A Fuzzy-Based Optimal Generation
Rescheduling and Load Shedding Algorithm

H. Seifi!, V. Tahani’ and R. Hooshmand!

During an emergency condition, a power system operator may be confronted with the difficult
task of Load Shedding and Generation Reallocation (LSGR) decisions. Based on Fuzzy
Linear Programming (FLP), an optimization LSGR problem is developed and proposed in
this paper. The objective function consists of terms of load curtailments and deviations in
generation schedules. All networks constraints, as well as load dependency on frequency and
voltage, modeling of tap-changing and phase-shifting transformers are taken into account.
The objective function and constraints coefficients are uncertain, which are represented by
fuzzy numbers. Thus, a fuzzy environment is prepared and a FLP approach is developed
to solve the LSGR optimization problem more realistically and effectively. The method is
successfully applied to a test system, where the load curtailments and deviations from the
nominal states are to be minimized. The results of various cases of fuzzy and crisp modes of

the problem are demonstrated.

INTRODUCTION

One of the main tasks of a power system control
center is to serve as many customers as possible
in an emergency condition. During this period,
the objective may be considered as the safe
operation combined with minimal generation
rescheduling and load shedding of the system.
In doing so, power plant productions are mini-
mally disturbed from their respective econom-
ical operating points and minimum amount of
load is dropped, if necessary.

In the published literature, the topic of
load shedding and generation reallocation has
received some attention. The load shedding
problem is presented in [1-4]. The generation
reallocation is addressed in [5,6] and a combina-
tion of the above problems (LSGR) is discussed

in [7-10]. The techniques addressed by the last
category suffer from the following drawbacks:
frequency variations were not considered in [7};
reactive losses were not taken into account in
[8]; the voltage and frequency characteristics
of loads were not considered at all in [9]; and
finally, in [10], the problem was so formulated
to alleviate only line overloads. To overcome
these difficulties, a Linear Programming (LP)
approach to solve a LSGR problem in its
entire complexity has been proposed in [11].
The objective function was considered to have
terms of load curtailments and deviations in
generation schedules, with crisp coefficients.
The constraints were power system variables
limitations with hard boundaries.

The difficulty of solving the LSGR problem
still remains, because it is inconvenient for the
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decision maker to precisely assign the values
of LSGR coefficients of the objective function.
Also, most of the upper and IO*IVGI' limits of the
constraints are not sharp but rather soft and
flexible. Thus, it seems more appropriate to
utilize an FLP approach to solve the LSGR
optimization problem. To solve the LSGR
problem more realistically, the present paper
proposes a fuzzy linear programming approach.
Objective function coefficients as well as most
of constraints boundaries are considered to be
fuzzy numbers. A fuzzy environment is thus de-
veloped and the resulting optimization problem
is solved using a powerful linear programming
approach.

The paper structure is as follows. The
crisp formulation of the LSGR. problem is ex-
amined first. A review of fuzzy linear pro-
gramming methods is outlined next. Then,
the proposed fuzzy LSGR optimization based
on the FLP [12] is described. [For illustration
purposes, the results on a typical small power
system are then demonstrated. Some including
remarks are finally provided.

CRISP FORMULATION

As mentioned earlier, an algorithm was devel-
oped in [11}], in which optimal LSGR problem
was solved in its entire complexity by a linear
programming approach. The method is briefly
reviewed in this section.

Objective Function
To minimize customers dissatisfaction due to
load curtailment and to ensure minimum de-
viation from economical operating conditions,
the optimization problem during emergency
situation can be formulated as follows [4,7,8,11]:

J=3Ya;-APGI+ Y b;- AQG?
+3 - APL2+Y di- AQL?, (1)

where PG(PL) and QG(QL) represent active
and reactive powers of a generator (a load)
and A represents deviation from nominal value.
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The objective function should be linearized (the
details are provided in Appendix A).

Constraints

The objective function should be minimized
provided that the following constraints are met:

a) Generation active and reactive power con-
straints:

PG™ <PG,< PG™* i=1,...,NG,

(2)
QG™ <QG; < QG™ i=1,... NG.

3)

b) Load active and reactive power constraints:
PLP™ <PL,< PL™ i=1,... NB,

(4)
QL™ <QL; < QL™ 4=1,...,NB .

