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Among real-time search algorithms for networks which utilise heuristic estimates is the recent
algorithm called Learning Real-Time A*(LRTA*). This learning algorithm continuously
improves the initial heuristic estimates as the search process continues. It builds and updates
a table containing heuristic estimates of actual distances to the goal state in the problem.
Initially, the entries in this table correspond to the initial heuristic evaluation which is
assumed to be a lowerbound on actual distance. Through repeated exploration of state-
space, however, these estimates will lead to more accurate heuristic values. In this approach
optimal solution cannot be found in a single trial and, moreover, updated heuristic values
cannot be used in the same problem. However, starting from various states to go to the goal
state, these updated heuristic values can be used. By incorporating a backtracking process to
LRTA* and activating this process whenever an updating in the heuristic estimate of a state
occurs, an algorithm called Learning and Backtracking A*(LBA*) is introduced. Contrary
to LRTA*, in LBA* updated heuristic values can be used in the same problem in which these
values are learned. The main theme of this algorithm is to guarantee improvement of the
heuristic estimate of each state from which backtracking is done. Backtracking along with
updating heuristic values helps LBA* to find the optimal solution using the circulation of
updated heuristic estimates through the states. It is proven that under any circumstances the
application of LBA* will lead to the optimal solution for any state-space problem in which
heuristic estimates of states do not overestimate their actual values. The contribution that
LBA* makes to the general idea of backtracking is that: assuming that all numbers used in
a problem are intcger, the number of backtracks in any state is limited to the amount which
heuristic estimate of that individual state undercstimates its actual value. This is something
that, as yet, no backtracking algorithm has guaranteed.

INTRODUCTION

In this paper, a learning search technique is pre-
sented which finds optimal solutions for graph-
search problems. This technique, LBA* (Learn-
ing and Backtracking A*), has been developed
based on the incorporation of a backtracking
process to an algorithm called LRTA* (Learn-
ing Real Time A*) developed by Korf [1].

LRTA* is an efficient real-time algorithn
that guarantees neither optimality nor neai-
optimality of the solutions found. The reason
that this algorithm is called real-time is that
existing state-space search methods are divided
into two classes of off-line and real-time algo-
rithms. Off-line algorithms such as A* {24
and IDA* [5] examine the entire solution-tree
and among all examined routes sclect the best
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contribution that LBA* makes to the general
idea of backtracking is that: assuming that all
numbers used in a problem are integers, the
number of backtracks in any state is limited to
the amount by which heuristic estimate of that
individual state underestimates its actual value.
This is something that, as yet, no backtracking
algorithm has guaranteed.

Since LRTA* [1] is the starting point from
which this search technique is developed, its
functioning is briefly described.

LEARNING REAL-TIME A* (LRTA*)

Among the search algorithms with finite state-
space and heuristic estimates for every state
to the goal state, LRTA* represents a major
research direction which takes into considera-
tion the effect of learning in the search process.
LRTA* builds and updates a table containing
heuristic estimates of the cost (distance) from
each state in the problem to the goal state.
Initially, the entries in the table correspond
to the initial heuristic evaluations which are
assumed to be lowerbounds on actual costs.
LRTA* manages to improve these entries during
the search process making them more accurate
estimates.

From the initial state, the search process
starts by comparing its heuristic estimate with
the “compound values” of all neighbouring
states, where each “compound value” includes
the estimate of the distance from the respective
neighbouring state to the goal state and the
edge cost from the current state to each neigh-
bouring state. The neighbouring state with
the minimum compound value is chosen for the
next stage of expansion and the heuristic esti-
mate of the current state is replaced with this
value to reflect a more accurate estimate. This
later part represents the updating mechanism
of the Korf’s algorithm which can be considered
as a learning process.

Assuming that z is the current state of a
search process, the LRTA* algorithm repeats
the following steps until the goal state becomes
the current state.
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1. Calculate the compound value of f(z') =
h(z') + k(z, ") for each neighbour z’ of the
current state x, where h(z') is the current
heuristic estimate of the distance from 2’ to
the goal state and k(x, ') is the cost of the
edge from z to z'.

