An Optimal Fuzzy Approach to
the Control of Predator-Prey Equations

N. Sadati! and H. Shakouri?

The use of fuzzy logic in control system theory has had widespread success and has stimulated
high interest. With this success, new theories and methodologies are proposed for analysis
and control of nonlinear systems. In this paper a case study is performed over the Volterra
equations. In contrast to some of the well-known classical methods and so-called modern
techniques for nonlinear control design which are based on exact mathematical modeling, this
approach originates from human-like approximate reasoning and imprecision. This approach
is a knowledge-based control in which membership functions of system variables are used
to cope with the nonlinearity of the mathematical model. The design is initially developed
to form an approximate or incomplete knowledge-base for control strategy. A new type
of methodology is presented for optimization and reduction of the membership function’s
parameters. The proposed approach is implemented on a simulated model of predator-prey
equations, and the results are compared with the one obtained by feedback linearization
technique. It is shown that the performance of the proposed method is superior to that of

the modern nonlinear control design.

INTRODUCTION

The concept of fuzzy logic is widely used
in many different fields today, ranging from
control applications, robotics, biological and
medical science, image and speech processing
to applied operation research, decision mak-
ing and expert systems [1]. Fuzzy logic has
been very successful in solving problems, where
a conventional model-based approach is very
difficult or inefficient and/or expensive to be
implemented. This reality is illustrated by a
case study of the Volterra equations.

Since the most critical side of a fuzzy
controller design lies beyond the number and
the shape of membership functions [2,3], a new

methodology based on optimization and sensi-
tivity analysis is presented through which all of
the parameters of the membership functions are
obtained and those of less sensitivity are dis-
carded. Furthermore, the proposed approach
is also compared to the feedback linearization
technique. It is shown that its shortcomings can
be recovered by utilizing the proposed method.

The predator-prey model which is adapt-
able to many biological or physical systems
is described by the following differential equa-
tions:

i(t) = —az(t) + bx(t)y(t), (1a)

§(t) = cy(t) — dz(t)y(t), (1b)
where z(t) and y(¢) are the states denoting the
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number of predators and preys (of course in
continuous domain), respectively.

The system consists of nonlinearities in
both equations and two stationary points for
which the balance of the system may be served.
Without any loss of generality, hereafter it will
be assumed that all the parameters are one.
The two points which form the set of stationary
points become:

JaY 1 !
§1=[x,y] :[1’1] y Ly =0.

The first one is a center to which none of
the system trajectories terminate and the other
is a saddle point. These are plotted in Figure 1
for a free system.

It should be noted that a center cannot be
achieved except when it is at the initial position
and the a saddle point is reachable only in one
direction. It is obvious that a little perturba-
tion from each one leads to a periodic variation
around the center or instability towards the
infinity in one of the states. Therefore, the
system requests a robust control which may be
imposed to each one of the states as an input
signal.

First, the feedback linearization method
and then the fuzzy control theory are stud-
ied, trying to keep the system stable on its
nontrivial steady state set point.  Finally,
the regulation problem for this system will be
considered. To attain such a goal, the following
model is considered, where u(t) is regarded as

6

'
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Figure 1. Free system trajectories.
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a control signal in the second equation. Let
us assume that the number of the preys are
controllable by either slaughtering or providing
more food. Therefore, Equations 1a and 1b can
be described as follows:

#(t) = —z(t) + 2(t)y(t) , (2a)
() = y(t) — z(t)y(t) + u(t) (2b)

where, in the coming sections, the regulation
problem for this system will be investigated.

FEEDBACK LINEARIZATION

The philosophy behind this approach is trans-
ferring a nonlinear system into a linear one
through some appropriate calculations and then
applying the linear control techniques [4].

Input-State Linearization

Using input state linearization, an auxiliary
state variable is defined, namely 2(t) =
z(t)y(t), and the system equations are rewritten
(dropping the time symbol for simplicity) as:

T=-z+2,
y=y—z+u.

