture” is represented by the fuzzy relation R

pictured in Figure 9.

STATING AND SOLVING
CONSTRAINT SATISFAC
PROBLEMS

Definition

A Fuzzy Constraint Satisfa
(FCSP) P involves a set of n de
X = {z1,...,7,} each ranging
tive domain D,,...,D, and a
relations R = {R,...

FUZZY
TION

ction Problem
cision variables
r on its respec-
set of m fuzzy

,R.,} representing a set

C = {Cy,...,C,} of hard, soft or prioritized
constraints (domains are assumed to be discrete

in the following). A unary re
is supposed to be associated t
z;. It represents the values whi
more or less feasible (i.e. here
z; (by default, R; = D;). If all

lation R; of R
p each variable
ch are, a priori,
, preferred) for
the constraints

are unary or binary, the FCSP is called a fuzzy

constraint network.

Classically, an instantiation of {z,,...,
Tk, } C X is locally consistent if it satisfies
all the constraints in the subnetwork restricted
to {zk,,...,2x,, }. Like constraint satisfaction,
the notion of consistency is now a matter of
degree. The definition of the conjunctive com-
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bination states that pr, e..r.,(dks- - -, dk,, )
estimates to what extent (dy,, ..., dx ) satisfies
all the constraints C; ... ,Ci,. Hence, the
degree of local consistency of (dx,,...,dx,,) is
defined by:

Cons(dy,,-..,dx,,)

= min{R;GR/V(R.-)Q{zkl sk, 1
(r, ((diyy - - oy di, )PV ED)Y

It should be noticed that: VY C {zy,,...,z; ),

Cons((dx, , - .- ,d,,)*")>Cons(dy,, ..., dx., ).

Considering a complete instantiation of X,
MRi®-®Rm](d1,--,dn) is the satisfaction de-
gree of all the constraints by (di,...,d,),
Le. the satisfaction degree of problem P by
(di,...,d,). It is the membership degree of
(di,...,d,) to the fuzzy set p= R, ® --- @ R,,
which is nothing but the (fuzzy) set of solutions
of P. As for classical CSPs, solutions are con-
sistent instantiations of X.Cons(dy,...,d,) =
po(di,...,d,) > 0, i.e. solutions that are not
totally unfeasible.

These degrees discriminate among the po-
tential solutions since they induce a total pre-
order over the instantiations; this preorder
does not depend on whether L is a numeri-
cal scale or not. In other terms, the FCSP
approach to flexiblity is more qualitative than
quantitative. Actually, solving a classical CSP
means separating the set of all instantiations
into two classes: the instantiations which are
solutions to the problem and those which are
not. Introducing flexibility just refines this
order.

It should be noticed that the best instanti-
ations of X may get a satisfaction degree lower
than 1 if some constraints are conflicting. The
FCSP approach can handle partially inconsis-
tent problems. The consistency degree of the
FCSP is the satisfaction degree of the best
instantiations:
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Cons(P) =
SUP{(d;,...,dn)ED1 XX Dn} l‘p,(dlv vy ldn) =
SuP{(dl,...,d,.)eD}[min{RiGR} HR;
((d1, - da)V ),

where D = D; x --- x D,. The best solutions
of P are those which satisfy the global problem
to the maximal degree i, g...@R..(d1,- - >0n) =
po(dy,...,dn)(= Cons(P)), ie. those which
maximize the satisfaction level of the least
satisfied constraint. If there are some instantia-
tions which perfectly satisfy all the constraints
(Cons(P) = 1), they are the best solutions.
Otherwise, an implicit relaxation of flexible
constraints is performed, achieving a trade-
off between antagonistic constraints [10]. A
solution will be found as long as the problem
is not totally inconsistent.

The example which was given before is
partially inconsistent. The best solution and
the consistency degree are respectively (r =
3,y =3,z = 1) and a3 < 1. The constraint over
the number of training sessions and Prof. A’s
constraint are slightly relaxed according to their
flexibility. The other potential solutions (e.g.
(z=4y=1z=2)or (z =29y =3,2=2))
are less consistent (their respective satisfaction
degrees are a, and aq).

