Further Investigation of Multi-Step
Quasi-Newton Methods

J.A. Ford! and I.A.R. Moghrabi?®

The derivation and construction of multi-step quasi-Newton methods for optimization (by
means of interpolating polynomials) is reviewed. We show how the numerical performance
of one such method may be enhanced by use of a simple “safeguarding” mechanism designed
to control the influence of “older” data and we assess the effect of this mechanism on other
multi-step methods. Further multi-step algorithms, derived from conjugacy or orthogonality
conditions applied to successive updating directions in the variable space, are developed and
tested. On the basis of the numerical evidence, some conclusions concerning the usefulness
of the interpolatory approach for constructing multi-step methods are drawn.

INTRODUCTION

In previous work [1,2], the authors introduced
the concept of multi-step quasi-Newton algo-
rithms for optimization. In these methods,
the Secant (or quasi-Newton) Equation (which
forms the basis of most standard quasi-Newton
algorithms) is replaced by a condition which is
similar in its general form, but which is derived
from two or more past steps. The Hessian
approximation is updated to satisfy this new
condition.

Our notation is as follows: the objective
function is f(z), where z € R*. {z;} are
the successive iterates generated by the method
under consideration. The gradient and Hessian
of f are denoted, respectively, by g and G, while
the matrix B; is an approximation to G(z;).
X is a differentiable path {z(7)} in R", where

7 € R and z(7) is an interpolating polynomial
of degree m satisfying:

Z(Tk) = Ticmiksr, fork=0,1,...,m,

(1)

for given values {m;}7,. Z(7) is the j*
Lagrange polynomial of degree m associated
with the abscissae {7} }7,, so that Z;(1;) =1
and .%;(m;) = 0 for ¢ # j. Finally:

8; é Tip1 — T4 (2)
and
A
¥i = 9(iy1) — 9(xs) . (3)

Since G(z.y1) = G(z(r,)) from Equa-
tion 1, we obtain (by means of the Chain Rule):

G(il?,'+1).’l?’(7'm) = gl(z(Tm)) ’ (4)
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where derivatives are taken with respect to
7. Because (in quasi-Newton methods) we do
not require G to be available, we construct
the desired Hessian approximations {B;} by
stipulating that some approximate version of
Equation 4 be satisfied:

B,-_HT,' =W . (5)

Here, 7; is z'(7,,) and may be computed explic-
itly, since we have defined the form of the curve
X (by specifying the degree of z(7) and that
the interpolatory conditions in Equation 1 are
- to be satisfied). Thus:

Ti = Z-%’(Tm)xi-m-rkﬂ ) (6)
k=0
m—1 m
=Y si{ D, L)} )
3=0 k=m-—j

~ On the other hand, the term ¢'(z(7n))
occurring on the right-hand side of Equation 4
cannot (in general) be computed exactly with-

out access to derivatives of the components of

g (that is, to G), and these have been assumed
to be unavailable. Therefore, we estimate

9'(z(tm)) by means of a po

ynomial scheme

based on the values {7.}i-, and the available
gradient evaluations {g(Z;—m+rs+1)}ie. Let
§(1) be the polynomial vectar form of degree

m which interpolates these

gradient evalua-

tions. Then we obtain (compare Equations 6

and 7):

9 (z(tm)) = é’(Tm)

= > Lrm)g(ain
k=0
m~1 m

J k=m—j

JaN
=w; .

The derivation of Equation 5
is now evident.

In the standard quasi-N
for constructing the approxim

=2 ¥i-il PIRRACNY

m+k+1)

(8)

(9)
(10)

from Equation 4

ewton approach
ation B, ., m is
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taken to be one, so that r; and w; are given
by:

ri=(mn—7)"ts; wi=(m—7) Y.

Hence, in this case, Equation 5 turns out to
be just a scaled version of the Secant Equa-
tion [3]:

Bi.,.lsi =Y - (11)

For values of m greater than unity, however,
r; depends not only upon s;, but also upon
8i-1,Si—2, - - - Si—m+1 (compare Equation 7) and
similar comments hold for w; (compare Equa-
tions 9 and 10). In addition, we remark
that Equation 11, which specifies the property
which B;,; must possess in the case when
m = 1, is independent of the values assigned
to {7k}i—o, whereas (when m is greater than
one) the corresponding relation (Equation 5)
does not have this property. This suggests
that, in such cases, the values {7:}T, may
have to be chosen with some care, if we are
to succeed in constructing effective new meth-
ods.