()

c) Bus voltage magnitude constraints:

VPR <V, <Vm i=1,...,NB. (6)
d) Transformer tap constraints:

thin <t <ty =1,...,NT. (7)
e) Phase shifter constraints:

g < g < g™ i=1,...,NP. (8)
f) System frequency constraint:

Fmin < F < Frmoex, (9)
g) Line flow angle stability constraints:

0<[6;—6]<¥™= §ji=1.. NL

LY

(10)
h) Load flow constraints:
PG,(F)—PL(V,F) - Pi(V,6) =0
i=1,...,NB, (11)
QGi(F) - QLi(V,F) - Q:i(V,6) =0
t=1,...,NB. (12)
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The active power of generators is adjusted by
the static response of a governor expressed by:

Prp,
—_ M LAF . 1
LN (13)

T

PG; = PGe,

Also the load dependency on voltage and fre-
quency has to be considered [13}:

PL; = PLy, - (1+k,, - AF) -
V N1 V 2
o ) o (]
l:Pp P VLB.- P VLB.' (14)
QLi = QLseti . (1 + kq.— ’ AF) :

V‘ N2 V 2
‘-+ ¢’ ( : ) + zi® ( : ) .
[qP q VLBi q VLBi (15)

Load flow equations should be properly modi-
fied to take the frequency effect into account.
For LP formulation, each constraint should be
linearized. For instance, the linearized version
of generation active power constraints is given
by:

PG™» — PGS < APG; < PGT™ - PG? ,
(16)

where index o denotes initial value and APG; =
PG; — PG?. Quite similar relationships apply
to other constraints.

Finally, the LP optimization problem can
be expressed as:

min linearized form of Equation 1

subject to:
linearized forms of constraints in Equa-
tions 2-12 (17)
Algorithm

A simple flow chart of the iterative algorithm
of the optimization problem is shown in Figure
1. The algorithm is so designed that initially
only generation reallocation is tried for solving
the problem. Provided that it is unsuccessful,
both optimum load shedding and generation
reallocation will be enabled.

Base load flow

Disturbance
applied?

Any limit
violationa?

=)

Corrective
action |Formulate GR and solve Ii’]

is LP GR only
successful to solve
the problem?

I Formulate LSGR and solve Ll:]

Corrective action

[ Postdisturbance load flow I

Figure 1. Algorithm flow chart.

A REVIEW OF FUZZY LINEAR
PROGRAMMING METHODS

After the introduction of the well-known the-
ory of the “fuzzy sets”, Zadeh and Bellman
proposed the idea of “decision making in a
fuzzy environment” [14]. This work was a
basis for a later work by Zimmermann [15] who
used fuzzy set theory to formulate and solve a
multi-objective function optimization problem
as a fuzzy version of the linear programming.
Later, some methods were presented on the
multicriteria LP problem with fuzzy coefficients
of the objective functions and constraints [16-
18]. Carlsson and Korhonen [16] proposed
a method to solve the Multi-objective FLP
(MFLP) with all of the fuzzy coeflicients.
The model is finally changed to a parametric
programming, however the method did not
consider equality constraints. Slowinski [17]
presented another method to solve the MFLP
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where in his approach, equality constraints
were not considered, too. Also, in the fuzzy
model, the number of inequality constraints
in the final programming model were changed
to two times the original constraints. Thus,
this method is unsuitable for problems with
many constraints. Rommelfanger [18] derived
another method that has the same difficulties
as the method proposed in [17].

A suitable method has been presented in
(12] for solving the MFLP, where coefficients
of the objective functions and the constraints
are fuzzy numbers. Assuming the aspiration
levels for particular criteria to be fuzzy and
based on the comparison of fuzzy numbers,
the original problem is transformed into a
multicriteria linear fractional program. Fuzzy
equality constraints are considered by the au-
thor. In this method, the number of inequality
constraints are not changed. The details of
the method are discussed in this section. A
useful application of this fuzizy method is to
define a fuzzy environment for isolving the fuzzy
LSGR problem in power systems. This topic
is discussed in the fourth se%ction, with the
benefits also being illustrated.,

Multi-Objective Fuzzy Linear
Programming Formulationj

Since the fuzzy LSGR analysi‘s presented here
is based on the MFLP method developed by
Roubens [12], and for the sake of clarity, the
method is reviewed in this section. In order to
reveal the specific structure of the problem to
be solved, the following standard form shall be
considered:

minkZ; =C;- X j=1,....K

subject to:

i l=m+1,...,n, (18)

where X is the vector of L de¢
Ch,...,Cy are vectors of fuzzy

scision variables,
cost coeflicients

¢yl = 1,..., L, corresponding to criteria j =

1,..., K, a; is the ith row of

the fuzzy coeffi-

cients matrix (&;) and b; is the corresponding
fuzzy right-hand side of the ith constraint.
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It is assumed that C’j,&i,Bi have com-
ponents which are trapezoidal fuzzy numbers
defined as:

Ejl = (CJI»II,CZ,U‘Z_I,O'Z’) 9 (19)
dil = (aﬁ,agaa(i,’o’g“) ) (20)
Ei :(bf’b?’alivog)’ (21)

where the representation for a trapezoidal fuzzy
number 7 is the quadruple (mf, mY, g% o¥) of

parameters of its membership function pz(z)
defined by:

p(z) =
1—-(mf—z)fol fml -0k <z <mt
1 ifml <z <mV
1—(z-mY)/el ifmV<z<ml+o¥

0 if otherwise ,

(22)
where m~ and mY are the left and right main
values, 0% and oY are the left and right spreads
of m, respectively. Figure 2 shows the member-
ship function of /» more clearly. To complete
the problem formulation, it is assumed that
for each criterion j, the decision maker is able
to define a corresponding fuzzy goal, denoted
by §; = (3,95,0,097). If unknown, the
main value of the goal g; = g/ = g/ might
be obtained from unicriteria minimization of
each criterion with crisp coefficients ¢;; equal
to 1/2(ch + ¢Y), and the right spread being
obtained as a given percentage of difference g5 —
g; (usually 100% [15]), where g} corresponds for
instance to the maximum value of g; obtained
for other criteria. In other words, the following
K fuzzy linear programming problems are first
solved to obtain the optimal solutions X*(:

trn(z)

e -~ ———

Figure 2. Membership function of 7.
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i i=m+1,...,n. (23)

Then, the following computation is performed:

W =c;-x*0,..., g9

(24)
Finally, g;, g} and og} are calculaced as:
g; = QEJ)
%-—ygg@,)
(25)

o ;jj = percentage (usually 100%) of g;—gj .

Remark 1

It should be mentioned that Problem 23 is
solved by the method developed in the following
subsection. It will be observed that Problem 23
is a special case of Equation 18.

Fuzzy Constraints with Fuzzy
Coefficients

In this section, the question “What happens to
a linear constraint a; - X = b; or to the linear
inequality a; - X < b; when the coefficients
a; and b; become fuzzy numbers?” will be
answered. It has close relations with the
comparison of fuzzy numbers which has been
extensively studied [16-19].

Suppose @ = (ab,aV,ck,0V) and b =
(b%,bY, 0L, 0Y). Now, for expressing equality
and mequa.hty relations between @ and b, and
with the account of Figure 3, first hgt(inf bN
supa) shall be defined.

Definition 1

The function hgt is defined as the non-negative
height of the intersection of the increasing left-
hand side for uz(xz) and the decreasing right-
hand side for p;(x), given by:

5 _ L
hgt(inf b N sup &) = max {mg—b +1 0}
>1 ifadV > bk
- (26)

<1 ifaV <bF.

Definition 2
The grade of possibility of dominance (PD) of
& over b (introduced by Dubois and Prade [19]

which represents the fuzzy extension for a > b)
is defined by:

PD(a, b) = max min[u(e), u5(y)]
= min(1, hgt(inf bNsupa)] .
(27)
Remark 2

One may consider the grade of possibility of
dominance of @ over b for the relation @ >, b
as the degree of satisfaction of the relation >
between @ and b.

Definition 3
& is smaller than b with degree of satisfaction 6
[13], defined by:

a<,b iff PD(a,b) <89, (28)
similary,
i =, b iff PD(@,b) > 6 and PD(b,a) > 9 .
(29)

Based on notations @ and b, and the above
deﬁnition,~ a possible interpretation for a <, b
and @ =y b are obtaind as:

a<g¢b
iﬁ"aL—-(l-—O)-afSbU+(1—9)-a,£],
(30)
~o b
{ )-ol >at —(1-6) 07
a +(1 0 oV >bl —(1-8) - af .

(31)
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Thus, based on Equations
relations of @ <y b and @ ~, b
to crisp relations.