Discussion

The FCSP approach is in accordance with
Freuder’s view of constraint relaxation by par-
tial satisfaction [14]. Indeed, an FCSP involv-
ing p different satisfaction levels is equivalent
to p CSPs. For each level o; > 0,05 €
L, a CSP P% is formed by the set of hard
constraints C;’ containing the tuples that sat-
isfy C; to a degree greater than or equal to
;. Considering that a weight is associated to
each possible relaxation of each constraint C;,
the metric associated to this space is defined
by the maximum among the weights of the
relaxations performed. The set of best solutions
to the flexible problem is the set of solutions
of the consistent P% of highest o; (the closest
solvable problem using Freuder’s terminology).

The FCSP approach is different from prob-
abilistic or cost-based approaches, where the
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best solutions are those satisfying the maximal
number of constraints [15], or those for which
the sum of satisfaction degrees is maximal
[31]. These additive approaches allow for the
violation of a constraint to be counterbalanced
by the satisfaction of other constraints. The
word “constraint” is then hardly justified. In
an FCSP, when an instantiation violates a
hard constraint, it becomes totally inconsistent:
1R, &R (d1,---,dn) = 0. Thus, being in
accordance with the principle of constraint sat-
isfaction, no constraint can be violated—except
according to its relaxation capacities, which are
expressed by the FCSP formalism. Additive
satisfaction pooling methods also presuppose
that constraints are independent or, at least,
not redundant. This ideal is difficult to achieve
and appears contradictory with the purpose
of constraint propagation, which is to produce
redundant constraints. Note that the two
methods of aggregation of satisfaction levels
correspond to the two basic approaches to the
definition of social welfare in utility theory(e.g.
[28]): utilitarianism, which maximizes the sum
of the individual utilities, and egalitarianism
which maximizes the minimal individual utility.
Only the latter is compatible with the usual
treatment of constraints.

Although in accordance with the approach
described here, Satoh’s approach [16] differs in
the way priorities between constraints are ex-
pressed. Indeed, Satoh uses second-order logic
to describe priorities. Moreover, the ordering
of solutions depends on how many constraints
are satisfied. In our approach, solutions which
satisfy an FCSP to the same degree are not
discriminated, even if some of them satisfy more
constraints. In other terms, the best solutions
in the sense of Satoh are among the best
according to the FCSP definition. However, a
so-called lexicographic ordering may be used in
FCSP, if needed, to discriminate solutions shar-
ing the same global satisfaction degree, as for
instance in [10,7]. This mode of aggregation is
also known in the social welfare literature under
the name “leximin aggregation” (see [28]). The
definition of the leximin ordering of two vectors
vy = (1, > pn) a0d v2 = (Ag,..., Ap) In L™ 18
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as follows:

1. Rearrange the vectors in increasing order,
say iy S Hi, S e S Hi,, and /\jl S /\jz S

<A

2. Perform a lexicographical domparison start-
ing from the first component, i.e.:

vy > v < dk <nsuchthat Vm <k

A

In the example, the instantiat

o = M, And Ay > pg

ion (z = 2,y =

1,2 = 4) which satisfies C;,J,,C; and C, to

degrees (1,1, o, 1) is considere
equally good as (z =1,y = 1,1

d in an FCSP as
= 5) which sat-

isfies the constraints to degrees (1, as, ay, as).

The lexicographic ordering, w
ment of the min-induced orde
the first instantiation to the s
that if L = {0,1}, i.e. if the F(

hich is a refine-
ring, will prefer
>cond one. Note
'SP is a classical

CSP, the solutions which are the best according
to the lexicographic ordering are those satisfy-

ing the maximal number of ¢

pnstraints, as in

Freuder’s view of partial constraint satisfaction

[15]. In other terms, the lexico
in an FCSP, which is more pre

graphic ordering
cisely studied in

[32,33], is a generalization of Freuder’s ordering

in a classical CSP.
As a general model base
theory, the FCSP approach

d on possibility
generalizes the

frameworks that model softness by means of
fuzzy sets [4,5,7,8] as well as those dealing
with constraint priorities by sdarching to min-
imize the priority of the violated constraints

[10,7,13,11]. More precisely,

some of them

use an inclusion-based refinement of the min-
induced ordering [13], or a lexicographic re-
finement [10,7], which is itself a refinement of
the inclusion-based ordering. See [32,33] for a
discussion on the selection of preferred solutions
in FCSP by means of these three criteria.