2. Move to a neighbour with the minimum
compound value, f(z'), and consider it as
the current state.

3. Update the value of h(z) to the minimum
compound value of its neighbours.

The reason for updating the value of h(x)
is that since the compound value of f(z')
represents a lowerbound on the actual distance
to the goal through each of the neighbours,
the actual distance from the given state must
be, at least, as large as the smallest of these
compound values. The valuable contribution
of this method to search techniques is the
improvement of the heuristic estimates of states
during the process of problem solving. These
improved heuristic estimates can be used in
following trials, when starting from other initial
states and going to the same goal state.

In a finite problem space with positive
edge costs, in which there exists a path from
every state to the goal, this algorithm will
always be able to reach the goal. Although
there is no guarantee of optimality or near-
optimality of the solutions produced by Korf’s
algorithm in any single problem-solving trial,
the repeated trials will eventually adjust each
heuristic estimate on the final path to its actual
value and, hence, this leads to the optimum
solution.

LEARNING AND BACKTRACKING
A*(LBA*)

The fundamental feature of this algorithm
(LBA*) is the repetitive application of the
updating cycle which normally consists of a
trial through searching, evaluating after the
trial and updating through feedback. The
major difference between this algorithm and
Korf’s algorithm lies in the implementation

of a backtracking process which occurs when
updating the heuristic estimation of any state.

LBA* starts with the initial state as the
current state and changes the current state
until a path to the goal state is found. To
search for the next state for expansion, it calcu-
lates the compound values of all neighbouring
states by adding the heuristic estimate of each
neighbouring state and the edge cost from the
current state to that neighbouring state. The
neighbouring state with the minimum com-
pound value is selected as the current state
and computing the new compound values as
well as comparing them for selection of the
next current state continues. This process
of selecting the neighbouring state with the
minimum compound value continues until the
heuristic estimate of the current state is less
than the minimum of the compound values of
its neighbouring states. In this case, the heuris-
tic estimate of the current state is updated to
this minimum compound value and the decision
about selecting this current state to be on the
path is revised by removing it from the path and
backtracking to the previous state currently on
the path.

The fact that a state is blocked for further
expansion (dead-end) may also serve as an
indication for the algorithm to learn not to
enter the same state again in the future. The
backtracking routine is initiated following the
updating of the heuristic estimate of a state.
Through this backtracking process, the current
state leaves the path and the previous state
on the path will become the current state.
In other words, whenever the heuristic esti-
mate of the current state is updated to the
minimum compound value of its neighbouring
states, this state will leave the path and the
previous state on the path will become the
current state. Then, again, re-examination
of neighbouring states starts and it is likely
that this re-examination will lead either to a
change of direction for expansion or to the
adjustment of its heuristic value and, hence,
one more stage of backtracking. Depending on
the original estimate of the initial state, the
backtracking process may retreat all the way
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goal state. The list keeps only the states on
a path from the initial to the current state,
and the current state is always on the top of
the list. When the heuristic estimate of a
current state is updated, backtracking is carried
out by removing the current state from the
list and letting its previous state become the
current state as indicated in Step 7. Step 7
1s carried out after Step 6 which updates the
heuristic estimate of the current state while
detecting the non-accessibility of the goal state
from the initial state. The adjustment made
by Step 6 is the result of the comparison of
estimates with neighbours as indicated in Step
4 and the false condition of Step 5. Should the
condition of Step 5 be true, the algorithm will
continue to expand the current state without
the need for backtracking. Step 3 is arbitrary
and has been used to assign a large value to
the heuristic estimate of a state that has been
considered dead-end, ensuring no future visit to
such states. There are many ways to define a
dead-end state and here the following simple
definition is proposed: “z is dead-end if it
has only one neighbour and this neighbour is
currently on the OPEN list”.