Substituting for y and y using z and 2 = zg +
zy, the following is obtained:

T=—-x+2z2, (3a)

52
é:;——xz-i—:vu. (3b)

Now, by choosing:

_ .2
w=trB oAl Ly (4)

T

a simple linear system of the following form is
obtained:
[0
z+

. [-11
£=10 o 1

which is easily stabilizable by a proper choice
of a state-feedback given as:

v; z=[z,2]",  (5)

v=-k'z; k=00 . (6)
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To regulate the states about z = [1,1]' , the
above control law is written as:

v = -.]i,.§+ ar , (7)

where 7 is the desired reference input. Re-
placing the linear controller in Equation 4, the
nonlinear controller becomes:
z 2¥ o+
fz _z 2l

y=z—a—— -
x x

(8)

Note that the inverse value of DC gain of the
linear controller, "‘—}é , is substituted for 7 to
ensure a totally unit DC gain.

The main weakness of this approach lies
beyond the above solution. It can be shown
analytically that in the linear system formed by
Equations 4 and 5, the hidden state, y, always
tends to one regardless of  and 2, i.e.:

. . 2(t) . 8Z(s)

Jim y(t) = Jim oy = lm Sy =1
However, as shown in Figure 2, the time re-
sponse of y(t) is of a certain shape which for
small settling times, takes large overshoots in
transient, i.e. the smaller the rise time is, the
larger overshoot is caused and the smaller the
overshoot is, the more time it takes to settle.
According to this infirmity, there is not enough
flexibility in the controller design.

Input-Output Linearization

The weakness mentioned previously is recov-
ered by this approach. Choosing an input of
the following form:

u(t) = — ofy(t) - ya(t)]
+z(t)y(t) + ga(t) — va(t) » (9)

the output error dynamics, §(t) — ga(t), will
have a single ordered equation which can ar-
bitrarily be designed by the parameter a, given
as:

&(t) = (1 — ae(t) -

The output then varies according to the follow-
ing form:

g(t) = (1 — a)y(t) + (@ — ya(?) +9a(t)
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Figure 2. Time response for input-state feedback
linearization with the control signal,

v=—alz - (a+p)/a] - Bz

which has an analytical solution given by:
y(t) — cé(l—a)t + é(a—-l)t
t
[ K= D) + gt 0=
° (10)

where é denotes the exponential term. Assum-
ing that y(0) = yo, ya(t) = Ja and gy = 0, the
following equation is obtained:

y(t) = (yo — §a)et ™ + gy . (11)

This method may also face other problems pro-
duced by the internal dynamics. Substituting
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for y(t) from Equation 11 in Equation 2a, the
internal state becomes:

z(t) = xy exp

Yo = Yd [ a(1—oe _
{m[a " 1] +(yd—1)t} o

Since:

lim z(t) = zy exp [1 — yoJ ,
t—00 a—1

the stability of the system is warranted for Yg =
I and any a > 1,3, < 1. But the steady state
of 2(t) is not desirable, since it does not satisfy
x = 0. Therefore, the controller costs an infinite
resource of energy:

tlilgu(t) =z(00)—1#0.
Figure 3 shows the system response to the
input, given in Equation 9, for various o’s and
Zy’s.

As a conclusion, the feedback linearization
method is not a satisfactory solution and this
convinces the designer to utilize a more suitable
control method.

FUZZY CONTROLLER STRUCTURE

In this section, the designing procedure of a
fuzzy controller for the system based on the
measurements of the error and its rate of change
is considered. Again, assuming r as the desired
set point for y(¢), the following relations hold:

e(t) =y(t) — 7,
é(t) = §(t) .

The controller requires a rule base with
two inputs determining the control signal, u(t).
The structure of the controller depends on
the fuzzy sets used for the fuzzification of the
measured signals, e(t) and ¢(¢), and also the de-
fuzzification sets of the controller output. Thus,
the associated membership functions that can
be used for this purpose are pointed out.
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Figure 3. Input-output feedback linearization
results.

Applied Fuzzy Sets

Many forms of fuzzy membership functions
have been suggested by the researchers. The
two following functions have been studied, each
characterized by two parameters:

Type 1 (Trapezoidal):

2-8 pto<a<p+20

) p—o<a<lu+o
fila) = a—pu.