30 and 31, fuzzy
can be changed

Also, @; - X can be expressed by ([19]):

le"X‘—"E a - T =Gy Oz
l
_ L U
= <§:a’il'ml’§:ail'
l l
Z L Z U
Uaiz"rl’ Jail
! l

&3

+ta; O

[3)

. 1’1) s (32)

where © represents the fuzzy product operator
(19]. Then, from the Equation 30, the fuzzy
inequality @, - X <, b; can be interpreted as:

- X <o b= lah—(1-8)-0L] 2
l

(33)

and the fuzzy equality @, - X = b, corresponds

to the system of crisp inequalit

ELi - X g Bi =
Slal+(1-0) 00, a1 3 b -
Zl[afl—(l—H)ﬁf”] sz < bY 4

Finally, it can be conclude
Equations 33 and 34, the fu
of Equation 18 may be change
constraints.

Fuzzy Objective Function a
Model

Consider the following fuzzy ob

es:

(1-6) - of
(1-96) - J,Z_
(34)

d that by using
zzy constraints
ed to the crisp

nd MFLP

ectives:

. = o ~ _ ™ L
min C; - X = E Cji Ty = <Z,Cﬂ‘$lv
1

!

E : U § : L § :
C]-l'.’L'l, O'le * Ty,
1 i

l

Ugl . .T[) .
(35)

Assume that the decision maker can spec-

ify fuzzy goals g; in form of

fuzzy numbers

(95,35,0,0%;). Now, the best donsistency be-

tween the goals and the obje
should be achieved. In order t

ctive functions
o achieve this,

Scientia Iranica, Vol. 2, No. 4

first, the possibility of dominance of g; over
> Cy -z is computed by:

p L
gi — 2 Cj1 Xy

PD(3;,C; - X)=h, = 1+ :
K 7 7 U;j]_'_ZIUCLﬂ.J;I

(36)

Then, it is proposed to solve the following
crisp parametric multicriteria linear fractional
programming problem (MFLP). Given an aspi-
ration level 6:

max PD(§;,C;-X) j=1,... K

subject to:

. PD(a;- X,b,) >0 i=m+1,....n
PD(b;,a;- X) >0 z=1,...,n.(37)

In consequence, the following non-fuzzy
mathematical programming problem equivalent
to Equation 37 is obtained.

L -
cTI—Gy .
Z J 7 1’

mm E ol zi+oU J=
1 ¢51 25

subject to:

dlad+(1-6)-0Y ] x

14

LK

>bf—(1—-0)-0f i=m+1,....,n,

dlai-(1-0)-0l]

<b/+(1-6)-0f i=1,...,n.
(38)

To solve the above fractional program-
ming, we may further consider following change
of variables:

X
o L . u
2 O, 1+ g,

1

= . U
Z,ocﬂ ."El+0'g]_

Y

; (39)

t

(40)

and the equivalent LP system is obtained:

min ), ¢y —-g;, -t j=1,...,K |
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subject to:
Z[all 1 - aal.]iz] * Y

~[pE-(1-6)-05]-t20 i=m+1,...,n

Z[a” (1-6)-oL]-w

4+ 1-0)-af]-t<0 i=1,...,n

Zaél-yl—l—ag-t:l. (41)

l

Finally the resulting Problem 41 is a multi-
objective linear programming, equivalent to the
MFLP problem formulated in Equation 18.

THE FUZZY LSGR OPTIMIZATION
PROBLEM

Having described the LSGR problem in the
second section, and outlined the MFLP method
in the third section, it is now the stage to
develop a fuzzy environment for the solution
of load shedding and generation reallocation
optimization problem.

In the real world, some of the equality
and inequality constraints defining the feasi-
ble region of the problem may not be sharp
but susceptible to soft and flexible boundaries.
Similarly, some of the data and rules required
for modeling the problem may be subject to
some uncertainty and vagueness. In such cases
the problem can be handled properly by fuzzy
mathematical concepts and tools. To clarify
this adaption more, specifically for the LSGR
problem, the following points are considered:

I) In most of the classical solution methods
of the optimization problems, the objective
functions are made up of a set of variables
with coefficients. There is not a clear idea
for selecting the proper values of coeffi-
cients. The LSGR objective function is not
exempted from this difficulty. The decision
maker can hardly indicate the precise value
of coefficients (a,,b;,c;,d;) in Equation 1

(see the second section). On the other
hand, it is very inconvenient to assign the
relation between active and reactive power
generation and consumption deviations in
Equation 1. Thus, a way to handle the
problem is using the a, b;, &, d; fuzzy num-
bers. Therefore, for every component of
Equation 1 (&; - AS?) with fuzzy coefhi-
cients, the coefficients of Equation A.1 are
transformed into fuzzy numbers. The fuzzy
numbers p;; to gy are defined from fuzzy
number &; as shown in Appendix B.