The obvious and most straightforward
manner of obtaining a matrix B;,; which sat-
isfies Equation 5 is to use a standard quasi-
Newton updating formula involving s; and y;
and satisfying Equation 11, and then simply
replace s; and y; with r; and w;, respectively.
For example, the updating formula known as
BFGS [4-7]:

Bisis{B; | yiy!l
Bi = B,’ - * : s 12
i - 8T Bys; * LEETE (12)
becomes:
BiriaTB;  wawl
By = B — —— - 13
* rT B;r; riw; (13)

Other updating formulae may clearly be
adapted, in a similar manner, for use with these
multi-step methods.

SPECIFYING THE PARAMETERS

In their numerical experiments, Ford and
Moghrabi [2] found that methods for which
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m = 2 generally out-performed (at least, for
problems of dimension up to 80) methods for
which m = 3. We shall, therefore, confine our
attention to the case m = 2 for the rest of this
paper. Ford and Moghrabi [1,2] further deter-
mined, by experiment, that the choice of the
parameters {7:}?_, plays a crucial role in the
numerical behavior of the resulting algorithms.
Whereas, for example, the straightforward se-
lection 7o = —1, i = 0, 7, = +1 produces
a modest improvement over the standard one-
step BFGS formula, choices which determine
{1:}2_, by reference to distances between the
iterates x;_1, z; and x,,; were found, in general,
to yield much more substantial improvements
(in this context, “distances” are measured with
respect to the usual Euclidean norm, or by
reference to metrics defined by the current
Hessian approximations [B; or Bjii]). This
approach produced six algorithms (called A1,
A2, A3, F1, F2, F3), based on the following
definitions of the intervals (r, — ) and (72 — 7o)
or (11 — 7p), as convenient.

Al
(2 = 1) = sill2, (14a)
(1 —70) =l 8i=1 ll2 - (14b)
A2
(2 — 1) = [~t:sT g(z))'/? (15a)
(1 — 7o) = [sT_yyaa]'/? . (15b)

Here, t; is the step taken along the quasi-
Newton direction —B;'g(x;) in progressing
from x; to iy

A3
(r —m)= [S?yi]l/:‘) 3 (16a)
(n—70) = [5$_1y¢—1]1/2 . (16b)

F1
(ra —m1) =l si|lz, (17a)
(ra = 7o) =Il 8 + 8521 Iz - (17b)

F2
(r2 — 1) = [~tisTg(2)]'/? (18a)

(12 — 7o) = [~tisT g(:) + 287y
+ 3?-13/:’-1]1/2 . (18Db)

F3

(ra — 1) = [sTwi]'/?, (19a)

(12 —70) = [s]yi + 251y + s?—lyi—l]l/z .
(19Db)

SAFEGUARDING THE NEW
METHODS

It is easy to show, using Equations 7, 9 and 10,
that (when m = 2) the expressions for r; and
w; may be re-written in the form:

ri = 2 (ry)[s: — {82/(26 + 1)}simi]

(20a)
w; = Z5(m)[yi — {6°/(26 + V)}yia]
(20b)
where:
6= (T2 - 7'1)/(7'1 - To) . (21)

It is evident that the size of the term 6%/(26+1)
is critical in determining the composition of
the vectors r; and w;. In particular, if ¢
is large, we have (concentrating upon r;) the
approximation:

T 7 s — (6/2)si1

where we have omitted the scaling factor
Z!(ry), for simplicity. Hence, it would appear
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to be worthwhile to place a constraint on the
size of § in order to limit the relative contri-
bution of the vector s;_; (representing “older”
data) to r; (and of y;_, to w;, of course). We are
thus led to introduce a parameter §,,,, which
restricts the permitted values of :

if |6]|>6maz then 6:

sign(6) * bmas -

Note that 6 may be negative for the methods
F1 to F3, although it cannot be so for Al to
A3.

