Trajectories Connecting Critical Points

Yu Shu-Xiang!

In this paper, an existence criterion of trajectories connecting a moving pair of critical points
of planar differential systems depending on a parameter is given.

INTRODUCTION

Many questions arising in the physical and bio-
logical sciences are concerned with the existence
of trajectories joining a pair of critical points
of systems of autonomous ordinary differential
equations. In other words, is there a trajectory
that, as ¢ — +o00 and t — —oo, tends to a
given pair of critical points of the equation? As
pointed out by Gelfand [1], this is an interesting
problem. In recent years, this problem has
attracted the attention of many researchers.
A considerable number of papers have been
written in connection with this subject. For
example, some results on the existence and
uniqueness of connecting trajectories have been
obtained by C.C. Conley and J.A. Smoller 2],
J.G. Conlon [3], J.F. Selgrade [4], Jiang Jifa
[5], and others. These results are applicable to
cooperative systems [6]. Some results on their
existence have been obtained by C.C. Conley
and J.A. Smoller |7}, C.C. Conley (8], P. Gordon
[9], Z. Artstein and M. Slemrod [10], Yu Shu-
Xiang [11,12], and others. The existence of tra-
jectories connecting a pair of critical points of
differential equations depending on a parameter
has been discussed by A.G. Kulikovskii [13],
J.A. Smoller and C.C. Conley [14], and others.

For an ordinary differential system, let its

right-hand side function depend on a parameter
4 and suppose.that for 0 < g < py, it has
two critical points P;(u), P:(x) and that these
critical points move continuously with y, finally
coalescing at u = 0, i.e,, P(0) = P,(0). A
problem is: Is there a value po(0 < po < f1)
such that, for 0 < pu < pg, there exists at least
one trajectory connecting the critical points
P(p) and P(n)? This problem is of special
physical significance [13,14].

In this paper, we consider the planar dif-
ferential system depending on a parameter and
give conditions on the differential system which
assure the existence of a trajectory connecting
two critical points when they move close enough
together (see Theorem 2 below).

RESULTS

Consider the differential system defined in the
region G C R%:

dx

—CE = X(Cl:,y) I}
Y —¥@y). (1)

Suppose X,Y € C!. Let the vector field V =
(X,Y) define a flow f(p,t). Let B C G be the
closure of a bounded and connected open set

1. Institute of Mathematics, Academia Sinica, 100080 Beijing, China.

Scientia Iranica, Vol. 1, No. 4, © Sharif University of Technology, January 1995.



316

with the boundary 8B, and t
points of Equation 1 in dB.
b* of 8B by:

bt = {p € 8B : 3¢ > 0 with

re are no critical
e define a subset

f(p,(—e,O))nB=¢ .

Hence, if p € b*, the trajectory through p leaves
B for a short backwards time. Similarly, let:

b~ ={p€dB:3e >0 with
f(pa(07€))nB=¢}

and

= {p € 9B :V is tangent to B at p} .

We now introduce the following definitions

[7,15].
Definition 1

We say that B is an isolating block for the flow

defined by Equation 1 if bt N~

b~ =0B.

=7 and bt U

It follows from the above definition that, if
B is an isolating block, then all the tangencies

to B must be external.

Definition 2

If a simple closed curve C
alternating nonclosed whole

is the union of
trajectories and

critical points, and it is contained in the w (or

«)-limit set of some trajectory,

C is a singular closed trajectory.

In an early paper [11],
following theorem.

Theorem 1

If the system in Equation 1 ad
block B such that the followin
are satisfied in B:

i. there are precisely two cri
of which is a repeller;

ii. there are no closed trajecta
closed trajectories;

then we say that

we proved the

mits an isolating
g two conditions

tical points, one

ries and singular

then there must be a trajectory in B running

from the repeller to the other

critical point.
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It is easy to see that Theorem 1 is a
generalization of Conley’s result in [8]. In
particular, Theorem 1 does not require the
condition that the system, Equation 1, is a
gradient-like system. A generalization of Theo-
rem 1 can be found in [12].

Consider now the differential system de-
pending on a parameter:

dx

—d7 = X(.’E, Y, ﬂ') ’

dy

% = Y(.’E, y,ﬂ) . (2)

Suppose that X(0,0,0) =0, Y(0,0,0) =0 and
that the system in Equation 2 is defined in the
region Q = G xI C R?x I(I =/0,1]), where G
is a region in the xy-plane containing the origin
(z,y) = (0,0) = 0 in its interior. Suppose that
X,YeCtisin r,y and p is in Q.

In this paper, we shall prove the following
theorem.