II) In the LSGR problem, the coefficients, as
well as lower and upper limits of some of
the dominant constraints are not sharp but
rather soft and flexible. These constraints
may be also handled more properly by
the fuzzy constraints. Thus, the decision
maker can consider each of coefficients and
limits of constraints of Equation 17 in
the form of fuzzy numbers represented by
trapezoidal membership function.

III) In the LP problem, the solution lies on the
boundaries of the feasible region. Thus,
there may be cases where there is no
feasible solution for the problem. However,
due to the flexibility induced by the fuzzy
objective function and constraints, the
problem may possibly have an acceptable
solution in FLP.

Finally, by considering the above reasons,
it is very acceptable to explain the LSGR
optimization problem (illustrated in the second
section) based on fuzzy optimization method
(given in the third section). Thus, the proposed
model in Equation 17 (with the objective func-
tion and constraints coefficients in the form of
fuzzy numbers) can be solved by using Equation
41.

SIMULATION RESULTS

Based on the fuzzy optimization technique de-
scribed in the preceding sections, the results on
the test power system of Figure 4 are provided
in this section. The crisp and fuzzy data
of the system are provided in Appendix C.
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2

1512

Figure 4. The 5-bus test system.
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For simulation of the above power system, the
following disturbances (faults) are considered:
line outage, generation reduction, outage of
generators, transmission overloads and load
increase of buses. The results on two separate
examples are obtained and provided in Tables 1
and 2. It is assumed that in predisturbance
condition, the system is operating in its eco-
nomical state. Also, ¢; and ¢, of the two phase-
shifting transformers are adjusted to limit their
respective active power transformers at (.25

Table 1. The simulation results of Example 1.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
State Prefault | Postfault | Postfault | Postfault | Postfault | Postfault
Method - - C.GR.* | FGR.** | C.GR. F.G.R.
LMCB***2 No No No No Yes Yes
PG1 1.325 1.508 1.497 1.481 1.566 1.498
PG5 400 0.222 0.234 0.249 0.158 0.225
QG1 0.926 0.875 0.875 0.869 1.127 0.879
QG5 -0.536 -0.457 -0.455 -0.447 -0.682 -0.484
PL1 0.00 0.00 0.00 0.00 0.000 0.000
PL2 0.60 0.60 0.60 0.60 0.585 0.594
PL3 0.45 0.45 0.45 0.45 0.450 0.450
PL4 0.40 0.40 0.40 0.40 0.400 0.400
PL5 0.20 0.20 0.20 0.20 0.200 0.200
QL1 0.00 0.00 0.00 0.00 0.000 0.000
QL2 0.10 0.10 0.10 0.10 0.097 0.099
QL3 0.15 0.15 0.15 0.15 0.150 0.150
QL4 0.05 0.05 0.05 0.05 0.050 0.050
QL5 b.lO 0.10 0.10 0.10 0.100 0.100
Vi .060 1.060 1.051 1.051 1.054 1.053
V2 (1.969 0.969 0.959 0.960 0.950 0.962
V3 ¢.984 0.983 0.974 0.975 0.967 0.976
V4 0.980 0.980 0.971 0.971 0.963 0.973
A% 1.000 1.000 0.991 0.992 0.980 0.993
61 Q.OOO 0.000 0.000 0.000 0.000 0.000
62 -11.569 -12.022 -12.209 -12.234 -11.854 -11.992
63 -6.035 -6.363 -6.460 -6.447 -6.346 -6.392
64 -6.553 -6.925 -7.029 -7.015 -6.917 -6.954
65 -1.748 -2.319 -2.329 -2.281 -2.333 -2.330
Frequency 50.000 49.731 49.964 49.757 49.959 49.983
@1 -1.714 -1.475 -1.516 -1.560 -1.277 -1.452
@2 -8.200 -8.122 -8.258 -8.359 -7.809 -8.032
Performance Index - - 1.3164 1.1542 3.7877 1.3594
No. of Iterations - - 1 1 1 1
Emerg. Con.**** - Frequency - - - -
* C.G.R. = Crisp Generation Reallocation *** LMCB = Load Model Considered for Bus

Reallocation *¥** Emerg. Con. = Emergency Condition

|
|
|
* F.G.R. = Fuzzy Generatio'i
i
i
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p.u. and 0.3 p.u., respectively. The details are
described in the following parts.