To illustrate the effect of the parameter
Omaz On multi-step methods, we refer to the
results presented in Table 1, which were derived
from experiments on the third set of test prob-
lems (that is, those problems with dimensions
between 46 and 80) described in [1]. This
set was chosen for the experiments because

Moghrabi. The algorithm
results were derived was F2 (see Equations 18a
and 18b above). For comparison, the perfor-
mance of the standard BFGS method on the
same test set is also shown. The basic structure
of all the algorithms is described in [1,2]. All
execution times are given in seconds. Table 1
shows that the numerical performance of the
algorithm F2 is influenced to a marked degree
by the value of the parameter 6,,.,. While
the precise value of 6., is not critical (a
value in the interval [3.0, 4.0] appears to be
indicated), it is clearly beneficial to include such
a parameter in the definition of the method.
For completeness, we present in Table 2
an estimate of a suitable value of §,,,, for
each of the methods defined by Equations 14
to 19. We stress, however, that these are not
claimed to be optimal values|of §,,,; (or even
that such optimal values necessarily exist); they
are merely the values which have yielded the
best performances in our experiments. We also
draw attention to the fact that the other five
methods exhibit much less variation in perfor-
mance as 6,,,, is varied; this is indicated by
the entry under “8,,,,” for these methods. For
example, the entry “10.5(7.0+)” for the method
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F1 implies that, while the best performance
was obtained using the value 10.5 for 6,,,o,
there was little, if any, significant variation in
performance observed for values in the range 7.0
and above. The superiority of the method F2 is
evident; in terms of execution time, it is nearly
30% better than the standard BFGS method
and 6.6% better than the next best multi-step
method.

CONJUGATE DIRECTION
METHODS

Equations 20a and 20b are evidently a particu-
lar case of a more general definition of r; and w;
where we have again omitted the scaling factors
Z(ra):

Ti = 8 — 0481 , (22a)
W; = Y; —OY;—1 . (22b)

A question of some interest is whether there
are other ways (apart from interpolatory poly-
nomials) of defining the coefficient o;. We shall
investigate some possibilities in this section.

Given the well-known connections between
(one-step) quasi-Newton minimization methods
and conjugate direction methods, an attractive
strategy is to choose o; such that (if possible)
successive updating directions r;_; and r; are
conjugate vectors. To accomplish this, we need
to specify the matrix with respect to which
conjugacy is to be achieved and, since we
will be dealing, in general, with non-quadratic
functions and therefore non-constant and un-
known Hessians, the obvious candidates are B;
and B;;. In each case, we can determine a
unique value of o; which produces the required
conjugacy property..

(i) Using B;:
0=rIBri_y =rTw,_, ,
using Equation 5, with ¢ replaced by i — 1:
0= (s;~ aisi—l)Twi )

using Equation 22a, and thus we obtain,
as the required value of «;:

of = sTwi_1/sT wi_y . (23)
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Table 1. The effect of the parameter §,,q. on the algorithm F2.

Method

Ormas

Execution Time

Function Evaluations

BFGS
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2
F2

1.0
2.0
3.0
31
3.2
3.3
34
3.5
3.6
3.7
3.8
39
4.0
4.1
4.2
4.3
44
4.5
5.0
8.0
10.0
15.0
40.0
1.0e10

719
586
531
518
513
517
516
515
514
513
512
512
514
515
518
520
520
523
522
534
550
558
564
594
641

18575
15076
13929
13576
13398
13524
13520
13427
13462
13393
13383
13376
13446
13487
13524
13593
13622
13704
13696
13971
14593
14889
15197
16270
17715

Table 2. Relative performance of six multi-step algorithms.

Method

6maus

Execution Time | Function Evaluations

BFGS
F1
F2
F3
Al
A2
A3

10.5(7.0+)
3.8
30.0(9.0+)
12.0(8.5+)
14.0(5.5+)
1e10(4.5+)

719
555
512
553
561
548
574

18575
14494
13376
14305
14545
15005
14816

331
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(ii) Using Biy;:
0= 7‘,~TBi+17'i—1 = w,‘TTi—l
using Equation 5 again:

aiyi—1)T7”i )

0=(y:i—

using Equation 22b, so

that the desired

value of a; is given, this time, by:

c _ T T
o, =Y Ti—l/yi——lri——l .

