An Integrated Finite Element Procedure for

ComputerModelling of Tension Structures

B. Tabarrok and Z. Qin!

This paper presents an integrated finite element procedure for computer-aided design and
analysis of tension structures. Three distinct phases in the design of tension structures,
namely, form finding, stress analysis and cutting pattern generation, are addressed and
numerical approaches to each phase are outlined. Some numerical examples are given to
illustrate the applications of the newly developed finite element program package, NATS

(Nonlinear Analysis of Tension Structures).

INTRODUCTION

Considerable advances have been made in the
computer modelling of tension structures in re-
cent decades. Various computational methods
have been developed to assist engineers in the
design of tension structures {1-10] and solutions
of some problems are still under development
[11-16].

In general, the computer-aided design and
analysis of tension structures fall into three
distinct phases, form finding, stress analysis
and cutting pattern generation. The form
finding phase seeks to establish the equilibrium
configuration for the structure that conforms
to the functional and structural requirements.
On completion of form finding, the performance
of the structure under a number of design
load cases is analyzed. This enables the de-
termination of fabric, frame and cable design
stresses and deflections. Once a satisfactory
shape has been found, cutting patterns which
determine the shapes of fabric strips, in a plane,
to form the 3-D surface of the structure, may
be generated.

The above three phases involved in the
design of tension structures can be carried out
by applying the finite element method. To this
end, we have developed a large-displacement
finite element analysis program for both form
finding and stress analysis phases. Since ten-
sion structures incorporate a combination of
membranes, cables and frames, three types of
elements, namely, membrane, cable and beam,
are developed. The membrane elements are so
formulated as to remove compressive stresses —
a condition that gives rise to membrane wrin-
kling. To account for orthotropic properties
of the fabric membrane, varying properties
are assigned to the warp and weft directions.
Various types of loading are considered in the
stress analysis.

The cutting pattern generation is based on
a weighted least-squares minimization flatten-
ing approach. A computer method is developed
for simultaneous form finding and cutting pat-
tern generation which produces initial principal
stresses in the directions of the warp and weft
of the fabric. This is accomplished by first
dividing the membrane surface into individual
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Most fabric materials used

in tension

structures have orthotropic properties and nor-
mally the initial stresses are applied along the

warp and the weft directions.

Since no shear

stresses are imposed, the inifial stresses are
principal stresses and the warp and weft direc-
tions, in the flat state, are principal directions.

For purposes of generating cut

ting patterns, it

is again useful to use the principal directions.

To this end it is expedient

to lay out the

elements in a pattern such that the element x
axis lies along one of the principal directions,

which we take as the warp

direction. The

element y axis is taken perpendicular to that
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Figure 1. Initial mesh.

direction. Thus, the local element coordinate
system is coincident with the material principal
directions, as shown in Figure 1. In such a local
coordinate system, different material constants
can be specified and nonuniform initial stresses
may be prescribed.

FORM FINDING

For normal structures, the configuration is
known a priori. This is not the case for ten-
sion structures. Tension structures are usually
constructed with a significant prestress at all
times. Thus, there is generally no nnstresscd
configuration for the entire structure, even if
no external loads are applied and the self-
weight of the structure is neglected. Since
the membrane in a tension structure possesses
no flexural stiffness, its form or configuration
depends upon the tension in the membrane.
Thus, the load bearing behavior and the shape
of the membrane cannot be separated and can-
not be described by simple geometric models.
The membrane shape, the load on the structure
and the internal stresses interact in a nonlinear
manner to satisfy the equilibrium equations.
The preliminary design of tension struc-
tures involves the determination of an initial
configuration in which the specified prestresses
are in equilibrium. In addition to satisfying
the equilibrium conditions, the initial config-
uration must accommodate both architectural
(aesthetics) and structural (strength and sta-
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bility) requirements. Further, the requirements
of space and clearances should be met, the
membrane stresses must all be tensile to avoid
wrinkling and the radii of the doubly-curved
surfaces should be small enough to resist out-
of-plane loads and to insure structural stabil-
ity.