The way in which the heuristic estimate of
a state is adjusted, as indicated in Step 6, does
ensure that the newly adjusted value raises the
lowerbound and will never be greater than its
actual value. As the search process continues,
the heuristic estimates of states on the final
path will finally converge to their actual values
through the guidance of the edge costs.

A proof can be presented that the appli-
cation of LBA* will lead to finding the optimal
solution of problems. This proof is presented
after showing the application of LBA* to the
following simple problem.

An Example

To show how LBA* works, we apply it to a
grid problem represented in Figure 1. This
grid problem can be considered as a state-space
with sixteen states (cells) on which operators
with the cost of one operate and transform
them to one of their neighbouring states (cells),
provided that no highlight line (barrier) exists
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3 2 1 Goal

Figure 1. A grid problem (with its initial
heuristic estimates).

between the state on which the operator acts
and its neighbouring state. The left bottom
cell is called state (1,1) which is the initial state
and the top right cell is called state (4,4) which
is the goal state. Obviously, the purpose of
the application of LBA* is to find a series of
operators with minimum cost to transform the
initial state to the goal state. This can be stated
by the simple fact that LBA* tries to find a path
with minimum cost from the initial state to the
goal state.

A heuristic estimate for every state is eas-
ily constructed based on the assumption of re-
moving all vertical and horizontal barriers. Fig-
ure 1 shows these estimates as well as the barri-
ers. Now all operations, in detail, are described.

At first, state (1,1), the left bottom cell,
is put on the OPEN list as the initial state
(Stepl). Now the OPEN list has only one
member which is the initial state. State (1,1)
as the top-most state on the OPEN list is called
z (Step2). All neighbouring states of z, in this
case only state (2,1), are evaluated and among
them state (2,1), itself, with the minimum
compound value of 145 is selected and is called
z' (Step4). Notice that in the compound value
of 1 + 5 the value of 1, k(x,y), is the edge cost
from state (1,1) to state (2,1) and the value of 5,
h(y), is the current heuristic estimate of state
(2,1). Since the heuristic estimate of z, 6, is

not less than 1 + 5, no updating occurs and z’
is added to the top of the list. Similarly, state
(2,2) is added. State (2,2) as the top-most state
on the list is called = (Step2). All neighbouring
states of z, (2,1) and (1,2), are evaluated and
both result in the same compound value of 1+5.
The tie is broken randomly and state (2,1) with
the compound value of 1 + 5 is selected and 1s
called =’ (Step4). Since the heuristic estimate
of z, which is now 4, is less than 1 + 5, the old
estimate is replaced with the compound value of
145 and this state is removed from the list. The
same process causes state (2,1), with the up-
dated heuristic estimate of 1+ 6, to be removed
from the list. Now state (1,1) as the top-most
state on the list is called z. All neighbouring
states of z, in this case omly state (2,1), are
evaluated and among them state (2,1), itself,
with the mininmum compound value of 147, is
selected and is called =’ (Step4). Since heuristic
estimate of z, 6, is less than the compound
value of 1+7, the old value is replaced with 1+7.
Notice that now x, state (1,1), is the initial
state and based on Step7 when the initial state
experiences learning, no backtracking happens.
All neighbouring states of = are evaluated and
among them state (2,1), with the mininum com-
pound value of 147, is selected and is called z'.
Since the heuristic estimate of z, which is now
8, is not less than 1 + 7, o’ is added to the top
of the list (Step5). Similarly, the states (2,2),
(1,2), (1,3), (2,3) and (3,3) are added. Notice
that after the selection of state (2,3), both
states (3,3) and (2,4) had the same chance to be
selected and that the tie was broken randomly.
Now state (3,3), as the top-most state on
the list, experiences 2 units of learning and is
removed from the list and state (2,3) is called x.
All neighbouring states of = are evaluated and
the compound values of 1 44 and 14 2 are ob-
tained. The minimum which is associated with
state (2,4) is selected and state (2,4) is added
to the list. The same process causes states (3,4)
and (4,4) to join the list; finally, since state (4,4)
is the goal state, the algorithm stops (Step2).
After applying LBA* to this problem some
heuristic estimates are updated and the optimal
solution is found. Figure 2 shows updated
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Theorem and Proof
Theorem 1.

