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Recent Developments in Geotechnique for
Earthquake Engineering

Arsalan Ghahramani!

This paper presents an overview of important recent developments in geotechnique for earth-
quake engineering. Major earthquakes have made possible the validation and improvement
of soil subjected to liquefaction by field performance of standard penetration test, cone
penetration test and shear wave velocity measurements. Site effects, earth pressure on
retaining walls, as well as, seismic bearing capacity factors for clayey and sandy soils have
become more explicable with the use of these new results.

INTRODUCTION

Major contributions in analysis of geotechnical
characteristics leading to a more fundamental
understanding have been made through the
study of some recent catastrophic earthquakes.
These improvements especially pertain to lig-
uefaction, site effects and damage. There has
been theoretical advancements concerning eval-
uation of dynamic earth pressure and seismic
bearing capacity factors. Some of the major
earthquakes, which their analyses have assisted
in these recent developments, are listed below:

1. Loma Prieta, October 17, 1989, California,
USA, M =T7.1.

2. Roodbar-Manjil, June 20, 1990, Iran, M =
7.3.

3. Northern Luzon, July 16, 1990, Philippines,
M="77.

4. Costa Rica, April 22, 1991, M = 7.5.
5. Erzincan, March 13, 1991, M = 6.5.

6. Northridge, January 17, 1994, California,
USA, M = 6.7.

7. Kobe, January 16, 1995, Japan, M = 7.2

Although these earthquakes provide great
impetus for engineering researches, they also
cause unprecedented human lost (30,000 in
Roodbar-Manjil, Iran) and enormous damages
to properties (15 billion dollars in Northridge,
between 80 and 100 billion dollars in Kobe).
The study of liquefaction including the site
performance prediction of standard penetration
test, cone penetration and shear wave velocity
has been improved. The evaluation of piezo-
cone testing, pattern recognition techniques
and the spectral analysis of surface waves are
recent developments in liquefaction prediction
for earthquake engineering.

Numerous acceleration records made avail-
able by these major earthquakes have had
considerable impact on evaluation of site effects
and this may lead to amendment, to the com-
mon codes for earthquake design.

1. Shiraz University, Shiraz, L.R. Iran and visiting professor, University of Canterbury, Christchurch, New

Zealand.
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Evaluation and analysis of life line damage

have resulted in new developmse
rate and appraisal, especially
water and gas lines.

nts for damage
in the case of

Furthermore, on the theoretical side, re-
cent improvements include calculation of the
dynamic active earth pressure coeflicients and

seismic bearing capacity factors
sandy soils.

LIQUEFACTION

Epicentral Distance

for clayey and

The maximum epicentral distance to liquefied

sites, as a function of magnit

ude, has been

studied by Yoshida [1] and Wakamatsu [2] as

presented in Figures 1, 2 and 3.
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sites, for 23 earthquakes after 1884. Reprinted
from Wakamatsu [2], NCEER.

show that for major earthquakes, distance of
up to 200 km can be effected by liquefaction,
thus, the liquefaction damage is much more
extensive than damages for earthquakes on
normal grounds.

Liquefaction Measurement During an
Earthquake

The actual soil behavior of liquefaction during
an earthquake is recorded by Elgamal [3]. The
site profile and instrumentation are shown in
Figure 4. The recorded acceleration at ground
surface (Figure 5) and bottom of liquefied
layer was used to evaluate shear strain and
shear stresses. The degradation in stress strain
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Figure 4. Cross-section and instrumentation at
the Wildlife Site. Reprinted from Elgamal [3].
NCEER.
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Figure 5. Recorded acceleration at the ground sur-

face, NS Component, during the November 24, 1987
earthquake. Reprinted from Elgamal [3], NCEER.

behavior is shown in Figure 6. The actual rise
of pore pressure during the earthquake of the
Wildlife Site in the Imperial Valley 1987 is pre-
sented in Figure 7. These measurements dur-
ing actual earthquakes are rare and contribute
significantly to liquefaction behavior. It is
interesting to note from these figures that spikes
in earthquake record contribute to spikes in
pore pressure rise, and these pore pressure rises
contribute significantly to soil softening and lig-
uefaction, starting from 14 seconds and reach-
ing almost complete softening at 37 seconds.