The finite element method provides the
most versatile approach for analysis of tension
structures. Owing to the geometric nonlinear-
ity of membrane structures, it is preferable to
use a dense mesh of flat primitive elements
rather than a coarse mesh made up of flat
higher order elements. To this end, the present
work uses constant stress triangular membrane
element with three nodes and three degrees
of freedom per node. The cable and beam
elements have two end nodes with six degrees
of freedom for cable and 12 degrees of freedom
for beam elements, respectively.

The procedure for form finding, using the
large-displacement finite element analysis, is
based on the same procedure as that used for
analyzing the behavior of tension structures un-
der various loads. The finite element equations
of equilibrium are derived via the principle of
virtual work, as follows:

/ se"ohdA —6u'R =0, (1)
A

where A€ is the element area, h is the thickness
of the membrane, u is the displacement, € is
the strain, o is the stress and R is the external
nodal force.

The membrane is incapable of sustaining
flexural stresses. Therefore, only stresses tan-
gent to curved surfaces of the membrane act to
cquilibrate loads normal to the surfaces. As
the loads change, the stresses and the local
curvatures change to maintain equilibrium and
these changes are accompanied by significant
displacements and rotations of the surface.
Thus, the small-deflection theory of linear elas-
ticity is inapplicable and the quadratic terms
in displacement-strain relations must be taken
into account. The nonlinear displacement-
strain relations can be expressed as:
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Because we are considering large displace-
ments and small strains, the constitutive rela-
tions for linear elastic plane stress analysis may
be used. Thus, we write:

o =De+op, (3)

where o, denotes the initial stress vector and
D is the matrix of elastic constants.

The finite element equilibrium equations
are derived, following the conventional proce-
dure [13]. The large-displacement finite element
method provides a flexible means for form
finding of tension structures. Several variations
on this basic method have been suggested.

Form finding is performed by first estab-
lishing a mesh in a plane. The designer then
specifies a simple prestress distribution. A
three-dimensional form is created by displacing
the support points until they attain their pre-
scribed positions. Newton-Raphson iterations
are used to obtain equilibrium configurations in
the deformed structure. The resulting strains
may give rise to unfavorable stresses if actual
values of material constants are used. This
problem is overcome through an adjustment
step which involves the direct specification of
a desirable prestress for the deformed structure
[1]. In practice, the application of this method
is limited because of the difficulty of specifying
desirable prestresses. An improvement can be
made by removing the incremental stresses due
to deformations after each incremental itera-
tion. The stresses in the last iteration step
will be in equilibrium and may then be used as
prestresses for the final equilibrium configura-
tion. The resulting stresses can be changed by
adjusting the incremental iteration steps [13].
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Minimum surfaces are often used in the
design of tension structures [6,11]. To create a
minimum surface, -a fictitious constitutive law
which maintains a constant prestress, indepen-
dent of any changes in strain, is used. Such a
constitutive law corresponds to a zero Young’s
modulus (in practical applications, a very small
Young’s modulus is used to|avoid numerical
instability). If a uniform prestress is specified,
then the configuration obtained will have the
specified uniform prestress in equilibrium. It
is well known that a uniform stress surface
is a minimum surface. The advantage of the
minimum surface is its aesthetically pleasing
shape and the associated uniform tensile stress
everywhere in the membrane, However, some
design requirements, such as|clearances, may
preclude the use of minimum surface configura-
tions. Since the mean curvature for a minimum
surface is zero, such surfaces tend to be rather
flat. Noting that the load bearing capacity of
a membrane, normal to its surface, depends
on its curvatures one can see that minimum
surfaces will not always be desirable for tension
structures.