A Generic Solving Method| for FCSPs

Finding a solution to a classical CSP is an NP-
complete task. Hence, finding the best solution
of FCSP is at least NP-hard. In fact, it reduces
to a sup/min optimization formulation:
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SUP{(d,,...,dn)EDy x---x Dy} [min{R‘E{Rl,..A,R,,,}}

< (s V)|

This kind of problem can be solved using
classical Branch and Bound algorithms [14, 17,
11], such as Depth-First Branch and Bound.
It is a natural extension of backtracking, the
standard approach to CSPs. Using such a
classical tree search algorithm, variables are
instantiated in a predetermined sequence, say
(T1,...,2,). The root of the tree is the empty
assignment. Intermediate nodes (di,...,d;)
denote partial instantiations and leaves are
complete instantiations of (z,,...,z,). For
each leaf (dy,...,d,) in the tree, u,(d;, ..., d,)
may be computed. The leaves that maximize 4,
are searched for via a depth-first exploration of
the tree.

The use of fuzzy constraints makes it
possible to prune each branch that necessarily
leads to suboptimal leaves that can be proved
worse than the best of the already evaluated
solutions. In other terms, it is useless to
extend intermediary nodes (di,...,d) such
that u[pl(”,,...zk)](dl,...,dk) < bing, bins being
a lower bound of Cons (P). The calculation of
Hiptizr ey (day - - -, di) requires the extension of
(dy,...,d:) into a complete instantiation but
the definition of local consistency provides an
upper bound for it. Indeed:

Cons(d, ..., dy) =
/I’[®(R‘-€R/V(Ri)g(ml»_”‘zk”Ri](dl, o dy)
= MIN(R, e R/V(R)C{er,..ax}}
x (/LR,. ((dl,.._,dk)l\/(m)>)
> mingg,er) (NR.- ((dh o adk)lV(R‘)))

= M[puzl‘...,m,c)](dl, sy dy)

Hence:

Cons(dy,...,dy) > u[purl,...,mk)](dl, oy dy).

This bound decreases when extending the
nodes of the search tree and becomes exact for
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the leaves. Moreover, it may be incrementally
computed as the tree is explored downward:

Cons(dy, ..., dkt+1)
= min (COHS(dl, - ,dk)a

MiN( R, €R zy41 €V (R:) and V(R)C {21, zi41})
X KR, ((dla fee 1dk+1)lV(Ri)) > .

Like the incremental computation of consis-
tency in classical CSPs, the incremental com-
putation of Cons(dy,...,dss1) considers each
constraint only once.

Hence, the search starts with a lower
bound by (for pruning) and an upper bound
beup Of Cons(P); bins and by, may respectively
be initialized to 0 and 1, or to better lower
and upper bounds of Cons(P) if available.
The consistency of the root is taken as byp.
At each step, the current partial instantiation

(dy,...,dy) is tentatively extended to variable
Tppy. If there is a value dypa such that
Cons(dy, - --,drr1) > Dbing, diyr is assigned to

Try1, and if no value consistent enough can be
found for x4, the algorithm backtracks to the
most recent variable assignment. When a so-
lution (d;, ..., d,) is reached whose consistency
is greater than by, it is thus the best current
solution; by, is updated to Cons(dy,...,d,)
since it is a better lower bound of Cons(P).
If Cons(dy, .. .,d,) < bsup, the algorithm back-
tracks in order to find a solution better than
the current one. It should be noticed that

partial instantiations (di,...,dx), which have
been extended to a solution (dy,...,d,) whose
consistency is equal to Cons(dy, ..., d), do not

have better extensions; hence, these extensions
do not have to be explored.

Figure 10 shows a search tree correspond-
ing to the example given previously.

Circumstances may impose resource
bounds. In particular, real time processing
may require immediate answers that can be
refined later, if time allows. The Depth-First
Branch and Bound process is well suited to
provide resource-bounded solutions. The best
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z = 1(a3) z = 2(1)

y = 0(az) y = 1{az) y=3(az) y=3(1) y=4(1)

x=6(a1)  z=5(ag) z = 3(a3)

Figure 10. A search tree for the example (the
tree is explored from the root to leaves and from
left to right).

instantiation available can simply be reported
when, for example, a time limit is exceeded. In
our example, the discovery of the best solution
requests 10 nodes and 37 checks of consistency
(i.e. computations of the satisfaction degree of
a constraint). The first solution (consistency:
a;) is reached after 3 node extensions and 10
consistency checks and the best solution (con-
sistency: «j3) is encountered after 7 node exten-
sions and 23 consistency checks, the remaining
computational effort being used to prove that
there is no better solution (see Figure 10).