Imperial Valley 1987 earthquake, Wildlife Site
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Figure 6. Average stress-strain time history
during the November 24, 1987 earthqnake.
Reprinted from Elgamal [3], NCEER.
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Figure 7. Pore water pressure measured by Ps,

during the November 24, 1987 earthquake.
Reprinted from Elgamal [3], NCEER.

Liquefaction Predictions by Field
Performance

Methods of prediction of liquefaction potential
are usually expressed in graphs showing cyclic
stress ratio due to earthquake versus standard
penetration, cone penetration or shear wave
velocity. The cyclic stress ratio is expressed as:

T 0.65tmes
o’ q

vo

Ovo

!
vo

¢, 1

(1 —0.0127z)

where 7 is shear stress, o’ is vertical effective
stress, 0, is the total vertical stress, z 18
the depth in meters, Gmac is the maximum
acceleration due to earthquake and g is the
acceleration of gravity. C is chosen as 0.89,
1,1.13,1.32 and 1.5 for earthquake magnitude
M of 8/2, 71/2 ¢3/4 6 and 51/4 respectively.
There have been several new measurements of
sites that give validity to the above evaluations.
Mitchell [4] did extensive standard penetration
tests, cone penetration tests and shear wave
velocity measurements for the Loma Prieta
earthquake 1989 and presented the results for
liquefied and non liquefied sites. A sample of
such testing of the profile is shown in Figure 3.
It should be emphasised that field tests were
run independently at the same site and no
correlation formula was used. The following
standardisation was used which is normal in lig-
uefaction studies. For the standard penetration
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procedures as g. of cone resistance, fs of side
resistance and U of pore pressure measured by
plezocone:

F. = _fs x 100 friction ratio , (5)
ge — Oyo
B, = LN pore pressure ratio , (6)
Qc — Owo
qec1 — Tq qdc » (7)
1.8
= T (8)
0.8 + Z

ref

where ¢.; is the corrected cone resistance and
(', is the correction coefficient. Figure 10
shows the results of liquefaction performance.
For shear wave velocity the normalisation is
expressed by the following:
f 0.25
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Figure 10. Cone penetration test resistance, ¢c1,
versus cyclic stress ratio. Filled and open symbols
indicate liquefaction observations. Reprinted from
Mitchell [4], NCEER.

where V, is the measured shear wave velocity
and V,, is the normalised shear wave velocity.
The performance curve for shear wave velocity
is shown in Figure 11. Mitchell, thus, presents
a new curve for cyclic stress ratio versus shear
wave velocity.

Validation of liquefaction potential, also
presented by O’Rourke [5], for another site after
Loma Prieta earthquake is shown in Figure 12.
The validation leads to a strong support for
the evaluation of liquefaction potential by field
performance. It should be mentioned that
the Japanese method calculates resistance fac-
tor against liquefaction FL, for liquefaction
strength R and shear stress induced by the
earthquake L from the following formula:

FL="* 1
L=+, (10)

FL is similar to the definition of factor of safety
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Figure 11. Overburden normalized shear wave
velocity, Vi1, versus cyclic stress ratio. Filled and
open symbols indicate liquefaction observations.
Reprinted from Mitchell [4], NCEER.
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Pattern Recognition for Liquefaction
Potential

The pattern recognition method developed by
Yigina and Berrill [6] has a major influence in
liquefaction potential predictions. It chooses
seven variables of point resistance: sleeve fric-
tion ratio, pore pressure parameter, excess
pore pressure, average cyclic stress ratio, pore
pressure parameter B, and speed of the probe
as points in the pattern space. The end
result is the probability of pattern being in
one of the three states: liquefiable soils, non-
liquefiable cohesive soils and non-liquefiable
cohesionless soils. Training pattern derived
from field data (piezocone and CPTU data)
and maximum ground accelerations from sites
in New Zealand were used to design the pattern
recognition system. Figure 13 shows one of
their results indicating that the soil is lique-
fiable between depth of 2.2 to 3.2 m, 3.7 to
3.9 m and 6 to 6.5 m, where 4,,, = 0.182¢
and CPTU = WT5012. Here the probability
of soils being in liquefiable soils is greater than
the probability of it belonging to either of the
other two classes. The soil log is shown in
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Figure 13. Liquefaction potential evaluated for
soils at site A on W. Turner’s farm.

Figure 14 (the results related to this figure were
not included in the training or test sets).