Example 1:

To illustrate the application of the method,
it is assumed that there is 33 percent (0.2
p.u.) generation loss at bus 5 of the system.
The predisturbance results as well as post-

disturbance conditions are shown by Cases 1
and 2 of Table 1, respectively. As shown,
the system frequency has been violated from
its respective limit. The frequency drop is
0.2688 Hz (more than the maximum permissible
limit of 0.2 Hz). Case 3 demonstrates that
the system is transformed to a normal state
following only generation reallocation by crisp

Table 2. The simulation results of Example 2.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
State Profault | Postfault | Postfault | Postfault | Postfault | Postfault
Method - - C.LSGR* | F.LSGR** | C.LSGR | F.LSGR
LMCB***3 No No No No Yes Yes
PG1 1.325 2.006 1.773 1.884 1.760 1.798
PG5 0.400 0.421 0.415 0.340 0.388 0.386
QG1 0.926 0.942 0.649 0.945 0.746 0.794
QG5 -0.536 0.172 0.235 0.002 0.119 0.110
PL1 0.00 0.00 0.000 0.000 0.000 0.000
PL2 0.60 0.60 0.423 0.441 0.432 0.455
PL3 0.45 0.45 0.450 0.450 0.404 0.406
PL4 0.40 1.00 0.999 1.000 1.000 1.000
PL5 0.20 0.20 0.200 0.200 0.200 0.200
QL1 0.00 0.00 0.000 0.000 0.000 0.000
QL2 0.10 0.10 0.071 0.073 0.072 0.076
QL3 0.15 0.15 0.150 0.150 0.135 0.135
QL4 0.05 0.45 0.449 0.450 0.450 0.450
QLS5 0.10 0.10 0.100 0.100 0.100 0.100
Vi1 1.060 1.060 1.059 1.051 1.061 1.049
V2 0.969 0.951 0.976 0.952 0.975 0.957
V3 0.984 0.943 0.961 0.939 0.962 0.945
V4 0.980 0.931 0.950 0.927 0.951 0.933
V5 1.000 1.000 1.014 0.990 1.011 0.996
61 0.000 0.000 0.000 0.000 0.000 0.000
62 -11.569 -19.363 -12.929 -13.894 -12.726 -13.865
63 -6.035 -10.935 -9.056 -9.480 -8.715 -9.207
54 -6.553 -11.959 -9.840 -10.334 -9.550 -10.096
65 -1.748 -2.858 -2.786 -2.880 -2.711 -2.809
Frequency 50.00 49.870 49.997 49.848 49.979 49.776
o1 -1.714 -6.511 -4.578 -4.765 -4.207 -4.572
2 -8.200 -15.788 -8.758 -9.586 -8.607 -9.667
Performance Index - - 178.905 172.813 175.425 172.532
No. of Iterations - - 3 1 2 1

V3, V4
Emerg. Con.**** - by — b5 - - -
P2

* C.LSGR = Crisp Load Shedding and Generation Reallocation
** B LSGR = Fuzzy Load Shedding and Generation Reallocation

*** [ MCB = Load Model Considered for Bus

*xx* Emerg. Con. = Emergency Condition
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LP method (after one iteratir{n). The phase
angle of the two phase-shifting transformers are
1.516° and —8.258°. Meanwhilejs, the calculated
performance index is 1.3164., To eliminate
emergency state of Case 2, fugzy LP method
has been also tried. The resul:ts are shown by
Case 4 (Table 1). After only one iteration, the
emergency condition has been eliminated. The
performance index is 1.1542, computed with
the same crisp coefficients as before. Since the
performance index in the gendjration realloca-
tion problem indicates the déviations of the
generators production from the nominal state,
as a result, the reduction of this value based
on the fuzzy optimization represents a more
acceptable solution compared with the crisp
solution. |

The same disturbance is|reapplied, but
now with the load of bus 2 considered to be
dependent on voltage and frequency (Equa-
tions 14 and 15) with the following coeffi-
cients [13]: |

kp2:()_03’ pP2:0'27 pczzo.ai, p22=0.5

ky, =0.00, ¢,,=0.2, g,=03, ¢, =0.5.

| (42)

The results of the generation reallocation
solution, with crisp and fuzzy methods, are
shown by Cases 5 and 6 of Table 1, respectively.
In both cases, the system is tra,njsformed to nor-
mal sate after one iteration. The performance
index by fuzzy method is 1.3594 which is less
than the value by crisp approach (3.7877).