Theorem 2

Suppose that for 0 < g < p;, G contains
precisely two critical points P;(x) and Py(u)
of the system in Equation 2, one of which is
a repeller, and that these critical points move
continuously with p, finally coalescing at u = 0,
i.e., P;(0) = P;(0) = (0,0) = 0. Assuming that
the following three conditions are satisfied:

. oY
L 'a_y #Oa't (l',y,ﬂ) —(01070) ’

X oY
1. E""é;#oa‘t (xvyyﬂ')_(()’oao)a

iii. there are @ > 0, B > 0 such that the
function X(z,y,0) does not change sign in
the region R = {(z,y) € G: —a <z < «
and -8 € y < B} and X(z,y,0) # 0 for
z#0in R;

then there exists a value uo(0 < yo < p3) such
that, for 0 < p < pq, the system in Equation 2
has a trajectory connecting the critical points
P;(p) and Py(p).
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Proof of Theorem 2

Since Y(z,y,pu) € C! in Q, there is a region
G, C G containing the origin 0 = (0,0) in its
interior and a value (0 < pa < 1) such that,
in the region Q; = G; X [0, y,], the function
Y(z,y,u) can be represented as follows:

Y(z,y,pu) = az + by + cu + Q(z, ¥, 1)
= az + by + Qu(z,y, 1) (3)

where a,b,c are real constants, Q(0,0,0) = 0
and:

Q(z,y, 1)

27"~ — 0 when

p
p=Vri+y:+p:—0. (4)

By the condition (i) of Theorem 2, it follows
that b # 0. We first assume:

b>0. (5)
By Equation 3 we have:
Y(0,y,0) = by + Q(0,y,0) = by + 7y
=0+,

where 7 — 0 when y — 0. Therefore, there
exists a § > 0 such that b+~ > 0 for |y| < 6.
Hence, we get:
Y(0,y,0) = by + @:1(0,y,0) > 0 for
0<y<$, (6)

and

Y(0,y,0) = by + Q:(0,3,0) < 0 for
-6<y<0. (7

Let y; be a fixed value such that 0 < y, < 6.
By Equations 6 and 7, we get:

Y(O,y1,0)=b?l1+Q1(an1,0) >0 ’ (8)
and
Y(07 —ylao) = b("yl) + Ql(O, -1, 0) <0.
9)

By virtue of the continuity of the function
Y(x,y,u) in g, there exists a p3(0 < ps < 1)
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such that, for 0 < p < p3, the following two
inequalities hold:

Y(Oyyh/") = byl + Ql(oaylvﬂ') >0 ’
(10)

Y (0, —y1, 1) = b(=31) + @1(0, —y1, 1) < 0.
(11)

By virtue of the continuity of the function
Y(z,y,u) in z, for y; and for any fixed u(0 <
p < p3) there exists a z(g) > 0 such that, for
|| € z(p), the following two inequalities hold:

Y(x,ylyﬂ') =ar + byl + Ql(x’yhll‘) >0 )
(12)

Y("L‘v —yhﬂ') =ar+ b(—yl)

+ Ql(xa —Y1, ll') <0.
(13)

Since the interval [0, u3] is compact, there exists
a z; > 0 such that, for |z| < z; and for every
p € [0, y13], the inequalities in Equations 12 and
13 hold.

Altogether, we have proved that, for any
fixed (0 < 31 < §), we can construct a
rectangular region Ry = {(z,y) € G1 : -1 <
z € r; and —y; <y € 11}, its boundary being
a rectangle A;B,C,D,;, where A; = (—z1,%1),
B, = (x1,;1), Ci = (z1,-y1) and Dy =
(=zy,—1). For every point (x,y) on the hori-
zontal edge A, B; and for every p € [0, us), the
inequality Y (z,y, ) > 0 holds. For every point
(x,y) on the horizontal edge C; D, and for every
p € [0, u3], the inequality Y'(zx,y, ) < 0 holds.
This means that for the system in Equation 2,
we have % > 0 when (z,y) € 4By, 4 € [0, s3]
and % < 0 when (z,y) € C1Dy, p € [0,p3].
A rectangle which possesses such a property
is called H-rectangle. Obviously, for any fixed
#,(0 < ), < z;) we can construct a rectangular
region R, = {(x,y) € G, : -z} < = < 7} and
—y, € ¥y € 11}, its boundary being a rectangle
A, B;C} D, where A} = (—z}, %), B} = (z1,%1),
Ci = (zy,—y) and D} = (-2, -w)- By
construction, we know that R} C R, and that
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rectangle A} B]C]D; is also

an H-rectangle,

because, for the system in Equation 2, we have
% > 0when (z,y) € A} B, p € [0, p3) and & <
0 when (z,y) € C{Dj, p € [0,u3]). Therefore,
for an arbitrary region G3 C |G containing the

origin 0 = (0, 0) in its interior,
an H-rectangle ABCD such

we can construct
that the ABCD

is contained in G, provided we make 3, small

enough.

By condition (ii) of Theorem 2 and by

the continuity of the functio

ns X and Y, it

follows that there are three sufficiently small
real positive constants a;, 3, and u4 such that

when (z,y) € R; = {(z,y) €
a; and -B; < y < /31} and
following expression holds:

Further, noting o and 8

ili, we can assume here a; <

(if necessary, we can lessen o
case, Equation 14 still holds fo
g € [0, g]). Thus, we have R
from Condition iii of Theorem

G1 Hilinad 4 41 S X <
B € [07/1‘4]; the

(14)

in the Condition
aand B < B
» and fB;; in this
r (z,y) € R, and
» C R. It follows
2 that the sign of

function X (z,y,0) does not change in R, and

X(z,v,0) # 0 for z # 0 in R,.
We now construct

an  H-rectangle

A;B,C3D, such that it is contained in R,.

