Periodic Solutions of Certain n-th Order
Non-Autonomous Differential Equations
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The nonlinear third order differential equation:

" + (' )z" + o(z)r' + 0(x,z',z") = p(t)

p(t+w) =p(t)

has been considered by Reissig [1]. He proved the existence of at least one non-trivial periodic
solution of period w. In this paper, we extend the above results to the case of n-th order
equations. For this purpose Leray-Schauder principle, as suggested by G. Giissefeldt (2] is

applied.

INTRODUCTION

Reissig [1] investigated the existence of periodic
solutions of the equation:

wlll+¢(xl)xll+K2xl +fx) =p(t),

p(t+w)=p(t) .
(1)

The object of this paper is to consider the more
general type of equation:

n—1
g +3° ¢i(z N 4 (8, (z) + K]z’

=1
+ f(t,z) = p(t) , (2)
where the functions ¢;(y),i = 1,2,... ,n—1 are

continuous, f(¢,z) and p(t) are continuous and
w-periodic with respect to ¢t and ¢,(t) is such
that ®,(y) = /¥ ¢.(t)dt is continuous.

It will be shown that, under certain con-
ditions, on functions involved, Equation 2 has

at least one periodic solution of period w. The
method employed is similar to the method used
in [1]. Now let:

m=cwzg%12,k=Lz“.m

a = Min |ﬂk| y if Min I;Bkl 7é 0
=1, if Min |G| =0.
Next we introduce the function:

'Zn exp K'} A (w—s+t)
k=1 nAL ! exp K%(Akw—l) ’
0<t<s<w
1
n exp Kn A (t—s)
Zk:l nA:_lepr*()‘kw—l) ’ (3)
0<s<t<w

G(t,s) = {

where w € (0,7K~1/") and A\, = exp(:Z(2k —
1)). The function G(t,s) has the following
properties:

(a) G(t,s) is continuous and has continuous
derivatives up to, and including, order
n—2on [0,w] X [0 xw],
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(b) EZ2G(t,t7) -

BT

(C) atmG(t s)lt =0 — at’"G(t S
m=01,... ,n—-2,

T eXx] ’/
(d) |1Z=G(t,s)| < ﬁfwn—z

l=n-1 (mod 2) .

a1

To show (a) one has to note:

n

S ApTt =0, m=0,1,...

k=1

To prove inequality (d), write

IZ

where:

G(t S)I < A1 +A2

DI EEDY

ﬁk>0 ﬁk<C
| exp Arw
aL =
* Ap~™=1(exp Ayw — 1)

and for 8, = 0:

A =lK(m+1—n)/n
n

sin K1/n(t-9) _ gin K1/

PGt ) = -1,

-

(4)

"A37

"w—s+t)

1 — cos K'1/1

Thus, it is easy to see if A = M|
k=1,2,...,n

1 exp(KY/™w)

AIS_ -m/n
nﬁ>0 AwK1-m/
1

<2 Y or

ﬁ <0
,n.Km/n—l

A3 £ ———,
nw

where:
O<w<aKYr,

We remark here if the numb
always have B, # 0 or Az =
case:

exp(K'/"w)

509 < AwKT-m/n

atm

w

in{|Bx|; Br # 0},

er . is odd, we
0. In the latter

Putting these two cases together we can write
Equation 4 with I =n —1 (mod 2).
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THEOREM 1

Differential Equation 2 admits at least one w-
periodic solution if:

(i) 0O<w<wK-'Un,
() [, p(t)dt=0

i=1,2,...,n—1,

(iv) Bl 0 (jo| = o0) ,

(v) Jﬂli_lzll — 0 (Jz| — oo, uniformly in t) ,

(vi) f(t,z)signz >0 (Jz| >h) .

Proof

We consider the following differential equation
containing a parameter u, 0 < u < 1:

" + Kz’ + cz = p{p(t) — f(t,z) + cz
- Xn: ¢¢(x(n—i))$n_i+l} , (5)
i=1

where c is an arbitrary real positive constant.

We note for 4 = 1, Equation 5 is identical
to Equation 2 and, for 4 = 0, we obtain a linear
homogeneous differential equation.

Due to the fact that, for non-zero K, the
algebraic equation S™*! + KS™ + ¢ = 0 has
no purely imaginary root, we conclude that
Equation 5, for 4 = 0, has no non-zero w-
periodic solution.