Liquefaction Susceptibility Map

The liquefaction susceptibility map for lique-
faction zoning as presented by Tinsley [7] and
given in Tables 1 and 2, shows widespread
utility during the Loma Prieta earthquake and
the fact that the liquefaction zoning map is
quite useful for large areas where actual soil
measurements are not yet available.

Lateral Spread During Liquefaction

The estimated lateral spread is done by Hadata
equation:

D =0.75H%5¢"% | (16)

where D is the horizontal ground displacement
in meters, H is the thickness of liquefied layer
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Figure 14. CPTU log from site A, which was
liquefied in the 1991 Westport earthquake, on W.
Turner’s farm at Inangahua.

in meters and @ is the maximum ground slope
in percent. Another widely used equation 1s:

log LSI = —3.49 — 1.86log R + 0.98M ,
(17)

where LSI, the liquefaction severity index
equivalent to lateral spread in inches, is eval-
uated. R is the distance to the epicenter in
kilometers. Bartlett [8], after correlation of
lateral spread, presents the following formula

Table 1. Probable susceptibility to liquefaction of cohesionless, granular, non-gravelly deposits, used to

compile liquefaction susceptibility map.

Age Depth to Water Table
0-10 ft 10-30 ft | 30-50 ft 50+ ft
Holocene:
Latest.......coooviiiit, Very High-High | Moderate | Low Very Low
Pre-latest ............... High Moderate | Low Very Low
Late Pleistocene Low Low Very Low | Very Low
Pre-late Pleistocene Very Low Very Low | Very Low | Very Low
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Table 2. Description of zones of relative liquefaction susceptibility.

Very High

Very likely tg liquefy in the event of even a moderate earthquake. Sediments
characterized by high susceptibility to liquefaction (on the basis of engineering
tests and high water table) and for which there is evidence of extensive
liquefaction induced ground failure in the 1906 earthquake. Chiefly restricted
to younger flood-plain deposits, but also includes some basin deposits, and
estuarine, beach and some dune sands in the vicinity of the coast.

High

Likely to lique
for which eng

fy in the event of a nearby major earthquake. Includes sediments
neering tests, shallow water tables and nearby free faces indicate
high susceptibility for liquefaction and resultant ground failure, but for which
no historical ¢vidence for liquefaction has been reported. Includes some basin
deposits and younger flood-plain deposits, as well as most undifferentiated
alluvial deposits and abandoned channel-fill deposits.

Moderate

May liquefy in the event of a nearby major earthquake. Includes sediments
for which moderate susceptibilities were calculated but which lack historical
evidence of liquefaction, as well as sediments with high susceptibilities but
where water table is between 10 and 30 ft below the ground surface. Includes
beach and older flood-plain deposits, most basin and colluvium deposits, most

undifferentiated alluvial deposits and some Holocene aeolian deposits.

Unlikely to liquefy, even in the event of a nearby major earthquake. Includes

younger Pleist
Holocene dep
most of the al

Low

where groundwater pumping has lowered the water table).

ocene deposits (older dunes and landslide deposits), as well as
sits where the water table is more than 30 ft deep (for example,
luvial fan deposits and some older flood-plain deposits in areas

Very unlikely

Vi L
ery how Includes all p1

to liquefy, even in the event of a nearby major earthquake.
e-late Quaternary deposits.

Restricted to
from very high
Much liquefac
occurred in hy

Variable

areas of artificial fill. Susceptibility to liquefaction may range
to low depending on the type of fill and method of emplacement.
tion-induced ground failure associated with the 1906 earthquake
draulically emplaced fill over bay and estuarine muds.

for free face conditions:

LOG(Dg + 0.01) = —16.366 +
— 0.927LOGR — 0.013R +
+ 0.348LOGT 5 + 4.527LO
—0.922D505 ,

and for ground slope conditions:

LOG(Dy 4 0.01) = —15.787 +
— 0.927LOGR — 0.013R +

+ 0.348LOGT}5 + 4.527LOG(100— Fi5)

L 178 —0.922D50,5 , (19)
0.657LOGW where:
G(100— Fy5) M = Earthquake magnitude (moment
(18) magnitude)
R = Horizontal distance from source (km)
W =100 (height H of free face/distance L
1.178M from the face)
0.429L0G S S = Ground slope (%)
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T,s = Cumulative thickness of saturated
granular layers with N;60 < 15, (m)
Fis = Average of fines content of saturated

granular layers included in Ty (mm)

D505 = Average mean grain size in layers
included in T}5 (mm)

