On the Periodic Solutions for the Liénard
Equation

Zhang Ji-Zhou!

In this paper, a sufficient and necessary condition and some criteria which judge the existence
of the periodic solutions for the Liénard equation are given. One of the results contains a

main theorem (IIB) of J.G. Wendel (1].

INTRODUCTION

In this paper, we consider the Liénard equation:
i+ f(z)t+9g(z)=0, 1

with f,g : R — R, or its equivalent representa-
tion:

Z—: =y — F(z)
dy , (2)
= = 9@

where F(z) = [, f(u)du, and let G(z) =
[39(u)du. We assume that f(z) and g(z)
are all continuous functions and satisfy the
conditions of existence and uniqueness for the
solutions having initial problems. Let zg(z) >
0 for z # 0, ie., the origin is the unique
critical point for the system in Equation 2.
Many authors have studied the existence of
periodic solutions of Equations 1 or 2 [1-5].
In this paper, we further study this problem.
We give a sufficient and necessary condition
that Equation 1 has the periodic solutions
(see Theorem 1). This result contains a main
theorem (IIB) of Wendel [1]. In addition, we

also give some criterions that Equation 1 has
the periodic solutions.

We call the curve y = F(z) the charac-
teristic curve of Equation 2 and define regions
D, = {(z,y); > 0 and y > F(z)}, D =
{(z,y);z > 0 and y < F(x)}.

Lemma 1

Suppose that v is an orbit of Equation 2 passing
through a point B(zq, F(xo))(zo # 0) on the
characteristic curve. Then v must traverse
the y-axis at two points A(0,y4)(ya = 0) and
C(0,y:)(y. £ 0). For the proof of Lemma 1, see
(6], Lemma 3.2.

THE PERIODIC SOLUTIONS OF
EQUATION 1

Theorem 1

Suppose that (1) f(-z) = —f(z), g(-z) =
—g(z); (2) g(z) > 0 for = > 0; (3) there exist
that £k > 0,2, > 0 such that F(z) < 0 for
0<z < z,F(x) > -k > -0 forxz 2 0.
Then, all solutions of Equation 1 having initial
conditions £ = 0, £ = y4 > 0 are periodic if
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and only if:
lim [G(z) + F(z)] = 0o .

Proof
We first prove the necessary

(3)

by reduction to

absurdity. Assume that Equation 3 does not

hold. This implies that there
such that G(z) < M, F(z)
0. Thus, by Lemma 1 in

exist M, N >0
< N forxz >
[7] (or see [8]),

there exists a point A(0,ya)(ya > 0) on the
positive semi-trajectory of Equation 2 leaving

the point A(0,y4)(ya > 0)
above the characteristic curve 3
Therefore, Equation 1 cannot |
solutions.

Assume now that the co
tion 3 holds. Let v+ d
tive semi-trajectory passing
A(0,y4)(ya > 0).

If lim G(z) = oo for z

r—00

the curves defined by:

Nz,y) = 5y + K + G(a)

which will stay
nd go to infinity.
ave the periodic

dition in Equa-
note the posi-

hrough a point

0, we consider

constant.

The total derivative of A along a solution of
Equation 2 is given by A = —g(z)[F(z)+k] < 0
for x > 0. This shows that there existsa ¢; > 0
such that y* enters the interior of A(z,y) = c.
Because z(¢) increases, y(t) dedreases in Dy, 4+
must cross the characteristic curve.

If x@F(m) = 00, obviously 4t traverses

the characteristic curve. By Lemma 1, y*
crosses the y-axis at a point C(0,y.)(y. < 0).
Next, by Condition 3, y* canmot tend to the
origin. It follows that gy, # Condition 1
shows that v has mirror symmetry about the y-

axis. Thus, v is an oval surrou
Therefore, we have proved tha
correct.

Corollary 1

ding the origin.
t Theorem 1 is

Assume that (1) f(-z) = —f(a), g(~z) =

—g(x); (2) g(z) >0 forxz >0

(3) there exist

that ¥k > 0, x; > 0 such that F(z) < 0 for
0 €< z < z; and [F(z)] < k for all z; (4)

G(oo) = oo. Then, all solution
having initial conditions z = 0,
periodic.

s of Equation 1
T =1yas>0are
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Remark 1

A main result of Wendel [1] is a special case of
Theorem 1.