Hence, Equation 5 admits at least one w-
periodic solution for ¢ € [0, 1], provided that for
¢ € (0,1) the solutions of Equation 5, together
with their derivatives, up to and including
order (n — 1), are uniformly bounded [3-5|.
Consequently the stated theorem can be proved
with the aid of an a priori estimate on the
solutions of Equation 5 and their derivatives.

Let z(t) = z(t + w) be a solution of
Equation 5 and let 0 < p < 1, the derivative
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y = z' satisfies the equation:

y™ + Ky = p{p(t) - f(t,z(t))
- 3 ) (1)
- (1 - [I,)Cilf(t) ’

which can be considered as a non-homogeneous
linear equation:

y™ + Ky = ¢(t),

where:
= ulp(t) = f(t,2()) = 3

(@ ()2 V() — (1 = w)ea(t) -

It is clear that with the properties (a), (b), (c)
and (d), the function G(t,s) given by Equa-
tion 3, is the Green’s function for the equation:

y™+Ky=0,

gt +w) = g(t) , (6)

with periodic boundary conditions:
y(i)(o):.—y(i)(w)’ i=0,1,...,n—1. (7)

Therefore, the solution of Equation 6 with the
boundary conditions in Equation 7 is equivalent
to the integral equation:

y(t) = / " Gt 5)9(s)ds ,

or
v = [ O ale)is
m=0,1,... ,n—-2.

Since:
"G mamG
—a—r (— ) o , m= 0 1 -2 s

substituting for g(t) and using above equality,
we obtain:

y0) = [ Gt (ulp(s)
= fla,a(s))] - (1 - pea(s)}ds
a1 [ Gt )

3 8,(at(s))ds

m =0,1,2...,n-2.
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For m = n — 1, we have:
s = 26 Hulple) 15,00
- (1= We()lds + 4 Y Bu(a ()
+uK /0 ) G(t, s) Z ®:(z" 9 (s))ds ,
and for m = n: )

YD ()= K / " Gt 9){ulp(s) — £(5,2(5))]

-(1- ucx(s}ds+K/ G(t,s)

> ,(a(s))ds

i=1
Now denoting:
R = max|z(t)]; t € [0,u],
¢, = ®,(R) = max|®,.(z)]; |z| <R,
= F(R) =max|f(t,z)|; t €[0,w],|z|<R;
we derive the following estimates:

™) < p[M + F(R) + cR + ®,(R)
+3Y M), m=12,...,n-2,

ly™V(t)| <o[M + F(R) + cR + ®,(R)

+"§_:1 M,
i=1
and:
ly™ (8)] <pK[M + F(R) + cR + ®.(R)
+7§Mi] ,
i=1
where:
p=max{i(—;§%%@}, m=12,...,n

o =max{p,(1 + Kp)} .
Now, term by term integration of Equation 5

yields:

2@+ Ka(t)+p 3 B (t) —uP Ol

i=1

+ / (= wea(t) + it zE)}dt =0,
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or:
/0 (1 = wyex(t) + uf (¢, alt

Since 1 — p > 0, we have:

)}dt =

[(1 — p)ex(t) + pf(t,z(t))] sign > 0 ;

lz| > h .

These results show that the
for 0 < t < w is excluded an
|z(7)| < h for some 7 € (0,w).

case |z(t)] > h
d we must have

Applying the mean value theorem to an
arbitrary interval [r,t] C [7,7 + w], we find:

|z(t) = 2(7)| = (t - r)y(7 + B(t — 7))

<wp (M+F(R)+cR+%,

0<60<1
or:
lz(t)| < b+ wp[M + F(R) +

+§M,~].

=1
Hence:

max|z(t)) = R< h +wp[M

(R)+§M,. ,

i=1

¢R + ®,.(R)

H+ F(R) +cR

n-—-1
+3,(R)+> M), 0<t<w.

Choosing 0 < ¢ < -, we obtai

h+wp(M + X0 M) 1

n:

1< 1-—wpc R
wp ,F(R) &,(R)
1- wpc( R + R )

An immediate consequence of
(iv) and (v) of Theorem 1 is:
F;{R) 0 and <I>,.}(2R) -0

Therefore, we conclude from E

(8)

the assumptions

R — 00) .

quation 8: -

R = max|z(t)| < Rp (independent of u)

teo,uw],
F(R) =

max|f(t,z)| £ Fo = max|f(t,z)|

te[0,w),|z|] <R te[0,w],|z| < Ro,
®,.(R) = max |®,(z)| < &,, = max|®,(z)|

|zl < R

|| </ Ro .
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The resulting a priori estimates:

()| < Ro ,

n—-1
ly™(t)| < p[M+Fo+cRo+<I>no+Z M,] ,
=1
n—1

|y<"-"(t)|Sa[M+Fo+cRo+<I>no+Z Mi] ,

i=1

n—1
ly™(t)| <pK [M+F0+cRo+<I>,,o +> M,] ,

=1

ensure the existence of a periodic solution of
Equation 2.