Lowe [9] presentation of liquefaction induced
lateral spread probability matrix is shown in
Table 3. MMI and corresponding probabilities
of lateral spreads are defined relative to soil
environments in which liquefaction is likely to
occur under strong earthquake shaking. These
environments include active flood plains, deltas
and other areas of gently-sloping late Holocene
fluvial deposits and loose sandy fill below the
water table generally placed by end dumping
or hydraulic fill methods. For liquefaction-
susceptible environments, the water table gen-
erally should be within 3 to 5 m of the ground
surface. The liquefaction failure state scale is
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as follows:

Light: General maximum differential
movement: < 1 cm; equivalent
LSI < 1.

Moderate: General maximum differential
movement: 1 to 10 cm; equiva-
lent LSI: 1-5.

Heavy: General maximum differential
movement: 10 to 75 cm;
equivalent LSI: 5-30.

Severe: General maximum differential
movement: 75 to 230 cm;
equivalent LSI: 30-90.

Catastrophic: General maximum differential

movement > 230 cm; equivalent
LSI > 90.

The estimation of the size of lateral spread
which belongs to Ariman is shown in Table 4
from Honegger [10].

Table 3. Liquefaction-induced lateral spread probability matrix.

Liquefaction MMI
Failure State | VI VII | VIII IX X XI XII
Light 75 50 20 10 0 0 0
Moderate 20 30 40 25 15 10 0
Heavy 5 20 30 40 35 25 20
Severe 0 0 10 20 35 40 30
Catastrophic 0 0 0 5 15 25 50
Py, 100% | 100% | 100% | 100% | 100% | 100% | 100%
Table 4. Estimates of lateral spread geometry based on LSL
Liquefaction Susceptibility Index, LSI
10 40 100
Spread Minimum 40 85 175
Length, Feet | Average 95 155 275
Maximum 650 1100 2000
Spread Minimum 80 85 100
Width, Feet | Average 380 400 450
Maximum 850 1150 1750
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of over 300 m of water pipes correspond closely
to settlement contours from the vertical strains
imposed on liquefied soil after the earthquake
(Figures 15 and 16). O’Rourke while de-
livering the key note lecture on liquefaction
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damage at the Third International Conference
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Table 5. Observed vertical strains.

on Recent Advances in Geotechnical Earth-
quake Engineering and Soil Dynamics at St.

Louis Missouri, 1995, indicated that the major
cause for pipe damages were due to transient
shears during an earthquake and not due to
settlements as perceived previously. However,
he demonstrated that there is a good correla-

Deposit Percent |Settlement
Type Liquefiable| Strain, %
Recent Natural Sand 100 0.2
(Strawberry Island)
Land-Tipped Fill 100 1.5
Hydraulic Fill 55 3.7

tion between transient shears and settlements.
Thus, hisearlier conclusion still holds, although
the phenomena causing the damage is transient
shear, not the strains due to settlements. He
proposed Table 5 for evaluation of settlement

strain and used the curve of Ishihara presented
in Figure 17 for post-liquefaction volumetric
strain prediction.

2.0
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Figure 17. Relationship among volumetric strain, factor of s
Reprinted from Pease [11], NCEER.
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Spectral Analysis of Surface Waves

The measurement of shear wave velocity by
using surface method has resulted in automatic

evaluation. The controlled
analysis of surface waves CSS
by Satoh [12] uses a surface
two vibration detectors (Figure

source spectral
ASW proposed
generator and
18) by plotting

coherence and phase delay between the two

signals.
calculated. Figure 20 shows g
of shear wave velocity predict

In Figure 19, the velocity profile is

pod correlation
ion with other

methods such as cross-hole. The evaluation of
shear wave velocity is done automatically by

computer. The cross-power spe

ctrum S,y q2(f)

between the two signals is defined as [13]:

b-L o S of

Exciter  Detectors

Signal analyzer display

Figure 18. Random excitation as

Ch B

i

received by the

detectors. Reprinted from Satoh [12], NCEER.
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Figure 19. Coherence and phase

delay functions

versus frequency. Reprinted from Satoh [12],

NCEER.
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Sl = - SARGOURLY . (20)

where Ri(f) and R,(f) correspond to Fourier
transforms of time records from two receivers
located a distance apart. If n records are taken,
they are averaged.