2+ =8 p-20<a<pu-o

0; otherwise .
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Type 2 (Exponential):
fola) =1 - (="

The corresponding shapes for both mem-
berships are plotted in Figure 4. For the
purpose of comparison, note that fi(20) =0,
f.(20) ~ 0.06 and f,(c) = 1 but fe(o) =~ 0.6.
So, it is clear that the sharpness of the member-
ship function, Type 1, at the edges is smoothed.
Since a limited interval should be assigned for
each of the signals in which the fuzzy sets are to
be distributed, two parameters specifying the
limits for each signal are determined. Note
that the number of the fuzzy sets, n, defined
in the interval, can vary. Starting with three
sets, namely Zero, Positive and Negative and
assuming symmetry for all of them with respect
to Zero, n parameters determine the required

1.5 -

5 A A
-0.5 ) 3
(a) Type 1
2 v
1.5 “1
1=~ -
0.5~ b
0
0.5 A -
0 5
(b) Type 2

Figure 4. Applied membership functions.

Table 1. Rule base 1.

. ¢|N|Z]|P
N |[P|P|Z
Z |Z2|2|2Z
P |Z|N|N

Table 2. Rule base 2.

. ¢|NL|Ns|zE|Ps | PL
NL | PL | PL | PS | PS | ZE
NS | PS | PS | PS | ZE | ZE
7E | ZE | ZE | ZE | ZE | ZE
PS | ZE | ZE | NS | NS | NS
PL | ZE | NS | NS | NL | NL

fuzzy sets. These parameters are collected in
an n vector p = [0z, 1P, 0P

Fuzzy Rule Bases

An intuitive inference rule base, based on
human-like reasoning, can be easily formed by
associating a linguistic output variable to each
combination of the measurements. First, the
rule base is constructed according to Table 1.

As it is shown, all signals are arranged in
three linguistic variables: “Zero”, “Positive”
and “Negative”. Adding two other linguistic
variables to each group, a more complete rule
base can be formed as it is shown in Table 2.

In accordance with the solutions of the pre-
ceding optimization problem, it is experimented
that not only extra rules will not be significant,
but also the simplest rule base is sufficient for
a quite successful optimal control.

OPTIMAL FUZZY CONTROL

Similar to the fundamentals of the optimal
control methods, a possible objective function
is defined by:

J(p) = ly(N) =y, (NI

where y(N) and y (N) are the two vectors
containing sampled signals of the real output
and the desired one. Both are defined as
follows:

y(N) = ly(1),9(2),-. - y(N)]',
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N) = [yd(1)7 yd(z)’ ce ayd(N)], :

Note that it has been assumed that z(t) is
not measurable, otherwise it would have been
included in the objective function. Now, the
problem of designing the fuzzy controller re-
duces to the solution of the following optimiza-
tion problem:

2

minJ(p) = 3 [y(t) — ya(t)]® (13)

t=1

subject to the system equations, where u(¢) is
obtained through the rule base 1 or 2 by Center
of Gravity defuzzification method.

Required Input — Desired Output

By considering the output alone, there is no
doubt that the best desired trajectory for the
output is to jump from the initial condition to
the desired set point in a few steps. However,
there are always some constraints in practice
that limit such a rapid jump. The main
restriction is the input energy of the system.
A simple calculation that can aid in finding the
required input is proposed as follows:

Assume that the maximum value of u(t)
which should be tolerated by the system is
taken at the starting time. Furthermore, sup-
pose that the desired transient, y,(t), be a
constant slope that conveys the ouput from y,
to y4 in a few steps, IV, as it is represented in
Figure 5. This implies that:

1
= —(y, — 14
i=% + N(yd Yo) , (14)

where ¥, = ya(N) and 3, = y(1). Also from
Equation 2b, for a proper sampling period 7,
it can be obtained that:

Y1 ="Y0 + To(yo — Toyo + uo) (15)

Solving Equations 14 and 15 for ug, one obtains:

Uy = [Fa — (1 + T, N)yo] + Toyo ,

T, N (16)
e.g. for T, = 0.05,N = 10,y, = 1 and y, =
Ty = 0.1, 4y becomes 1.71.
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Figure 5. A sample output transient.