Theorem 2

Suppose that (1) f(-z) = —f(2), g(-2) =
—g(z); (2) g{z) > 0 for * > 0; (3) there
exist a £k > 0, x; > 0 such that F(z) < 0
for 0 < 2 € z, F(z) < k < oo for all z;

(4) z@ I C—M—Jdu+F(aﬁ) = oco(c > 0) .

- F(u)
Then all solutions of Equation 1 having initial
conditions z = 0, £ = y4 > 0 in Equation 2 are
periodic.

Proof

We consider the system in Equation 2. Take a
point A(0,y4) on the positive y-axis. Let vt be
the positive semi-trajectory passing through A.

If sup F(x) > ya, then there exists a 2’ > 0
z>0

such that F'(z') > ya. Let the straight line z =
x' traverse the characteristic curve at B(z',y').
It follows that ¥’ > y4. Because x(t) increases
and y(¢) decreases in D; as t increases, it is
obvious that v* crosses the characteristic curve.
Thus, by Lemma 1, y* must cross the negative
y-axis at C(0,y.)(y. < 0). By Condition 3, v+
cannot tend to the origin. It follows that y. # 0.
Therefore, by Condition 1 and symmetry, v is
a closed curve.

If sup F(x) < ya, take a point M (0,y,) on
z>0
the positive y-axis such that yo > y4. Then, by

Condition 4, there exists a x; > 0 such that:

9=
————dz + F(x3) > yo . 4
/ e+ Fla) > u )
We consider the comparison equation:
T =y, — F(x)
{ 0 (5)
y=—g(z)

Let y = y(z) denote the positive semi-
trajectory v#; passing through the point M.
Thus, by Equation 4, y(z;) < F(z;). This
implies that v, crosses the characteristic curve
for 0 < z < z,. Because, for 0 < z < 2y, y <
Yo, We have:

dy dy

=< -2 |s1< 0,
7z (@< )
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this shows that 4t must cross the characteristic
curve for 0 < = < z,. It follows that 7, will
cross the negative y-axis at C(0,y)(y. < 0) by
Lemma 1 and Condition 3 as ¢ increases. By
symmetry, v is a closed curve. Therefore, we
have proved that the result of Theorem 2 is
correct. The proof is complete.

We can show the following theorem in a
way similar to the proof of Theorem 2.

Theorem 3

Suppose that (1) f(-z) = —f(z), g(-z) =

—g(z); (2) g(z) > 0 for z > 0; (3) there exist

that & > 0, z; > 0 such that F(z) > 0 for

0< z < and F(z) 2 —k > —oo for all z;
= [ g(u) N ] _

(4) Tm [10 S stu = F@)] = ooc > 0)

Then, all solutions of Equation 1 having initial
conditions z = 0, £ = y. < 0, are periodic.

In the following, we give two examples to
show the utility of our theorems.

Ezxzample 1

Take, in the system in Equation 2, F(z) =
cosz — 1, g(xr) = =z. It is easy to check
that F(z) and g(z) satisfy the all conditions of
Corollary 1. Thus, by Corollary 1 all the orbits
of Equation 2 leaving the positive y-axis are
closed. Therefore, those orbits are the periodic
solutions of Equation 1.

Ezxample 2

Take, in the system in Equation 2, F(z) =
cosx — 1, 0<z<2n
{—(wz —47?)? x> 2w

is obvious that Conditions 1, 2 and 3 of

Theorem 2 are satisfied. We now check that
Condition 4 is also satisfied. Because:

, g(z) = zes’. Tt

dr — (z° — 4n?)?

/x re®

on €+ (22 — 472)2
1 e’ 1 s 2 22

2¢+ (a2 — 4m2)2 T3¢ T (2" = 4m")
* p(z? - 4n?)e” .

2r ¢ + (22 — 47?))?

+ 2
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1 e’ Lart _ (2
2c+ (2 —47?)2 2

— ooz — 0) ,

_ 47‘.2)2

Condition 4 is satisfied. Therefore, the solu-
tions of Equation 1 passing through any points
on the positive y-axis are all periodic.
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