The performance of minimum surfaces can
be improved by applying cables on the surfaces.
For cable reinforced membrane structures, the
equilibrium configuration depends upon the
cable layout and the ratio of the prestresses
in the membrane to those in the cables. It
has been shown that the principle of virtual
work for cable-reinforced membrane structures,
in the absence of external forceg, is equivalent to
the variational statement for minimum surface
subject to an isorperimetric constraint requir-
ing the constancy of the length between two
points on the surface [13], namely:

/ 6eTohdA +/ be.o0 Ads =
A s

5/ AAdA+,\5/ Alds | (4)
A S

where ¢, and o, are the strain and the stress
in the cable, A, is the cross-section area of the
cable, AA and Al are the membrane elemental
area and the cable elemental length, and A
can be viewed as a penalty parameter, with
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a preassigned value, for the imposition of the
constraint,
oA,

A= T (5)

It is evident from Equation 5 that X is the
ratio of the stresses in the membrane to that in
the cable.

In some cases, a desirable non-uniform pre-
stress distribution may be specified and, using a
very small Young’s modulus, one can create an
initial equilibrium configuration with the spec-
ified non-uniform prestresses in equilibrium.
Such non-uniform stress surfaces which are not
minimum surfaces provide more flexibility for
the designer [14]. However, it is not always
obvious how one should preassign non-uniform
prestresses for some tension structures.

To provide the designer greater choice
in form finding of tension structures, a more
flexible method has been developed. This
method involves the application of an appro-
priate external pressure. The initial equilib-
rium configuration is obtained by displacing
the support points and applying the specified
external pressure simultaneously. The resulting
equilibrating shape depends on the ratio of the
initial stress to the external pressure. Once a
desirable shape has been found, several more
iterations are needed to eliminate the external
pressure in small load steps and to find an
equilibrating stress distribution associated with
the resulting shape.

For this final stage, the actual values of
Young’s modulus for the membrane and cables
are used. To obtain an appropriate stress
distribution, the incremental stresses due to
deformations, obtained after the removal of
the external pressure at each iteration, are
removed. The stresses in the last iteration will
be in equilibrium. Because the pressure used
for form finding is usually very small, the final
self-equilibrium shape, after elimination of the
pressure, will be only slightly different from the
preliminary one, and the resulting non-uniform
stresses will be of the same order as that of the
initially specified uniform stress.

The method of form finding under an
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external pressure is flexible and allows for an in-
finite variety of feasible shapes. The procedure
is equivalent to obtaining a minimum surface
subject to constraints of cable lengths on the
surface and total volume covered by the surface
[14]. The equivalence between the principle
of virtual work for cable-reinforced membrane
under an external pressure and the variational
statement for minimum surface subject to the
constraints may be expressed as:

/ Se’ohdA +/ be.o.Acds —/ dbwpdA =
A s A

5/ AAdA+)\6/ Alds+¢5/ wdA
A S A
(6)

where w is the displacement of the membrane,
p is the external pressure and ¢ is a penalty pa-
rameter imposing the constraint of total volume
covered by the surface,

p
=—= 7
p=-L ™

The form finding procedures are applied in
design of different tension structures. Figures 2
and 3 show two examples of tension structures
created by the form finding program.
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Figure 2. Initial configuration of hexagon tent.
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Figure 3. Initial configuration of clover-leaf tent.
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STRESS ANALYSIS

Once the initial equilibrium shape is deter-
mined, the behavior of the structure under
a variety of loads must be investigated to
insure that the structure can withstand all
the forces that it will encounter in service.
The lack of flexural stiffness renders tension
structures susceptible to large deflections, even
under moderate loads. That is, such structures
tend to adapt by undergoing large deflections
under specified loads. In some cases, the loads
themselves will be deformation dependent. An
obvious example is pressure loading, which
remains normal to the deflecting surface. A
nonlinear analysis is required to include these
effects in the load analysis of tension struc-
tures. Moreover, the membrane cannot resist
any compressive stresses. Wrinkling will occur
when the external loads give rise to compressive
stresses larger than the initial tensile stresses.
A procedure to treat element wrinkling should
also be included in the load analysis.