Similar results can be deduced utilizing the
analytic solution introduced before. Each of
the Equations 8 or 9 with appropriate design
parameters («, 3), depending on N and 7, may
be used for this purpose. For instance, choosing
a = LLN 54 using Equation 9, the required

TN
initial input can be expected to be:

up = (a — 1)§g — ayo + Toyo - (17)

Also, other information about w, can be ob-
tained by similar approximations based on
Equation 8. Selection of a suitable transient,
from Figures 2 and 3, can guide us to calculate
for the required uy, where:

a+p

Up = ToYo — @ — Yo(B + yo) + -
0 (18)
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So, the final choice should be considered as the
largest one for which the above approximations
predict.

Another fact is perceptible from Figure 5b.
It is evident that to minimize the distance
between y(N) and y,(N), the actual output
may start with a larger slope and thus requiring
larger input. Therefore, it is better to consider
u(0) larger than what has been obtained in the
preceding section.

Optimization — Parameter Reduction

Many experiments show that a solution can
always be found for Equation 13, given various
initial conditions. To illustrate the process
of optimal design, let us examine a numerical
example for which the results are collected in
the next table. It should be mentioned that
any initial condition, closer to the vertical axis,
causes larger overshoot in the time response.
Therefore, z(0) = [0.1,0.1)" can be chosen as
an ill initial condition. The other required
parameters are the same as the example given
for Equation 16.

Table 3 contains the optimum parameters
of the membership functions of Type 1 for
the fuzzification of u(t),e(t) and é(t). Start-
ing with various initial guesses for the vector
P = [Osur Hur Ous Ozes Hes Tes Oary ry O] and us-
ing the Gauss-Newton method [5], the nine
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unknown parameters are found. The subscripts
are self-defining and the symbol r denotes the
rate of changes in error, i.e. €. As it is
clear from p, Table 1 is first considered as a
fundamental rule base. It is easy to conclude
that many different points can be accepted as
solutions to the optimization problem . Of
course, they may cause some differences in the
time responses, as they are shown in Figure 6.

Also it is observed that some of the pa-
rameters do not change so much during the
optimization process. This means that they are
not so sensitive with respect to the optimization
process.

Investigation of the sensitivity for the pa-
rameters with respect to the objective function
J(p) encourages us to abandon those with
less sensitivity. An algorithmic decision is to
choose the parameters for which the objective
function shows the highest sensitivity and the
optimization procedure causes the most dis-
placement from their initial values. According
to Table 3, sensitivity levels of the parameters
(with respect to the optimization process) are
given in Table 4.

It is clear that the vector of parameters
0 = [lu, Tzus Tz, 0c)' has shown to be the most
important factor for almost all the experiments
in a weighted average sense. The second step is
to reduce the parameters vector p to .

Table 3. Optimization results of the first step.
Trapezoidal membership functions (9 parameters for 3 variables).

Par. No. 1 2 3 4 5 6 7 8 9
Case No. | Ozu Hu Ouw Oze He Oc Ozp K o, J(B)
1 1.00 800 4.00 060 6.00 3.00 200 1000 4.00 0.4802
X 0.15 7.80 4.04 045 591 297 248 10.00 4.00 0.0119
2 020 10.00 5.00 0.20 6.00 4.00 0.50 10.00 5.00 3.9021
- 1.44 987 494 018 6.35 328 050 1001 4.96 0.0568
3 020 10.00 4.00 0.20 6.00 3.00 0.50 10.00 5.00 0.0422
- 022 10.00 4.30 007 599 3.01 050 984 5.32 0.0296
4 050 12.00 800 0.40 10.00 7.00 5.00 10.00 6.00 1.4379
- 040 9.78 6.45 0.02 1071 545 5.00 10.03 596 0.0158
5 200 800 3.00 080 800 4.00 5.00 15.00 4.00 2.3764
- 1.02 7.35 3.01 010 7.71 427 500 15.00 4.00 0.0469

* The first row in each case is the initial guess and the second is the optimal design.
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Figure 6. Time responses due to the optimized membership functions listed in Table 3.