For a finite problem space with positive edge
cost and non-overestimating initial heuristic
values, in which the goal state is reachable from
the initial state, the application of LBA* will
find the optimum path.

Proof:

Because of positive edge cost assumption, Step
5 prevents the creation of any loop, therefore,
the algorithm either terminates or does an
infinite number of backtracks. Considering the
facts that with every backtrack the heuristic
estimate of a state increases and that Step 6
keeps all heuristic estimates non-overestimated,
it is concluded that the algorithm cannot do
an infinite number of backtracks. Therefore,
if the goal state is reachable from the initial
state the algorithm terminates with finding a
path, P, otherwise it stops in Step 6 when the
heuristic estimate of a state exceeds the upper-
bound U. It is assumed that the goal state
1s reachable from initial state, therefore, the
algorithm terminates with finding a path P.

Now, suppose that there exists a path P’
to the goal state with a smaller cost than that of
the path P found by LBA*. Let the states on
the path P be denoted as (1), z(2),...z(n)
and the states on the path P’ be denoted as
y(1), y(2), ... y(g), where z(1) and y(1) are the
same initial state, and z(n) and y(q) are the
same goal state.

Let y(m) be the first state of P’ which is
not on the path P. Thus, both z(m) and y(m)
are the neighbours of their previous common
state z(m — 1).

With k& representing the edge cost from
a state to a neighbouring one, the following
relation must be satisfied by P’ to produce a
smaller cost than P.

k{z(m—1),y(m)}+k{y(m), y(m+1)}+.. .+
kylg =1, 9(0)} < k{z(m —1),z(m)} +
E{z(m),z(m + 1)} + - +
Fa(n — 1),2(n)) . (1)

This relation can be further modified to State-
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ment 2 because of the fact that the adjustment
of a heuristic estimate in the algorithm will
never lead to a value higher than its actual
value.

k{z(m —1),y(m)} + h{y(m)} <
k{z(m — 1),z(m)} + k{z(m),z(m + 1)}
+ -+ k{z(n—1),z(n)} . (2)

As indicated by Steps 5 and 6 of the
algorithm, the following relation is always true
for a state x(r) under LBA™.

hz(r)} = k{z(r),z(r + 1)} + {z(r + 1)2 )
3

Statement 3 can be rearranged as:

h{z(r)} — h{z(r + 1)} 2 k{z(r),z(r + 1)2 )
4

By expanding and summing the inequality in
Statement 4 over the state space of path P from

x(m) to the goal state, the following relation is
obtained:

h{z(m)} - h{z(n)} > k{z(m),z(m + 1)}
+k{z(m+1),z(m+2)} +--- +
k{z(n - 1),z(n)} . (5)

With the estimate from the goal state to itself
being zero, h{z(n)} = 0, Statement 5 becomes:

h{z(m)} > k{z(m),x(m + 1)} +
E{x(m +1),z(m+2)} +--- +
k{z(n - 1),z(n)} . (6)

The fact that LBA*, at state x(m — 1), has
preferred z(m) to y(m), as indicated by Step
4, also leads to the following relation,

k{z(m —1),y(m)} + h{y(m)} >

k{z(m —1),z(m)} + h{z(m)} . (7)

With the substitution of h{z(m)} from State-
ment 6 into Statement 7, Statement 8 is ob-
tained,

k{z(m = 1),y(m)} + h{y(m)} >
k{z(m — 1), 2(m)} +k{z(m), z(m + 1)} +
E{z(m + 1), z(m+2)} + - +
k{x(n - 1), 2(n)} . (8)

It is obvious that Statement 2, which is
the result of the earlier assumption that P’ is
a better path than P, contradicts Statement
8, which is the result of the actual application
of LBA*. Thus, P’ does not exist and the
application of LBA* will always lead to finding
the minimum path.