The stress analysis program is basically
the same as that for form finding. The finite
element formulation is derived via the principle
of virtual work, Equation 1. For a triangular
membrane element, the displacements, in an
element coordinate system (z,y,z), can be
expressed as:

u(z,y) = (a1 + bz + ay)u

+ (ag+bsz+cay)us +(as+bsxr+csy)us ,
v (z,y) = (a1 + bz + ay)v

+ (ag+box+c2y)v2+ (a3 +bsz+c3y)vs
w(z,y) = (a1 + bz + ay)w

+ (a2 +bax+coy)we +(az+bsz+c3y)ws

(8)
where:

TalYsz — x3y2)/2A by = (yz - ?!3)/2A
Ty — $3)/2A ’

a; = (

C, = (

a2 = (-733y1 - 1713/3)/2A by = (ya - yl)/zA
cy = (z3 —x1)/24

az = (T1y2 — T291)/24 b = (31 — ¥2)/2A
Cy = (.1:1 '—SCQ)/2A s
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and A denotes the area of a tr
Substituting Equation 8 into t
strain relations, Equation 2, 3
in matrix form, we have:

1
€ = Boll + EAO y
where:
by 0 0 b 0 O
BO = |0 1 0 0 Co 0
Cy bl 0 Cq b2 0
u= [Ul UV Wy Ug Vg Wa U3 U3

Ou/dx Ov/dr Ow/q

A= 0 0 0

Jufdy Ov/dy Ow/d

0 0 0

Jufdy 0Ov/dy Ow/

du/dx dv/dr Ow/

0 = [Ou/0x Ov/dxz Ow/d

Oufdy Jv/dy Ow/d
Thus:

be = (Bg + AG)bu

where:
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0 5 0 0 b O

o 0 & 0 0 b

G= cgc 0 0 ¢ 0 O

0 C 0 0 Cy 0
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Substituting Equations 3
Equation 1 and noting that éu?
vanishing of the virtual work ex
to:

/ (By + AG)T[D(Bou + %
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ind writing them
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w3]T7
D
y
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€T
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bs 0 07
0 by O
0 0 b
C3 0 0
0 C3 0
0 0 C3 |

, 9 and 10 into
is arbitrary, the
pression reduces

A6)

(11)

les the elemental
equations must
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be transformed to the global coordinates and
finally assembled to obtain the global equilib-
rium equations. Since the global equations will
be solved interatively by the Newton-Raphson
method, we proceed to linearize the governing
equations at the element level. To this end, we
let:

¢ .—./ (By + A'G)T
Ve
. |
[D(Byu* + EA’BI +o0)dV-R, (12)
as the residual term after the :th iteration.

Then, the tangent stiffness matrix of the mem-
brane element may be written as:

i _ 09 i e
K = Tu =K +K] ,

(13)

where K} and K are the elastic stiffness matrix
and the geometric stiffness matrix, respectively.

K = / (By + A'G)TD(B, + A'G)dV |,
VE

(14)
and
T
K;= GTB(A) o'dV =
u
Ve
GTE'GdV , (15)
Ve
where:
[0, O 0 7 O 017
0 o, O 0 75 O
> 0 0 o, O 0 7
Ty 0 0 o, O 0
0 7oy 0 0 o, O

The transformation of the element matrix,
Equation 13, to global coordinates and the
assembly of global stiffness matrix follow the
conventional procedure. Now we move our
attention to the external forces. In the present
work, we define a load case as a combination of
five different types of loading: (1) concentrated
nodal loads, (2) dead loads (self-weight), (3)
uniform pressure, (4) snow loads and (5) wind
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loads. The specification of types (1) to (4) is
straightforward, the computation of wind loads,
however, is a complex problem. The wind
loading requirements for tension structures are
not currently adequately defined in building
codes.