The coherence function v%(f) is defined as:

s SR
D=L A

where A, (f) and A,5(f) correspond to auto
power spectra of each signal,

L) = L SURPLR L

i+1

(21)

(22)
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Figure 20. Typical data from the Port Site.
Reprinted from Satoh [12], NCEER.
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The (*) denotes the conjugate. ¢, the phase, is

calculated as follows:

; Imag(Sr,ra(d)]
Real[STl’ﬂ,(d)] ’

where d is the distance between probes.The
travel time then can be calculated as:

¢ = tan” (23)

¢
t=— 24
3607 (24)
and the phase velocity Vpp:
h
Voh = T (25)

The wave length [, is:

v
Ly = —]’;—h : (26)

Thus, assuming that l,,/2 corresponds to
the property at depth, h, graph of depth versus
phase velocity can be plotted.

The optimization for calculating the ac-
tual shear wave velocity depth diagram has
been automatically presumed by Satoh [12] and
Nazarian [13]. However, for simple cases the
following simplified formula taken from Satoh
can be used (see Figure 21).

If V5 is increasing with depth such as in
layer 3, then:

VR3D3 - VR2D2

Vis = (27)
3 3
D; — D,
Velocity Apparent Vi Estimated Vg
— 2
RMA o ¥ T ]
hPS VR1 &% D
o % / l
—_ HC R o --- Do
—4 0 i
a m— g R2
= =5 Vr2(< VR1) § Ds
o = e é’
ol S e
[ 5e %
fe” VR3 °o°
ot | VR3(> VR2) °
& N |
E

a) b) <)

Schematic composition D — Vg curve Layer velocity

kof sub-surface layers (Apparent velocity)

Figure 21. Simplified conversion of apparent
rayleigh wave velocities. Reprinted from Satoh
[12], NCEER.

and if Vg is decreasing with depth such as in
layer 2, then:

D, - D,

Vre = 5, — B (28)
VR2 Vr1
based on empirical relation:
Vg = 0.89V, +4.13  (m/sec) , (29)

then V, is calculated.

SITE EFFECTS

The evaluation of numerous seismic records
during the listed major earthquakes has made
considerable progress possible in evaluation of
site effects. Both linear shake 91 model and
nonlinear models are used for theoretical eval-
uation of site effects.

Measured Site Effects

Results of measurements presented by Seed [14]
for Loma Prieta earthquake are presented in
Figure 22 as an example of site effects. It should
become clear that many of the measured values
overshoot the 1991 UBC code.
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Figure 22. Computed spectral acceleration from
three near-field CSMIP soil sites compared to the
1991 UBC design spectrum for soil type 2 and
MHA = 0.4g. Reprinted from Seed [14],
Earthquake Engineering Recearch Center (EERC).
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Figure 23a. Soil profile for the Sylmar-County
Hospital parking lot site (Olive View Hospital).

Reprinted from Seed [14], EERC.

Calculation of Site Effects

The use of program Shake 9
procedures for predicting the s

been carried out by Seed [14]
Prieta earthquake (Figure 23);

1 and similar
ite effects has
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analogous cal-

Spectral acceleration (g)

2.00 |-

0.00
0

Scientia Iranica, Vol. 2, No. 2

- — Sylmar 360 comp (recorded) E

Sylmar (calculated)

—— Pacoima Dam Downstream 175
comp (recorded) -1

r 5% damping

Period (seconds)

Figure 23b. Comparison of acceleration response
spectra for the recorded and calculated motions at
the Sylmar-County Hospital parking lot site and
for the input motion at Pacoima Dam
Downstream. Reprinted from Seed [14], EERC.

culations are done for the Northridge 1994
earthquake by Seed [15]. The site profile and
acceleration measurements at bottom and top
of the layers are shown in Figure 24 and the
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d site response at the Treasure Island Fire Station. Reprinted from
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Figure 25. Comparison between calculated and
recorded response spectra for Treasure Island Fire
Station (90 degree comp.) Reprinted from Seed
[15], EERC.

calculated response spectrum in Figure 25. It
is clear from both calculated response spectra
that the calculations are in good agreement
up to frequency of 1-1.5, but the calculations
grossly underestimate the response for larger
frequencies.

Thus, spectra as presented above and sim-
ilar records could have an important influence
in revision of the earthquake code.

