RESEARCH NOTE

The Linear Complexity of the Universal
Logic Sequences

M. Modarres-Hashemi and M.R. Aref!

A universal logic sequence is a sequence which has good properties as a running key sequence.
Although it has been inferred, based on the emperical results, that the linear complexity of
a universal logic sequence is much near to its period, it has not been theoretically proved. In
this paper, a proof is given based on the algebraic method.

INTRODUCTION

In a stream cipher system, a binary sequence
Z, called a running key sequence, is added
modulo two to binary plaintexts. It is clear that
the properties of Z are very important in the
security of stream cipher systems against the
cryptanalytic attacks. Large linear complexity
is one of the most important desired properties
of Z. Linear complexity of a sequence Z
is the length of the shortest LFSR (linear
feedback shift register) which can be used to
generate the sequence Z [1,2]. There are several
methods for obtaining the linear complexity
bounds of output sequences of a running key
generator. An effective and feasible approach
is the algebric method introduced in [3,4]. This
method will be used in our analysis. In the
second section, a definition of a universal logic
sequence [5] is given. In the third section,
an upper bound for the linear complexity of
universal logic sequence is proved [6] and it will
be shown that the theoretical results agree with
the empirical results. Finally, we conclude by
providing some comments and remarks.

UNIVERSAL LOGIC SEQUENCES

Let di,...,d, be binary, sequences generated
by linear feedback shift registers LFSR(1),
..., LFSR(k) whose characteristic polynomials
are primitives of degrees L;,L,,..., Lk, re-
spectively, where L;’s are pairwise relatively
prime integers. Let n be an integer which is
pairwise relatively prime to L; for i = 1,...,k
and n > 2Ft1. Let b be a binary sequence
generated by LFSR(n) of length n whose char-
acteristic polynomial is primitive. Let z; =
(@yj,---,ak;, 8j—1) be a binary k + 1-tuple and
« define a one to one mapping between binary
k + 1-tuples and a subset of {0,1,...,n — 1}.
Define the sequence S by:

85 = bj—a(zi)s (1)

and the sequence Z by:
k
Z; = Zaij + Sj-1- (2)
=1

The sequence Z is called a universal logic
sequence [5]. In the other words, a multiplexer
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In this section, an upper bound on the linear
complexity of the output sequences of the uni-
versal logic system is proved [6]. For simplicity,

we assume that & = 1, «(00)

=0, «(01) =1,

a(10) = 2 and «(11) = 3. Figure 2 illustrates
the universal logic system under these circum-

stances.
The system defines a fini

te state machine

(FSM) whose output and next-state functions

are given by the following equ

2 =05+ 81,

ations:

(3a)
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Figure 2. A universal logic system with k = 1.

S$; = (S]‘_l + 1)_(aj + l)bJ + sj_l(aj + ].)bj_l

+(sj-1 + 1)ajbjz + s5-105; 5 .
(3b)

An FSM is said to have finite input mem-
ory M, if M is the least integer such that
the output digit at time j may be expressed
as a function of the input variables at times
J— M, ..,j —1,j. Clearly, the FSM as
described by Equation 3 has, in general, infinite
input memory. If we assume that the input
memory M is fixed at some value m, the
feedback structure of the nonlinear combiner in
Equation 3 can be converted into a feedforward
structure of input memory m. Then, from
the feedforward function f,,, it is possible to
calculate the associated linear complexity L(™
of the output sequence.

Suppose we set M = 0, then Equation 3a
implies that the output sequence Z equals aj,
and, thus, has the linear complexity L(® = L,.

If M =1, then we have:

Zj =a; + Si—1, (43.)