Efficiency of LBA*

The fact that LBA* needs to store the heuristic
estimate for every state of a problem has led to
the upperbound for space complexity of LBA*
being n, where n is the number of states in
the problem. In practice, however, the com-
plexity can be lower because usually a function
exists which computes the original heuristic es-
timates, and it is necessary to store in memory
only those values which differ from the com-
puted ones. For instance, in the grid problem of
Figure 3, the function to compute the distance

21
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L1 1
1 2 3 10 15 21

Figure 3. A sample grid problem and its optimal
path found by LBA*.
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Figure 4. A 3-D representation of the initial
heuristic underestimate of every cell in the sample
grid problem.

Figure 5. A 3-D representation of the number of
backtracks done by LBA* in every cell of the
sample grid problem.

The application of LBA* and the contin-
uous application of LRTA* are compared in
order to find the optimal solutions for these grid
problems with different structures.

Over 20 square grid problems were tested
and LBA* consistently outperformed LRTA*.
LBA* found all optimum solutions in a single
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Table 1. A comparison between performances of LBA* and LRTA* on 20 sample grid problems.
Instance LBA~ LRTA* Comparison
Barrier Number Average Number Average S;X? :(f)
No | Size of Cells Update of Cells Update
Percent .. .. .. .. LRTA*
Visited per Visit Visited per Visit
Speed
1 10 15 26 0.30 98 0.08 3.7
2 10 25 40 0.55 208 0.13 5.2
3 10 35 44 0.59 278 0.09 6.3
4 10 45 54 0.66 270 0.20 5.0
5 15 15 42 0.33 182 0.07 4.3
6 15 25 60 0.53 236 0.28 3.9
T 15 35 66 0.57 276 0.28 4.1
8 15 45 70 0.60 434 0.22 6.2
9 20 15 62 0.38 290 0.08 4.6
10 20 25 56 0.32 272 0.16 4.8
11 20 35 148 0.74 1310 0.36 8.8
12 20 45 430 0.90 2794 0.41 6.3
13 25 15 114 0.57 806 0.10 7.0
14 25 25 136 0.72 1104 0.13 8.1
15 25 35 148 0.74 1311 0.36 8.8
16 25 45 327 0.85 4730 0.69 14.4
17 | 30 15 138 0.57 1390 0.08 10.0
18 30 25 194 0.70 3374 0.05 17.0
19 30 35 426 0.87 7876 0.09 18.4
20 | 30 45 319 0.81 9180 0.67 28.7

problem solving trial, where LRTA* required
more than one trial as expected. With 5
different square sizes 10, 15, 20, 25 and 30, and
4 different barrier percentages 15%, 25%, 35%
and 45%, the ratios of states visited to find the
optimal solution by LRTA* to that by LBA*
range from 3.7 to 28.7. The trend is clear that,
in general, the larger the size of a problem, the
larger the ratio will be. Table 1 shows this
comparison in detail.

This table consists of 8 columns. Columns
1, 2 and 3 show information about tested
instances including size and the barrier per-
cent. Columns 4 and 5 indicate how LBA*
has functioned; and columns 6 and 7 show

the functioning of the continuous application of
LRTA* to find optimum solutions. In column 8
it has been shown how much faster the optimal
solution of an instance has been found by LBA*.
Notice that any backtracking, as well as any
forwarding, causes a cell to be visited and,
hence, the total number of visits in columns 4
and 6 indicates the total number of backtracks
plus the total number of forwarding steps.

CONCLUSION

The main feature of LBA* is the circulation of
updated heuristic estimates during the search
process by utilising a backtracking routine
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which causes the optimal soly
lem to be found. Contrary
LBA* updated heuristic values

ition of a prob-
to LRTA*, in
3 can be used in

the same problem in which these values are
learned. LBA* guarantees the improvement
of the heuristic estimate of each state from
which backtracking is done, since it starts with

non-overestimating heuristic va

lues and always

keeps these values non-overestimating.
Over random grid problems tested, LBA*

consistently outperformed LRT
mance ratios between 3.7 to 28
point was that, in general, the ]
the problem, the larger this rat
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