Example 2:

\
\
The associated load of bus 4 15 increased by
an active power of 0.6 p.u. (Power Factor =
0.83). The normal predisturbance results are
shown by Case 1 of Table 2. | Case 2 repre-
sents the severe emergency condition after the
disturbance. The voltage magnitude of buses
3 and 4, the phase angle difference of line 2
(62—65) and finally the phase angle of the phase-
shifting transformer 2 have been violated from
their respective limits. The crisp and fuzzy
LSGR optimization results are shown by Cases
3 and 4. The crisp solution transforms the
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system to normal state in three iterations where
the performance index is 178.905. The fuzzy
solution converges in one iteration with a lower
performance index of 172.813. Thus, using
the fuzzy optimization method, the number of
iterations of the LP solutions, based on the
algorithm flow chart (Figure 1), and the value of
the performance index are reduced. This shows
that the fuzzy LP solution is more appropriate
than the crisp solution. Also, comparison of
Cases 3 and 4 indicates that the total active and
reactive load power (which can be supplied) of
the crisp solution are 2.072 p.u. and 0.77 p.u.,
but these figures for the fuzzy solution consist of
2.091 p.u. and 0.773 p.u. . Thus, similarly, the
load curtailment values in the fuzzy LP method
are less than the crisp LP method.

The same disturbance is reapplied, but
now with load of bus 3 considered to be de-
pendent on voltage and frequency (Equations
14 and 15) with the same coefficients as in
Example 1. The results of LSGR solution,
with crisp and fuzzy methods, are shown by
Cases 5 and 6 of Table 2, respectively. The
performance indices are 175.425 and 172.532,
respectively. As shown through Cases 5 and
6 of Table 2, the number of iterations for the
fuzzy LP solution compared with the crisp LP
method are reduced.

CONCLUSION

A mathematical formulation for the optimum
load shedding and generation reallocation prob-
lem using fuzzy linear programming has been
presented. The fuzzy LP is a proper alternative
in performing the traditional optimal LSGR
procedure, a method to control the power
system during emergency conditions. At the
same time, the fuzzy LP application to LSGR
problem provides practical adjustments to the
operation of a real power system.

In the power system case studies, the
simulation results show that the fuzzy solution
method for the LSGR problem is more flexible
than the crisp solution method. Additionally,
the performance index of fuzzy solution is less
than its respective value of the crisp solution.
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Also, the load curtailment values in a fuzzy
environment are less than the corresponding
crisp case. More important, the fuzzy based
approach to the solution of the LSGR problem
accommodates more realistic models to charac-
terize the behavior of practical power systems
operations.
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NOMENCLATURE

The general quantities used are defined below.

F system frequency.

NB number of system buses.

NG number of generators.

NL number of transmission lines.

NT number of tap-changing
transformers.

NP number of phase-shifting
transformers.

PG, QG active and reactive power
generation.

PL,QL load active and reactive powers.

P,Q active and reactive power
injections.

PG, QG setting of active and reactive
power of a generator.

PLg., QL. setting of active and reactive
power of a load.

Pg rated output of a generator.

R rated regulation of a generator.

Vi, 6; voltage magnitude and angle at
bus 1.

Vig load base voltage value.

t tap value of a transformer.

a;,bi,c;,d; coefficients of the objective
function.

P2s G coefficients of constant impedance
load.

Pes e coefficients of constant current

load.

Ppydp coefficients of constant power
load.

ky, kq coefficients of frequency
dependent part of the load.

min minimum value of a variable.

max maximum value of a variable.

¢ angle value of a phase-shifting
transformer.

i maximum phase angle difference

between buses ¢ and j.

Y5, 05 an element of the admittance
matrix Y.

A deviation operator.
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APPENDIX A

For LP applications, the nonlinear terms in
Equation 1 may be piecewise linearized, as
shown for example in Figure A.1. In order to
apply LP, each component of the objective func-
tion (a; - AS?) and its corresponding variable
(AS; ) are represented by four simple linear
functions with four variables (AS!, ASY, AS",
AS!"). Thus, a, - AS? is approximated by the

expression:

piy AS; + piy AS] + piy - ASY + pi - AST"

(A1)
as:
AS, = AS" + AS"™ — AS! — AS" |
(A.2)
aiAS?
4
Piq Piy
Piy Pig
»AS;

ASTIn A gmin

g;ASTmax A gmax

Figure A.1l. Linearization of quadratic objective

function.
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and:

Smn - S < AS, <SPSy, (A3)

then, the constraints in terms of new variables
become:

0 < AS < (1—7)-|AS™], (A.4)
0 < AS! < |ASM], (A.5)
0 < AS" < ;- ASP™ (A.6)
0 < AS" < (1-B) ASP™ (A7)

A more clear picture of these relations is
shown in Figure A.1 . It should be mentioned
that in Figure A.l, AS; is an indication for
APG;, AQG;, APL;, AQL, variables, and o,
denotes either of a;, b;, ¢;, d; coeflicients, while
pa through p;q denote the absolute value of each
portion slope. 7; and f; are taken so that the
dashed area is minimum. It is easy to show that
for this to be the case, v, = 8, = 0.5.

APPENDIX B

The membership function of the fuzzy number
&; (defined by the decision maker) can be
considered as the one shown in Figure B.1.

With the account that in Figure A.1 v, =
B; = 0.5, then the membership functions of pi;
and fis (that are the right piece lines slope of
Figure A.1) can be calculated as (see Figure
B.2):

pa, ()

11— — — —

Figure B.1. The membership function of &,.

wa, () |

-

|
|
|
!
U

v, U
Py pi oy,

Figure B.2. The membership function of p;.

1
ph =5 -ab.As™
1
= ol as
2
, (B.1)
L _ . L . max
Tpry =3 Oeu AS;
1
ol == gl  ASm
. ig 2 o 1
( 3
ot = 2ol A
3
P == - :
0 ==-al-asr
ﬁ X (B.2)
oL =" ok . AGmx
ig 2 i
3
v _ Y. U, max
| %% =5 e AS;

For calculating the membership functions
of p;1 and pip, AS™™* must be changed to the
absolute of AS™" in Equations B.1 and B.2.

APPENDIX C

Crisp Data

A sample power system (see Figure 4) is
considered consisting of two generators, two
phase-shifting transformers and five transmis-
sion lines. The lines and transformers data
are given in Table C.1. The buses data,
the minimum (min) and maximum (max) of
voltage magnitudes and ¢;, d; coefficients of the
objective function (in conjunction with system
loads) are shown in Table C.2. The max and
min of active and reactive generator powers,
and a;, b; coefficients of the objective function
(in conjunction with generators) are illustrated
in Table C.3. The min and max phase angles of
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Table C.1. The lines and transformers data.

No. | From Bus | To Bus | Resist. | React. | Suscept.
1 5 3 0.060 0.180 0.000
2 5 2 0.040 0.120 0.000
3 5 4 0.060 0.180 0.040
4 3 4 0.010 0.030 0.020
5 4 2 0.080 0.240 0.050
6 1 5 0.020 0.060 0.060
7 1 3 0.080 0.240 0.050
Table C.2. Bus data and ¢;, d; coefficients.

No. | PG | QG | |PL | QL V | ymn | ymax | o Coeff. | d; Coeff.
1 0.00 | 0.00 | 0.00 | 0.00 | 1.06 0.90 1.10 400.0 400.0
2 0.00 | 0.00 [ 0.60 | 0.10 | 1.00 0.95 1.05 400.0 66.7
3 0.00 [ 0.00 | 0.45 | 0.15 | 1.00 | 0.95 1.05 400.0 133.3
4 0.00 [ 0.00 | 0.40 { 0.05 | 1.00 | 0.95 1.05 400.0 50.0
5 0.40 [ 0.00 | 0.20 | 0.10 | 1.00 | 0.95 1.05 400.0 200.0

Table C.3. The limits valve of generators and a;, b; coefficients.
No. | QG™™ | QG™a* | pG™™» | PG™2* | R; | a; Coeff. | b; Coeff.
1 -2.00 2.00 0.20 2.50 0.05 20.00 28.60
5 -2.00 2.00 0.20 1.50 0.05 20.00 14.90

For bus voltage magnitude, the fuzzy num-
bers are defined by:

phase shifters are -10 and 10 degrees. Also, the
max phase angle difference of lines is considered

to be 0.25 radians (14.5 degrees).
(min value, max value, 5% of min value,

Fuzzy Data
The values of the system variable limits (except
voltage magnitudes) are described by trape-
zoidal fuzzy numbers defined as (see Figure 2):

5% of max value). (C.2)

The load limits are considered to be crisp.
Also, the objective function coefficients are left-
right fuzzy numbers (in other words, the min

(min value, max value, 10% of min value,
and max values are equal).

10% of max value) (C.1)