(24)

We note that, if the objective function is

quadratic (with constant Hess
Equations 23 and 24 yield th

ian A, say), then
e same value for

a;, because y; = As; and hence, w; = Ar;, for

all 7.

We now pose the question of whether such
values of «; could have been obtained from
an interpolatory scheme of the type described
above. In other words (see Equations 20a and

20b), we are asking whether th
value of 6 such that:

a; =8/(26+1).

ere exists a (real)

It is straightforward to show that such a value
of 6 does exist, provided that a; & (—1,0).

The following two strategies, t

herefore, suggest

themselves with regard to using the values of
a; derived in Equations 23 and 24, depending

upon whether we wish to retaj

with interpolatory schemes, or

Strategy I

Accept whatever value of o
Equation 23 or 24.

Strategy II

Accept the value of ; given b
24 as appropriate, unless a; €

n the connection
not.

is generated by

y Equation 23 or
(—1,0), in which

case re-define o; to be the nearer end-point of

the interval [-1,0].

Combining these two str

ategies with the

two possible values of o; (Equations 23 and
24) gives four methods. A brief summary of
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the performance of these methods (on the same
test set as before) is given in Table 3, where,
as with Table 2, we have performed a series
of experiments for each of the new methods in
order to ascertain a suitable value for §,,,,. The
notation “B/I” indicates method B, defined by
Equation 23, combined with Strategy I, etc.
As a further alternative in the same vein,

we consider choosing «; so that successive
updating directions are orthogonal (instead of
conjugate). This leads to the following defini-
tion of ay:

af = sTri_ /s riy . (25)
Again, this choice of a; may be combined with
either of Strategies I or II. A summary of results
for these two algorithms is shown in Table 4.

SUMMARY AND CONCLUSIONS

The motivations for interpolatory multi-step
quasi-Newton methods and their derivation
have been presented. They may be viewed
as natural extensions of the familiar one-step
quasi-Newton approach in which there is addi-
tional flexibility to be exploited. This flexibility
consists (i) in freedom to choose the number of
steps m which will be utilized, and (ii) in the
ability to specify (with considerable latitude)
the values of the abscissae {7}, which de-
termine the precise shape of the interpolating
curves {z(7)} and {§(7)}.

Consideration of the nature of the terms
used in the equation, which the updated Hes-
sian approximation B;,, is constrained to sat-
isfy (Equation 5), led to the introduction of
the safeguarding parameter §,,,,. The results
of numerical experiments were used to demon-
strate the effect of this parameter in improving
the performance of the new methods. In
particular, the two-step fixed-point method F2
benefits considerably from a careful choice of
this parameter and exhibits an improvement in
performance of around 30% by comparison with
the standard BFGS method.

Algorithms based on requiring successive
updating directions r;_; and r; to be conjugate
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Table 3. Four conjugate-direction multi-step algorithms.

Method | 6,00 | Execution Time | Function Evaluations
B/1 2.0 561 17204
B/II 2.2 555 16259
C/1 2.25 571 17239
C/11 2.5 544 15752
BFGS 719 18575
F2 38 512 13376

Table 4. Two orthogonal-direction multi-step algorithms.

Method | 6,,0. | Execution Time | Function Evaluations
D/1 1.0 581 15395
D/1I 1.3 569 15284
BFGS 719 18575
F2 3.8 512 13376

(or orthogonal) have also been developed. As
has been demonstrated experimentally, these
methods exhibit a distinct improvement over
the BFGS method. However, when assessed
against the earlier multi-step methods intro-
duced in [2], their somewhat disappointing nu-
merical performance (here, we draw attention
particularly to the function evaluation counts
for the various methods) suggests:

(i) That the interpolatory approach of the algo-
rithms developed in [1] and [2] is an effective
means of utilizing past data and should not
be dispensed with lightly.

(ii) That, in particular, the choice of {7},
(and, therefore, the nature of X = {z(7)})
is a very important factor in determining
numerical behavior. For the case m = 2,
the values of {7 }%_, defined by the metrics
discussed in [2] (see Equations 14 to 19) give
rise to algorithms which show a substantial
improvement in performance when com-
pared with the methods developed under
Strategy II in the previous section, even

though such algorithms may themselves be
regarded (in some sense) as interpolatory.
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