Table 4. Sensitivity levels of the parameters.

Par. No. 8 7 9 3 5 2 6 1 4
Sens. .0838 | .1038 | .1261 | .1980 | .2054 | .2288 | .2677 | .3381 | .3511

Since the effect of u, appears specially
in the value of wu,, this section is followed
with an attempt to determine that parameter
large enough to ensure that the desired output
transient can be attained. However, Table 5
includes the results for the optimization with
respect to these four parameters, §, fixing all
the others with the same predetermined values.

Moreover, these results admit that u, is
fixable too, but this step is skipped and left for
another case study. Some algorithms can be
suggested based on the analytical calculations,

which is helpful in choosing a proper value
for p, . As expected, it can be shown that
an analytical approach leads to complicated
formulae. For the sake of simplicity and to
improve our confidence about the existence of
the solution for Equation 13, considering those
four parameters (and by fixing p.,, even with
only three), it is better to let u, be much larger
than:

2 lim %(0) & pmin ,

Oru—0

which is approximately the least needed value,
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Table 5. Optimization results of the second step.
Trapezoidal membership functions (4 parameters for 2 variables.)

Par. No. 1 2 3 4

Case No. s o Oze He J(8)
1 0.1000 8.0000 0.4000 6.0000 | 0.1502
* 0.0473 7.9750 0.5737 5.9991 | 0.0079
2 1.0000 8.0000 0.6000 6.0000 | 0.8579
- 0.7767 7.4592 0.0089 5.2226 | 0.0792
3 0.2000 10.0000 0.5000 5.0000 | 0.1428
- 0.1025 9.9049 0.1213 4.9663 | 0.0416
4 0.5000 12.0000 0.4000 7.0000 | 0.0785
- 0.0870 12.0719 0.1536 6.9764 | 0.0371
5 2.0000 8.0000 0.8000 4.0000 | 2.3913
- 0.0498 7.2221 0.2754 3.3919 | 0.0321

Ty = 2w, 0c = 3pie, 020 = 2,4y = 22ndo, = 10.

* The first row in each case is the initial guess and the second

is the optimal design.

say twice, as a rough guess. The next figure rep-
resents a sample set of the optimally produced
outputs. Note that quite various sets of the
results have been selected to plot which may
have some problems (like chattering or over-
shoot) and they will be discussed in the next
section. It means that some optimal responses
may have not satisfied the designer as being
acceptable, but, as mentioned, there are always
many solutions and one can choose a desired
one. It should be noted that this is because
of the short interval (0 to N) in which the
optimization is done, but there is no gurantee to
get a desired response after the N th sample. In
return, the noticeable advantage of this method
is the way it speeds up the procedure. It can be
seen, as in these results, that the desired output
transient can be even coincided thoroughly by
the optimized parameters.

IMPROVEMENT (ERROR
ATTENUATION-RESPONSE
SMOOTHNESS)

The proposed fuzzy controller is compared with
the feedback linearization approach. The sim-
ulations show the performance of the optimal

controller. There is enough evidence to con-
clude that the fuzzy controller produces better
results. In Figures 6 and 7, it is seen that
the fuzzy controller can give an ideal response
with almost no overshoot, coinciding with the
desired transient. Even for some cases of non-
optimal parameters (initial values, e.g. Case
1 in Figure 6, or Case 2 in Figure 7), almost
similar responses compared to what has been
shown in Figure 2 are observed. However, much
less settling time or overshoot are found. This
very small error (see Figure 7a, 7c or 8a, where
it is less than 3%), which reduces slowly, is
proportional to the optimal choice of o, .