This kind of algorithm has clearly a worst-
case behavior not worse than classical back-
tracking. Both algorithms, in the worst case,
will end up trying all possible combinations of
values and testing all the constraints among
them. It may actually save effort as stressed
in [14]. In the example using a pure backtrack
search, 44 nodes and 155 consistency checks
were needed; the best solution being reached
after 9 node extensions and 28 consistency
checks.

The improvement of the search depends on
the bounds bi,s and b,,. The higher by, the
more efficient the pruning of useless branches
and the lower by,,, the sooner the search will
stop. For instance, there are:

e 6 nodes and 24 consistency checks for bj,s =
a3 and b, = 1.

e 7 nodes and 23 consistency checks for b,y = 0
and by, = 3.

e 3 nodes and 10 consistency checks for by, =

bsup = (3.
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It is possible to develop

a large class of

tree search algorithms (e.g. beam search as in
[34]) based on the same principles and inte-
grating different enhancements or variants (see
[11]). Heuristics for choosing the instantiation

ordering of the variables like

those proposed

by Dechter and Meiri [35] may be used, since

they only consider structura

characteristics.

Dynamic search rearrangement may also be

applied. When extending the

current instan-

tiation, the variable having the least number

of values whose degree of satis
than b;,; should be chosen firg
assessing the priority of a var
consider the set of values whi
with the current instantiatiox
greater than b;:

Priority(z;/d;, ... ,dy) =
Cardinality{d;, Cons(d,, ..

For the selection of the va

action is greater
t. A variant for
iable may be to
h are consistent
1 with a degree

iy dy) > bing}

ue of a variable,

the value(s) having the highest degree of satis-

faction may be chosen first.

Nonmonotonicity in FCSP
Using the classical CSP appr
solutions shrinks when new
added and eventually become

142}

nach, the set of
constraints are
5 empty in case

of conflicting constraints. In the FCSP frame-

work, adding a new constraint

to a problem P

may rule out all the previously best solutions
if they satisfy the new constraint to a degree

lower than Cons(P).

However|, as long as the

new problem (say P’) is not totally inconsistent,
a new set of best solutions appears that satisfies
the new problem to a degree Cons(P') <

Cons(P). Indeed, it holds that
R® - @RnQ@Rnp1 C Ry

where C stands for the fuzzy s
generally:

g...@Rm’

¢t inclusion, but

{(dl, ey dn)/uR1®---®Rm®Rm+ (dl, e 7dn)
= Cons(P')}
¢ {(d17 e 7dn)//~LR1®~»®Rm(dla - ,dn)

= Cons(P)}.
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Hence, the set of best solutions does not de-
crease monotonically when new constraints are
added. The nonmonotonic behavior of soft
constraints has been noticed by Satoh [16]. The
type of nonmonotonicity at work here is the
same as the one captured by possibilistic logic
[36] and appears only in the presence of incon-
sistency. It has been precisely characterized by
Benfehrat et al. [37] as the class of preferen-
tial inference relations satisfying the rational
monotonicity property of Lehmann [38]. In
fact, adding a new constraint may lead to four
situations:

e The new constraint is redundant: R, ®
-+ ® Ry, C R,.y;; the set of best solutions
remains unchanged.

e The new constraint is totally compatible
with P : Cons(P) = Cons(P'); the set of
best solutions is included in the previous one
but may remain unchanged.

e The new constraint is partially inconsistent
with P : Cons(P’) < Cons(P); constraints
are implicitly relaxed according to their flex-
iblity and the set of best solutions is not
necessarily included in the previous one.

e The new constraint is totally incompatible
with P : Cons(P’) = 0; the set of best
solutions is empty.

In the example which was given before,
the consistency of the problem is a3 and the
set of best solutions consists of a single one,
namely {(z =3,y =3,z =1)}:

e Adding the redundant hard constraint z <
3 does not change the consistency of the
problem nor the set of best solutions.

e Adding the compatible hard constraint y +
z = 4 neither changes the consistency of
the problem nor the set of best solutions;
however, the satisfaction degrees of other
instantiations decrease (e.g. the satisfaction
degrees of (x = 4,y = 1,2 = 2) become 0
instead of ay).