The design wind load for the structure is
determined by using the following formula [18]:

p=¢ xC,, (16)

where p is surface pressure on any part of
the surface, gq. is velocity pressure and C, is
the pressure coefficient which depends on the
wind direction and the current geometry of the
surface. The velocity pressure ¢, at height 2 is
calculated from the formula:

¢. = 0.00256 K,(I x v)?, (17)

where K. is the exposure coeflicient including
gusts obtained from the Building Code, I is
an importance factor and v is the wind speed
measured as a fastest mile value.

The wind pressure coefficient C, should be
measured in wind tunnel experiments for each
structural model, hence its determination may
become expensive and time-consuming. A sim-
ple wind-load model has been incorporated into
the present computer program. The user enters
a magnitude that defines the wind pressure on
a vertical surface normal to the wind direction
and a direction that defines the source of the
wind, measured in degrees from the X-axis.
The normal wind pressure on each membrane
element is then computed by scaling the wind
magnitude by the cosine of the angle between
the wind direction and the outward normal to
the current element surface. This model gives
zero pressure on horizontal surfaces and suction
on leeward surfaces. The application of this
model eliminates the necessity of measuring
the wind pressure coefficient C,, experimentally
and simplifies input data. However, it must
be emphasised that this simple procedure is
approximate.

Because the membrane cannot resist any
compressive stresses, wrinkling will occur and
stresses in the elements will be redistributed

when the external loads give rise to compressive
stresses larger than the initial tensile stresses.
The consideration of wrinkling makes the prob-
lem materially nonlinear. A procedure to treat
element wrinkling is developed to insure that
the load analysis is realistic.

The principal stresses g; and gy(o; > 03)
are always calculated and checked in the process
of stress analysis. Whether wrinkling occurs or
not can be determined as follows:

1. If oy €0, biaxial wrinkling occurs.

2. If 0o < 0 and o; > 0, uniaxial wrinkling
occurs in the second principal direction.

3. If o5 > 0, wrinkling does not occur.

In the case of biaxial wrinkling, the ele-
ment is inactive and all stresses must be set
equal to zero and a diagonal elastic matrix
with a very small component is used in the
determination of element stiffness matrices. For
the uniaxial wrinkling, the task is to ensure
that the compressive stress o, does not arise.
This is accomplished by setting all components
of elastic matrix in the coordinate system of
principal stresses to zero except the component
corresponding to the first principal stress oy
[13].

By way of illustration, Figure 4 shows the
deformed configuration of a hexagon tent shown
in Figure 2 under a wind load with a speed of
60 mph in the 60° direction, measured from the
X-axis. Figures 5 and 6 show the displacement
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Figure 4. Deformed configuration of hexagon
tent.
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Figure 6. Stress contours.

and stress contours.
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quency. In free vibration analysis, the stiffness
matrix is composed of the elastic matrix, [K]!,
and geometric matrix, [K],, namely:

K] = [K]. + [K],

g

The eigen-solution apprdach can be ex-

tended for determination of fo

rced oscillations.

This requires a transformation from the physi-

cal variables {u} to a set of m

dal variables by

means of the system modal matrix. Through
this transformation, the equations of motion
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may be decoupled and solved independently.
Finally, the solutions in each mode may be
transformed back to the physical variables.

While this approach has its merits, it is
limited to linear analysis. The alternative of
integrating the equations of motion directly is
more general and it allows updating the system
matrices at each time step in the numerical
integration. If the membrane oscillations are
large, the stiffness matrix can change, not only
on account of the large changes in geometry,
but also because the net stress in an element
may become compressive. To account for such
nonlinear effects, the nonlinear terms in the
strain energy expression must be taken into
account. The equations of motion take the
following form:

[M]{i} + [K[{u} = {R} .

(19)

In Equation 19, {R} is the system nodal
force vector. The stifflness matrix takes the

form:
K] = [K], + [K], + [K]",

where [K]™ is the “nonlinear” stiffness matrix,
that is, it is a function of displacements {u}.
As the geometry of the surface changes, due
to large amplitude oscillations, both system
matrices will need to be updated from one time
step to the next.