Some distinct solutions are suggested to
improve performance and lessen the sensitivity
of the controller to the initial conditions and
disturbances which may lead to chattering or
even instability. A possible solution is to assign
a symmetric triangular membership function to
Zero linguistic term, that is:

Type 3 (Triangular):

1+ 353 —-20<a<0
flay=41—-2; 0<a<2o
0; elsewhere.
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Figure 7. Time responses due to the optimized membership functions listed in Table 5. The optimal
response for Cases 1, 2 and 5 and the initial result of Case 2 are plotted. The other optimal responses are

quite similar to that of Case 1.

This choice, specially for e(t), can help the
error attenuation, but the increase of chatter-
ing probability should also be noticed. Pay-
ing attention to the second case of Table 5
notifies that small o,. (very narrow-singleton
like membership functions for Zero) may lead
to such high frequency oscillations known as

chattering.
Finally, a more accomplished design is
originated from the rule base 2. This

will provide a desired condition to control
the system much firmly, especially nearby
the equilibrium point, coping with chattering
and saving smoothness. Table 6 lists the
optimization results assigning five exponen-
tial membership functions of Types 2 and 4
(f(a) = exp—(%ﬁl)) for u(t) and five other

of Types 1 and 3 for e(t) and é(t). This
controller which is not so advantegous with
respect to its previous conterparts (for its great
complexity), produces the responses presented
in Figure 8. The optimized membership func-
tions of Case 1 in Table 6 are shown in Fig-
ure 9.

Here, another approach is referred to
which is also applicable if the state variable
z(t) is measurable. From the results of the
simulation, it is seen that the faster the x(t)
approaches the final value, the output y(¢)
has the faster convergence too (see Figure 6
or 7). Therefore, it is possible to define the
performance function in terms of both z(¢) and
y(t). This proposition is not discussed in this
paper and can also be investigated.
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Table 6. Optimization results due to the rule base 2.

Exponential membership functions for u(t) and trapezoidal forms for e(t) and é(t).

Par. No. 1 2 3 4 5
Case No. Ozu Oau P Oze Ose J(9)
1 0.5000 1.0000 10.000 0.1000 0.8000 0.3480
* 0.0780 1.0781 9.9864 0.0795 0.8805 0.0031
2 1.0000 1.0000 8.0000 0.8000 1.0000 0.5929
0.3225 1.8436 8.0245 0.6960 0.9855 0.0236
3 1.0000 1.0000 6.0000 1.0000 2.0000 1.3629
- 0.0165 2.5934 5.9960 0.7108 1.8371 0.0215
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Oly = %/—Lsu = Osuy Hse = 205ey Ozr = Osr = 2 and Hir = 14.
* The first row in each case is the initial guess and the second is the

optimal design.
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Figure 8. Time responses due to the optimized

membership functions listed in Table 6.
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Figure 9. Membership functions of Case 1 in
Table 6.

VALIDATION

The controller should be experimented in dif-
ferent cases rather than the design circum-
stances. Hence, the final optimal design (due
to Table 6) is tested, setting various initial
conditions and adding a disturbance term, w(t),
to Equation 2a. The controller shows a quite
acceptable performance and trends the system
towards the equilibrium point. An important
point is that the objective considered for the
system is to converge to its steady state slowly
(see Figure 10). However, if there is an interest
in the behavior of the other states, x(t), or the
input u(t), extra information of each should be
added to the performance index, Equation 13.

CONCLUSION

The major point, that has been addressed in
this paper is a method which enables us to
obtain the most proper membership function
set and adequate range of its distribution that
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Figure 10. Performance tests for the Case 1 of Table 5 (under various initial conditions and disturbances).

offers the optimal control for a case study. It
is concluded that despite some conventional
triangular membership functions that partition
the range of a variable entirely, a solution to
the optimization problem may not often lead
to uniformly distributed membership functions.
Various types of these functions are examined
for the aim of smoothness in response and/or
reduction of settling time. Also, it is shown
that the optimal fuzzy controller is relatively
superior to the feedback linearization method
and it overcomes the shortcomings of that non-
linear approach. Finally, using desired outputs
in small duration makes it feasible to speed
up the computation, also fixing the insensitive
parameters improves the speed.
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