THEORETICAL DEVELOPMENTS

Theoretical developments in evaluating the
earthquake and dynamic effects have progressed
considerably. Because of space limitation a full
review of these developments can not be given,
but as an example, the theoretical development,
predicted by the above mentioned evaluation,
of zero extension line development at Shiraz
University in Iran and at the University of Can-
terbury in New Zealand are summarized here.

Dynamic Active Earth Pressure

The dynamic active earth pressure as predicted
by zero extension line theory is presented by

Anvar [16]. Figure 26 displays the dynamic
active earth pressure coeflicient and the static
active earth pressure coefficient. In these fig-
ures, ¢ is the friction angle of the soil and é,, is
the wall friction angle. The wall roughness can
also be presented by C,., being zero for a smooth
wall and one for a completely rough wall. Also,
h is the depth and p is the soil density. It is
shown that:

p = kaspgh + koapknh (30)
1.8 Py
161
¢ = 40
1.4}
2
2
v
kad G p =30
1.2 = ¢ =
o \\
o
A o o= 25
-
1.0 o= 20
@ = 15
08 . =
0 10 20 30 40

Sy (wall friction angle)

Figure 26a. Dynamic active earth pressure
coefficient.
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sy (wall friction angle)

Figure 26b. Static active earth pressure
coeflicient.
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where K,, is the active static| earth pressure
coefficient, ko4 is the dynamic active earth pres-
sure coefficient, &, is the fraction of horizontal
gravity acceleration and h is the depth. The
results are also presented in a |revision to the
Building Code of Iran Seismic |Code proposed
in 1993 by Behpoor [17].

Seismic Beam Capacity Factors

The zero extension line research has been ap-
plied to bearing capacity calculations during
seismic loading. The results for clay soils are
presented by Ghahramani [18] in Figure 27 for
k, =0.3.

Considerable reduction in |V, is obvious.
The evaluation formula for clay|soils is:

1
p:CNc+qu_§76khN77 (31)

where C' is the cohesion, ¢ is surcharge, p is
bearing capacity, b is the width|of the footing,
N, is the inertial bearing exponent factor, N,
the cohesion bearing capacity factor and N,
1s the surcharge bearing capacity factor. The
formula presented below closely approximates
the theoretical curves for up to k, = 0.3:

N, = (7 +2)(1 — 1.1k, — 0.59%3) | (32)
N,=1- 25k, , (33)
N, = 3.58(1 — 2.35ky,) . (34)

The above equations demonstrate that
during the seismic conditions the bearing ca-
pacity of clay soils is highly reduced.

The results for sandy soils|are presented

Figure 27. Bearing capacity for ks = 0.3.

Scientia Iranica, Vol. 2, No. 2

by Ghahramani [19] in Figure 28, where N,
is a function of ¢ friction angle and k, the
horizontal acceleration ratio. Results for N,
are presented in Figure 29 and ratio of N, for
seismic conditions to N, for static conditions
are shown in Figure 30. The formula for
calculation of bearing capacity of sandy soils is:

1
p=CNc+qu+§VbN7, (35)
and:
Ne=cotop(N, —1) . (36)

: /j/kh :b.S

28 30 32 34 36 38 40 42 44

10
@ in degrees

Figure 28. Bearing capacity factor 0.5 N, [19].

28 30 32 34 36 38 40 42 44

@ in degrees

Figure 29. Bearing capacity factor Ngfore/g=0
(19].
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The reduction of N,, N, and N, for seismic
conditions of high k;, horizontal fraction and
of peak ground acceleration imply that many
bearing capacity failures can happen even when
liquefaction is not triggered at the site.

CONCLUSION

The developments in geotechnique for earth-
quake engineering lead to better understanding
in the following:

1. Liquefaction area involving:

a. Epicentral distance predictions,

b. Measurement of actual liquefaction dur-
ing an earthquake,

¢. Field performance by standard penetra-

tion, cone penetration and shear wave

velocity,

Pattern recognition,

Liquefaction susceptibility map,

Lateral spread during earthquake,

Vertical strain post liquefaction,

B s o &

Spectral analysis of surface waves.
2. Site effects including:

a. Measurement,
b. Calculation methods.

3. Theoretical developments related to estima-
tion of:

a. Dynamic earth pressure,

b. Seismic bearing capacity factors.

These improvements make the prediction of
earthquake geotechnical effects and perfor-
mance more rational. And if it is used effec-
tively, it can bring about major contributions
in code revision, earthquake mitigation effects
and long term reduction in loss of life, property
and lifeline facilities.
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