Let R; = {(z,y) € R,
zs and
region enclosed by the recta
where 0 < 1z, < o; and

A = (—93273/2)732 = (332>y2)

—Z2 £ T X

-y < y < ¥z} be a rectangular

ngle A2B202D2,
0 < ¥ < By,
,Cy = (xz,—yz)

and D2 = (—1?2, —yz) The fact that .A2.B2C2D2
is a H-rectangle implies that there exists a value
is > 0 such that, for the system in Equation 2,

we have & > 0 when (z,y) €

and & < 0 when (z,y) € C;D
Since R3

X(z,y,0) does not

that:

X(z,y,0) > 0in R; .

A2B27 14 € [0? /1'5]
2 1 € [0, ps].

C R,, the sign of function
change
X(z,y,0) # 0 for x # 0 in R;.

in R; and
Suppose first

(15)

Hence, for every point (z,y) on the edge
B,C; of the rectangle A;B3C,D, we have
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X(z,y,0) = X(x2,y,0) > 0. By the continuity
of the function X (z,y, 1) in p, it follows that for
any fixed point (z2,y) on the edge B,C, there
exists a pg(y) > 0 such that X(z,,y,u) > 0
for u € [0, u6(y)]. Since the set composed of
all points on the line segment B,C, is compact,
there exists a pg > 0 such that for every point
(z,y) on the edge B,C; and for every u € [0, 4]
we have X (z,y, ) > 0. Similarly, using exactly
the same type of argument, it follows that there
exists a p; > 0 such that X(z,y,u) > 0 for
every point (z,y) on the edge A,D, and for
every u € [0, 7). If we let pg = min{us, ur},
then we claim that for every point (x,) on the
edge B,C; and A;D,, and for every u € [0, us),
the following expression holds:

X(z,y,1) > 0. (16)

Finally, by the hypothesis of Theorem 2,
as u — 0, P(p) and P,(u) tend to the origin
0 = (0,0), thus there exists a g > 0 such that
for every p € [0, uo], the critical points P;(u)
and P,(p) are contained in the interior of R;.

If we let po = min{u,, ps, s, e}, then
we claim that for 0 < g < po, the system
in Equation 2 has a trajectory connecting the
eritical points Py(ux) and Py(p). In fact, as
stated above, for the system in Equation 2 we
have 2 > 0 when (z,y) € AB,, p € [0, p0)
and % < 0 when (z,y) € C,Dy, p € [0, o).
Further, it follows from Equation 16 that for

“the system in Equation 2 we have 'fi—f > 0

when (z,y) € B,C; and (z,y) € AyD,, p €
[0, 10]. Therefore, it is easy to see that R, is
an isolating block for the flow defined by Equa-
tion 2. It precisely contains two critical points,
Py(p) and Py(p), one of which is a repeller.
Moreover, it follows from Equation 14 that
there are no closed trajectories and singular
closed trajectories in R; [16]. Thus, Theorem 1
implies that there must be a trajectory in Rj
connecting the critical points P, (1) and Py(p).

If we consider the case when b < 0 instead
of Equation 5, the proof is similar. In this
case, for the system in Equation 2, we have
% < 0 when (z,y) € A,B,, and % > 0 when
(z,y) € C3D,. Thus, R; still is an isolating
block for the system in Equation 2. Similarly,
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if we consider the case when X(z,y,0) < 0
instead of Equation 15, then for the system in
Equation 2 we have 9 < 0 when (z,y) € B,C;
and A;D,. Rj still is an isolating block for the
system in Equation 2. Thus, the above proof

works. Therefore, Theorem 2 is proved.

AN EXAMPLE

Consider the system of ordinary differential
equations in the plane:

dz

e =y + 2" —p=X(z,y,1) ,

d

;l% =y—-p=Y(z,y,n), (7

1
where p1 € (O, 5] is a parameter, and m is a

positive integer.
It is easy to show the following properties
of the system in Equation 17.

1. The system in Equation 17 has precisely two
critical points Py(u) = (=[p(1 — p)]*=, 1)
and Py(p) = ([u(1 — p)]*=, ) and Py(p) is
a repeller. As p — 0 we have Pi(u) — 0 =
(0,0) and P(p) — 0 =(0,0).

aYy
. =—=1
2 3y
0X 09Y
. —F—=2mx’ 1 +1=1
3 8:c+3y m +

at (z,y,u) = (0,0,0).

4. X(z,9,0) =y?>+z> >0and X(z,y,0) #0
for z # 0 in the plane.

Therefore, Equation 17 satisfies all condi-
tions of Theorem 2. Hence, Theorem 2 implies
that there exists a value po € (0, 3] such that,
for 0 < u < po, the system in Equation 17 has a
trajectory connecting the critical points P;(u)
and P,(p) (In fact, in this example we can take

Ho = 51‘)
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