Remark

The results of Theorem 1 remain valid if,
instead of the assumption (vi), we use:

(vi) f(t,x) sign £<0.

To see this, it is sufficient to introduce a new
independent variable t* = —t and obtain a
differential equation of previous type.

Theorem 2

The differential equation:

n-—2

x(n+1) + Z ¢i(x(n—i)(t))x(n—i+1)

=1

+ (¢n-a(a') + K)z”

+on(z)e’ + f(t,7) = p(t)

(9)

where f(t,z) = f(t +w,z and p(t) = p(t + w)
admits at least one w-periodic solution if:

1) 0<w<wK-Yn-1

i) f,°p(t)dt =

iii) |®:(z)] < My; (Bs(x) = [g ¢(7)dT),
i=12,...,n-1,
iv) 1<>_|(l_n = 0; (®n(x) = [, du(r)dT),

2| — o0,

v) M%I—”M — 0; (Jz| — oo uniformly in t) ,



Mehri and Shadman on Differential Equations

vi) f(t,z)sign z > 0; |x| > h.

Again the proof is based on an a priori estimate
of the w-periodic solutions of the system:

g = Y, y’ =2,
4 Kz = ulplt) - £(6,0) - 30 (a™)
=1
x(n—i+1)} -1 - pex, (10)

where 0 < ¢ < 1 and ¢ > 0 (properly chosen).

Next we let z(t) = z(t+w) be a solution of
Equation 9 and consider the nonhomogeneous
differential equation:

A0+ Kz =g(t), g(t+w) =g(t)
o(®) = {p(t) - F(t,2(2)
— 3 4amI ()2 (1))

i=1

— (1= pea(t) - (11)

Or, equivalently, we consider the integral equa-
tion:

w am
(m)(4) = _
20 = [ GOt ale)ds

m=0,1,...,n-1, (12)

where:

n—-1 exp Ka-" Mg (w—s+1)
k=1 nA:'l epr*'()‘;,w—-l) ’
0<t<s<w
1
exp K7 X\ (t—s)
E nAt~lexp K‘v}()‘kw—l) ! (13)
\0 <s<tLw:

G(t,s) = S

and:
A = KY"exp [(%) (2k — 1)] .

As in the previous case, we find the following
estimates:
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|2™ (&) < p[M + F(R) + cR + ®4(R)
n—1
+EM.-] ,m=0,1,... ,n -3,
i=1

|2"3(t)| < o[M + F(R) + cR+ ®,(R)

n—1
+y_ M,
i=1

12" D(t)| < pK[M + F(R) + cR + ®.(R)
n—1
+> M,
i=1

where o and p are determined by the bounds
on Green’s function in Equation 13 and its
derivatives and, therefore, they depend on K
and w. M,R,F(R) and ®,(R) are defined as
before.

Following the same argument as in the case
of Theorem 1, we finally obtain the required
boundedness results.

As an application of previous theorems, we
look at the following two examples.

Example 1

Consider the equation:

T

= sint.
2
1+x (14)

Here p(t) = sin(t), f(t,z) = |[sint|;Ez ,
$u(x) = e and B,(z) = 1-¢€7%, (n = 1).
We have:

"+ (% + e“’”) z' + |sint|

Imll'_xflool—?#l- =0, f(t,z)sign >0
o M®D_
lel—oo e}

that is, all the assumptions of Theorem 1 are
satisfied. Hence, there exists at least one 27-
periodic solution of Equation 14.

Example 2
Consider the equation:
1
" + (5 + cosm’) ' +e %1

X

+sin®t
1+ |z|

= cost . (15)
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Here, n = 2, ¢n_1(fl3l) = cosz’, ¢n(x) =e
®,(z) = 1-e7®, f(t,2) = sin* =, p(t)

cost. Hence:

i 22(@)

m ——— =0, f(t,x) sig
l2|—o0 ||
i 02 _ o
jel—eo ||

Ih.®

n z > 0(h=0)

and therefore all the assumptions of Theorem 2

are satisfied. This proves the
least, one 27-periodic solution
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