CUTTING PATTERN GENERATION

Once a satisfactory shape has been found, a
cutting pattern, based on the finite element
model for form finding analysis, may be gen-
erated. The determination of cutting patterns
is basically a geometrical operation to find the
shapes of fabric strips, in a plane, which, when
joined together, will take the desired shape in
3-D space. With the exception of developable
surfaces, all plane cloth geometry determina-
tion must be approximate. Tension structures
are highly varied in their size, curvature and
material stiffness. Cutting pattern approxima-
tion is strongly related to each of these factors.
It is essential for a cutting pattern generation
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method to minimize possible approximations
and to produce reliable plane cloth data. The
objective is to develop the shapes described
by such data, as near as possible to the ideal
doubly-curved strips.

In general, cutting pattern generation in-
cludes two steps. First, the global surface of
a tension structure is divided into individual
cloth layout. Second, for each cloth strip,
in the three dimensional space an associated
plane strip is determined with least distortion,
as explained in the following. If a fabric
cloth consists of only one layout of elements,
the element of the cloth, in the sense of two
flat triangles with a fold in between, may be
developed to a distortion-free plane form. The
corresponding cutting pattern can be found by
simply taking each cloth strip and unfolding
each triangular element. This exact technique
is entirely geometric and is therefore very reli-
able. The simplest and most commonly used
method is termed cloth unfolding. In practice,
however, it is necessary to have a constant
maximum strip width determined by the fabric
width. A mesh with single layout of elements
per cloth strip may be not fine enough for
the geometrical description of a doubly-curved
surface.

A major approximation in the cloth un-
folding approach lies in the use of single layout
of elements per cloth width. Another problem
with cloth unfolding is the typical absence of in-
termediate nodes at cloth ends. It is necessary
to consider that a cloth consists of several lay-
outs of elements in order to accurately simulate
the ideal doubly-curved membrane surface and
produce usable cutting pattern data. In this
case, the subsurfaces cannot be simply unfolded
and they must be flattened. For this purpose, a
least squares minimization flattening approach
is developed to minimize the change in general
link length. For each strip, we consider each
side of triangular elements as a link element
with nodes a and b and minimize:

56 = 3600 (20)

where m is the number of all link elements

involved in this strip and x is the coordinate
vector of plane cloth to be determined:

¢i(x) = \/(xi,a"’il?i,b)z-i'(yi,a“yi,b)z—di ,
(21)

where (z; 4, ¥: o) and (z; 5, ¥:») are the unknown
coordinates in the plane for ¢th link element,
and:

d,;z

VX=X )2+ (Vo= Yop)2 4 (Zia=Zip)?
(22)

is the actual length of ¢th link element
with 3-D node coordinates (X ,,Y: 4, Z; o) and
(Xip,Yip, Zip) determined in the form finding
procedure.

To ensure that adjacent cloth strips remain
compatible after flattening, it is essential that
all seam boundary lengths remain unchanged.
We give a greater “weight” to those ¢; corre-

~ sponding to the boundary link elements in the

following sense: instead of minimizing Equa-
tion 20, we minimize:

S(x) =) wipi(x) , (23)
=1
where w; > 0, ¢ = 1,2,---,m, are factors

which determine the “weight” of the different
link elements.

The weighted least squares flattening ap-
proach is shown to be similar to finite element
analysis of truss networks [15]. We can deal
with each individual link element by calcu-
lating element matrices, the global matrices
may then be obtained by assembling all link
element matrices. This makes the least squares
minimization procedure particularly simple.

The cutting pattern generation starts from
the base line specified by the designer. Based
on the maximum allowable fabric width, the
program searches for geodesic lines and forms
a quadrilateral subsurface. Then 3-D mesh is
generated for the subsurface and is forced flat.
Figures 7 and 8 show geodesic cutting lines of
a saddle span tent and typical cutting pattern.
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Figure 7. Geodesic cutting lineg
tent.
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