¢ Adding the hard constraint y + z = 3, the

consistency of the problem becomes a, and
the new set of best solutions is {(z = 4,y =
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Lz=2)(z=4y=22= D,z =4y=
0,z =23)}.

e Adding the hard constraint z +y = 3, the
problem becomes totally inconsistent.

As a consequence of this nonmonotonic be-
havior, the problem of solution maintenance
in FCSPs appears to be more complex than
in classical CSPs.  Pruned branches in a
previous search through the tree have to be
developed contrary to the method proposed by
Van Hentenryck [39]. The question of relaxing
or deleting a constraint is not separately con-
sidered in the FCSP model, since the relaxation
capacities of the constraints are supposed to be
explicitly represented by means of preference
among values and priority degrees. In other
terms, in the FCSP model, the allowed weak-
ening and deletion of constraints are already
captured by the flexibility of the constraints (as
far as preferences remain unchanged). On the
contrary, when constraints have to dynamically
be added or strengthened, e.g. the priority
of a constraint (resp. the satisfaction degree
of a value) increases (resp. decreases), the
nonmonotonicity phenomena described above
takes place.

CONCLUSION

The rich expressive power of possibility theory
provides a general and unified framework for
the representation and the management of flex-
ible constraints involving preferences on values
as well as prioritized constraints. The FCSP
formalism, which is a generalization of classical
CSPs, nevertheless offers a large variety of effi-
cient problem solving tools. Most classical CSP
algorithms easily extend, as well as most of the
CSP theoretical results and their applications
(e.g. tree clustering). This is due to the fact
that FCSP’s are not additive, but solely based
on commensurate orderings, so that all useful
properties of the Boolean structure underlying
classical CSP’s remain valid. The FCSP frame-
work is currently applied to constraint-based
approaches in jobshop scheduling [40] where
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flexible constraints and uncertain parameters
are usual features.

As it turns out, explicitly taking the flexi-
bility of the problem into account does not dras-
tically increase the worst-case computational
cost of the search procedure; the complexity
of filtering procedures may be increased by a
factor reflecting the number of different levels
used to describe flexibility in the application
under concern. Moreover, the problem of
finding a feasible solution is changed into an
optimization problem of the bottleneck kind,
to which Branch and Bound procedures may
apply. Of course, in practice finding an op-
timal solution is generally more computation-
ally expensive than finding a feasible solution.
However, experiments carried out in the area
of scheduling indicate that the first feasible
solution found in the FCSP framework is often
obtained more quickly than when preferences
are neglected [23]. Moreover, the FCSP ap-
proach bypasses empirical relaxation techniques
which are needed when a set of constraint
is globally unfeasible. Constraint relaxation
often happens to be more expensive, difficult
to formulate and suboptimal. On the contrary,
the FCSP approach can handle partially incon-
sistent problems. A solution (the instantiation
with the maximal satisfaction degree) will be
provided as long as the problem is not totally
inconsistent. Hence, fuzzy constraints are also
useful to guide the search procedure towards
“interesting” solutions. Theoretical extensions
of the framework are planned with a view to
developing computational tools for handling
refinements of the global minimum-based satis-
faction ordering used here that may be judged
as not sufficiently discriminant {23,33]. Finally,
this formalism suggests a nonmonotonic frame-
work for dynamic CSPs, when for instance
in computer aided-design, default constraints
which are used in a first step analysis, are then
dynamically modified by the designer.

Moreover, the framework offered by possi-
blility theory enables us to represent ill-known
parameters, whose precise value is neither ac-
cessible nor under our control, under the form
of so-called possibility distributions (where the
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possible values are rank-ordered according to
their level of plausibility). Illtknown parame-
ters contrast with decision variables on which a
decision-maker has control. It|is shown in [24]
that constraints whose satisfaction depends on
these ill-known parameters can be represented
in the setting of possibility theory as well. In
the presence of ill-known parameters, robust
solutions should be searched far, such that the
constraints be satisfied whatever the values of
these ill-known parameters. Possibility theory
implements this idea in a flexible way.
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