Sj—1 = (aj + l)bj (4b)
thus:

Zj = aj + (lj_lbj_l + bj—l . (5)

Let ain GF(2*') and 8 in GF(2") be roots
of the primitive minimal polynomials m;(z)
and m;(x), respectively. Then-a~'b~! (related
to a;j_1b;_;) has an associated minimal poly-
nomial whose root is @8 in GF(2"). Since
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ged(Ly,n) =1, then all of elements o, af, and
3 are distincts. Thus, the minimal polynomial
of sequence Z has L roots in the form of o'
with w,(e;) = 1, n roots in the form of 5°* with
wy(ey) = 1, and Lyn roots in the form of (a8)*
with wy(es) = 1. Thus, the linear complexity
of Z is:

For simplicity, we will assume the linear
part of the nonlinear function f, to be zero
and we will redefine L(® = 0 and L®) = Lyn.

With M = 2, Equation 3 results in:

z; = aj1bj_1 + aj_1bj10;-2bj
+ a;-1b52bj 1 + aj_2bj2bj
+ bj_.lbj_z + aj_lbj_za,j_2 . (7)
Each part of z; results in the roots of min-

imal polynomial of Z, which have the following
forms:

1 ge2
{aj—lbj—l —a”f

U]g(el) = 1,'(1)2(62) =1 y

] 1b] 10/3 2b] 2 _)a61ﬂ62
wyer) < 2,wy(ey) <2,

; le 1b 2—->a61582

{’sz ) =1 ’1112(62) < 2 y
{ i ij 2b] 1 —>a61,682

’U)g =1 ’(1]2(62) <2 ,

] lb] 2—’ﬂ62

wy(ez) < 2,

aj-1bj—2a;_3 — ot ge
’U)g(el) S 2,’(1]2(62) = ]. .

Consequently, the minimal polynomial of
Z has roots in the form of o*!3? in GF(2"1")
with wy(e;) < 2, wa(es) < 2 and roots in the
form of B in GF(2™) with wy(ez) < 2. Then,
the number of these roots will be:

e ()] e ()] 2= ()-

Thus:

pereeree () )]

Because of possible degeneracy in some
of the roots, L(®(Z) may be unequal to its
upper bound. But, as it was proved in [3],
the probability of any degeneracy happening
goes to zero with increasing the lengths of shift
registers.

In general, the set Ry, of distinct elements
in GF(2!'") which are possible roots of the
minimal polynomial of Z, as produced by f,.,
is given by:

M = {aelﬁez 0< wz(el) <M,
1 Swg(eg) SM} .

9)
The number of these elements of Ry is
M M
> (X6
1=0 I=1

Thus, we have:

mos(IEE)

=0 J=1 J

The bound in Equation 10 increases with
M and reaches its maximum value at M =
Maz{L;,n}. Consequently,
LM(z) <282 —1) ,M > Maz(Ly,n) .
(11)

In general, the finite memory of the system
is much greater than Max(L,,n) and then we
will have:

L(3) <2k(2» —1) . (12)

As described in the previous section, the
period of output sequences of this system is
T = (211 -1)(2"—1), provided, where necessary,
some bits (at most 2" — 1) at the start of
some sequences are deleted. Thus, the intuitive
upper bound of the linear complexity of the
sequence is T+ 2" —1 = 2L1(2" —1). Therefore,
the intuitive upper bound will be the real upper
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bound and since the probability of any degen-

eracy happening is nearly zero
bound in Equation 12 is rel

, then the upper
iable with near

equality. The simulation results [5] confirm that

the bound in Equation 12 is ex
is clear that, if k is increased,
result can be given. In the othe
in general:

tremely tight. It
then the similar
r words, we have

L(z)<(2"~-1)(2"*-1)... (2% —1)+2" -1,

with near equality.

CONCLUSION

(13)

Based on the given algebric proof in the third

section, we concluded that the
ity of a universal logic sequen
period provided that (21 — 1)
1. Otherwise, the linear comp

linear complex-
e is close to its
L2k 1) >>
exity is near to

T+2™—1. This result had been already inferred

and in this paper was proved

| The algebraic

method, used in this paper, can be employed in

other systems with memory to

reveal the linear

complexity of their output sequences.
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